Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Int J Biol Sci ; 20(7): 2555-2575, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725861

RESUMO

Staphylococcus aureus (S. aureus) persistence in macrophages, potentially a reservoir for recurrence of chronic osteomyelitis, contributes to resistance and failure in treatment. As the mechanisms underlying survival of S. aureus in macrophages remain largely unknown, there has been no treatment approved. Here, in a mouse model of S. aureus osteomyelitis, we identified significantly up-regulated expression of SLC7A11 in both transcriptomes and translatomes of CD11b+F4/80+ macrophages, and validated a predominant distribution of SLC7A11 in F4/80+ cells around the S. aureus abscess. Importantly, pharmacological inhibition or genetic knockout of SLC7A11 promoted the bactericidal function of macrophages, reduced bacterial burden in the bone and improved bone structure in mice with S. aureus osteomyelitis. Mechanistically, aberrantly expressed SLC7A11 down-regulated the level of intracellular ROS and reduced lipid peroxidation, contributing to the impaired bactericidal function of macrophages. Interestingly, blocking SLC7A11 further activated expression of PD-L1 via the ROS-NF-κB axis, and a combination therapy of targeting both SLC7A11 and PD-L1 significantly enhanced the efficacy of clearing S. aureus in vitro and in vivo. Our findings suggest that targeting both SLC7A11 and PD-L1 is a promising therapeutic approach to reprogram the bactericidal function of macrophages and promote bacterial clearance in S. aureus osteomyelitis.


Assuntos
Macrófagos , Osteomielite , Infecções Estafilocócicas , Staphylococcus aureus , Animais , Osteomielite/microbiologia , Osteomielite/metabolismo , Osteomielite/genética , Camundongos , Macrófagos/metabolismo , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Sistema y+ de Transporte de Aminoácidos/metabolismo , Sistema y+ de Transporte de Aminoácidos/genética , Camundongos Endogâmicos C57BL , Espécies Reativas de Oxigênio/metabolismo
2.
Front Cell Infect Microbiol ; 13: 1187543, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529351

RESUMO

Introduction: Staphylococcus aureus (S. aureus) osteomyelitis causes a variety of metabolism disorders in microenvironment and cells. Defining the changes in cholesterol metabolism and identifying key factors involved in cholesterol metabolism disorders during S. aureus osteomyelitis is crucial to understanding the mechanisms of S. aureus osteomyelitis and is important in designing host-directed therapeutic strategies. Methods: In this study, we conducted in vitro and in vivo experiments to define the effects of S. aureus osteomyelitis on cholesterol metabolism, as well as the role of Apolipoprotein E (ApoE) in regulating cholesterol metabolism by macrophages during S. aureus osteomyelitis. Results: The data from GSE166522 showed that cholesterol metabolism disorder was induced by S. aureus osteomyelitis. Loss of cholesterol from macrophage obtained from mice with S. aureus osteomyelitis was detected by liquid chromatography-tandem mass spectrometry(LC-MS/MS), which is consistent with Filipin III staining results. Changes in intracellular cholesterol content influenced bactericidal capacity of macrophage. Subsequently, it was proven by gene set enrichment analysis and qPCR, that ApoE played a key role in developing cholesterol metabolism disorder in S. aureus osteomyelitis. ApoE deficiency in macrophages resulted in increased resistance to S. aureus. ApoE-deficient mice manifested abated bone destruction and decreased bacteria load. Moreover, the combination of transcriptional analysis, qPCR, and killing assay showed that ApoE deficiency led to enhanced cholesterol biosynthesis in macrophage, ameliorating anti-infection ability. Conclusion: We identified a previously unrecognized role of ApoE in S. aureus osteomyelitis from the perspective of metabolic reprogramming. Hence, during treating S. aureus osteomyelitis, considering cholesterol metabolism as a potential therapeutic target presents a new research direction.


Assuntos
Osteomielite , Infecções Estafilocócicas , Camundongos , Animais , Staphylococcus aureus , Cromatografia Líquida , Espectrometria de Massas em Tandem , Macrófagos/metabolismo , Colesterol/metabolismo , Osteomielite/microbiologia , Infecções Estafilocócicas/microbiologia , Apolipoproteínas E/genética
3.
Mol Ther ; 31(1): 174-192, 2023 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-36104974

RESUMO

There is no effective therapy for implant-associated Staphylococcus aureus osteomyelitis, a devastating complication after orthopedic surgery. An immune-suppressive profile with up-regulated programmed cell death 1/programmed death ligand 1 (PD-1/PD-L1) was identified based on our transcriptional data (GEO: GSE166522) from a mouse model of S. aureus osteomyelitis. PD-1/PD-L1 expression was up-regulated mainly in F4/80+ macrophages surrounding the abscess in S. aureus-infected bone. Mechanistically, PD-1/PD-L1 activated mitophagy to suppress production of mitochondrial reactive oxygen species (ROS), suppressing the bactericidal function of macrophages. Using neutralizing antibodies for PD-L1 or PD-1, or knockout of PD-L1 adjuvant to gentamicin markedly reduced mitophagy in bone marrow F4/80+ cells, enhanced bacterial clearance in bone tissue and implants, and reduced bone destruction in mice. PD-1/PD-L1 expression was also increased in the bone marrow from individuals with S. aureus osteomyelitis. These findings uncover a so far unknown function of PD-1/PD-L1-mediated mitophagy in suppressing the bactericidal function of bone marrow macrophages.


Assuntos
Anticorpos , Antígeno B7-H1 , Osteomielite , Receptor de Morte Celular Programada 1 , Animais , Camundongos , Adjuvantes Imunológicos , Antígeno B7-H1/antagonistas & inibidores , Antígeno B7-H1/genética , Osteomielite/metabolismo , Osteomielite/terapia , Receptor de Morte Celular Programada 1/antagonistas & inibidores , Receptor de Morte Celular Programada 1/genética , Staphylococcus aureus , Modelos Animais de Doenças , Anticorpos/uso terapêutico
4.
FASEB J ; 35(10): e21851, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34547121

RESUMO

It has been known that moderate mechanical loading, like that caused by exercise, promotes bone formation. However, its underlying mechanisms remain elusive. Here we showed that moderate running dramatically improved trabecular bone in mice tibias with an increase in bone volume fraction and trabecular number and a decrease in trabecular pattern factor. Results of immunohistochemical and histochemical staining revealed that moderate running mainly increased the number of osteoblasts but had no effect on osteoclasts. In addition, we observed a dramatic increase in the number of colony forming unit-fibroblast in endosteal bone marrow and the percentage of CD45- Leptin receptor+ (CD45- LepR+ ) endosteal mesenchymal progenitors. Bioinformatics analysis of the transcriptional data from gene expression omnibus (GEO) database identified chemokine c-c-motif ligands (CCL2) as a critical candidate induced by mechanical loading. Interestingly, we found that CCL2 was up-regulated mainly in osteoblastic cells in the tibia of mice after moderate running. Further, we found that mechanical loading up-regulated the expression of CCL2 by activating ERK1/2 pathway, thereby stimulating migration of endosteal progenitors. Finally, neutralizing CCL2 abolished the recruitment of endosteal progenitors and the increased bone formation in mice after 4 weeks running. These results therefore uncover an unknown connection between osteoblasts and endosteal progenitors recruited in the increased bone formation induced by mechanical loading.


Assuntos
Osso Esponjoso/citologia , Quimiocina CCL2/metabolismo , Células-Tronco Mesenquimais/citologia , Osteoblastos/citologia , Osteogênese , Condicionamento Físico Animal , Animais , Osso Esponjoso/metabolismo , Movimento Celular , Quimiocina CCL2/genética , Masculino , Células-Tronco Mesenquimais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo
5.
Food Chem Toxicol ; 145: 111689, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32810588

RESUMO

α-hemolysin (Hla) is considered an essential virulent factor for Staphylococcus aureus (S. aureus) toxicity, the mechanism by which Hla affect bone metabolism is poorly understood. In this study, 2-month-old C57BL/6 mice were treated with Hla (40 µg/kg, i.p.) or S. aureus (1 × 106 CFU/ml, 100 µl, i.v.) with the presence or absence of methyl-ß-cyclodextrin (MßCD) (300 mg/kg, i.p.). MicroCT analysis showed progressive bone loss from week 2 to week 4 after Hla treatment, accompanied by a decreased osteoblasts and increased osteoclasts in femoral metaphysis in mice. Further, Hla stimulated the expression of Caveolin-1 in vivo and in vitro, activated lipid rafts accumulation in cell membrane of bone marrow stromal cells (BMSCs), and suppressed osteogenesis of BMSCs. Destruction of lipid rafts with MßCD or inhibition of Caveolin-1 with Daidzein blocked the detrimental effect of Hla on osteogenesis of BMSCs. Importantly, treating mice with MßCD rescued the loss of osteoblasts and increased osteoclastogenesis induced by Hla as well as the bone loss induced by S. aureus infection. Together, we demonstrate that Hla induces bone destruction directly by suppressing osteogenesis and indirectly by stimulating osteoclastogenesis, and that lipid rafts may mediate the detrimental effect of Hla and S. aureus on osteogenesis and bone formation.


Assuntos
Proteínas de Bactérias/metabolismo , Células da Medula Óssea/citologia , Proteínas Hemolisinas/metabolismo , Microdomínios da Membrana/metabolismo , Osteogênese , Infecções Estafilocócicas/fisiopatologia , Staphylococcus aureus/metabolismo , Animais , Proteínas de Bactérias/genética , Células da Medula Óssea/metabolismo , Células da Medula Óssea/microbiologia , Regulação para Baixo , Proteínas Hemolisinas/genética , Interações Hospedeiro-Patógeno , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Osteoclastos/citologia , Osteoclastos/metabolismo , Infecções Estafilocócicas/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética
6.
Front Microbiol ; 11: 1301, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32595631

RESUMO

Staphylococcus aureus (S. aureus) infection-induced osteomyelitis is a great challenge in clinic treatment. Identification of the essential genes and biological processes that are specifically changed in mononuclear cells at an early stage of S. aureus osteomyelitis is of great clinical significance. Based on transcriptional dataset GSE16129 available publicly, a bioinformatic analysis was performed to identify the differentially expressed genes of osteomyelitis caused by S. aureus infection. ERBB2, TWIST1, and NANOG were screened out as the most valuable osteomyelitis-related genes (OMRGs). A mice model of implant-associated S. aureus osteomyelitis was used to verify the above genes. We found significantly up-regulated expression of TWIST1 in macrophages and accumulation of macrophages around the infected implant. Meanwhile, S. aureus infection increased the expression of TWIST1, MMP9, and MMP13, and stimulated the migration and phagocytosis function of Raw 264.7 cells. Additionally, knock-down of the expression of TWIST1 by siRNA could significantly down-regulate MMP9 and MMP13 and suppress the migration and phagocytosis ability of macrophages in response to S. aureus infection. Furthermore, we found that NF-κB signaling was activated in Raw 264.7 cells by S. aureus and that inhibition of NF-κB signaling by Bay11-7082 blocked the expression of TWIST1, MMP9, and MMP13 as well as cell migration and phagocytosis evoked by S. aureus. Our findings demonstrate that NF-κB/TWIST1 is necessary for migration and phagocytosis of macrophages in response to S. aureus infection. Our study highlights the essential role of NF-κB/TWIST1 in early innate immune response to S. aureus infection in bone.

7.
Cell Microbiol ; 22(10): e13240, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32584493

RESUMO

Internalisation of Staphylococcus aureus in osteoblasts plays a critical role in the persistence and recurrence of osteomyelitis, the mechanisms involved in this process remain largely unknown. In the present study, evidence of internalised S. aureus in osteoblasts was found in long bone of haematogenous osteomyelitis in mice after 2 weeks of infection. Meanwhile, eliminating extracellular S. aureus by gentamicin can partially rescue bone loss, whereas the remaining intracellular S. aureus in osteoblasts may be associated with continuous bone destruction. In osteoblastic MC3T3 cells, intracellular S. aureus was detectable as early as 15 min after infection, and the internalisation rates increased with the extension of infection time. Additionally, S. aureus invasion stimulated the expression of phosphor-focal adhesion kinase (FAK), phosphor-epidermal growth factor receptor (EGFR) and phosphor-c-Src in a time-dependent way, and blocking EGFR/FAK or c-Src signalling significantly reduced the internalisation rate of S. aureus in osteoblasts. Our findings provide new insights into the mechanism of S. aureus internalisation in osteoblast and raise the potential of targeting EGFR/FAK and c-Src as adjunctive therapeutics for treating chronic S. aureus osteomyelitis.


Assuntos
Receptores ErbB/metabolismo , Quinase 1 de Adesão Focal/metabolismo , Osteoblastos/microbiologia , Osteomielite/microbiologia , Proteínas Proto-Oncogênicas pp60(c-src)/metabolismo , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/patogenicidade , Animais , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Transdução de Sinais , Staphylococcus aureus/metabolismo
8.
J Biomater Appl ; 35(1): 97-107, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32233720

RESUMO

Fabrication of osteoconductive scaffold with osteoinductive capability and appropriate resorption rate is of great significance for treating bone defects. To achieve this aim, strontium-substituted calcium sulfate hemihydrate (Sr-CSH) and hydroxyapatite (HA) were mixed to develop a novel composite. Sr-CSH containing 5% and 10% strontium was mixed with HA at the weight ratio of 6:4, respectively. Female Sprague-Dawley rats underwent bone defect surgery in left tibia were randomly assigned to three different treatment groups filled with CSH/HA, 5% and 10% Sr-CSH/HA. Micro-CT analysis showed increased new bone formation in 10% Sr-CSH/HA group compared to CSH/HA group. In addition, histological analysis showed large amounts of chondrocytes and osteoblasts within the pores of Sr-CSH/HA composites as a result of the CSH resorption. Further, CFU-F assay demonstrated the increased amount of bone marrow mesenchymal stromal cells (BMSCs) colonies in 10% Sr-CSH/HA group. In primary BMSCs, extraction from Sr-CSH/HA composite significantly increased the migration of cells, up-regulated the expression of osteoblastic marker genes, and increased the area of mineralized nodules. Together, Sr-CSH/HA may promote bone formation by recruiting and stimulating osteogenic differentiation of BMSCs. Therefore, this composite may be proposed as an ideal substitute to repair bone defects.


Assuntos
Regeneração Óssea , Sulfato de Cálcio/química , Hidroxiapatitas/química , Células-Tronco Mesenquimais/citologia , Estrôncio/química , Alicerces Teciduais/química , Animais , Regeneração Óssea/efeitos dos fármacos , Sulfato de Cálcio/farmacologia , Proliferação de Células/efeitos dos fármacos , Feminino , Hidroxiapatitas/farmacologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Osteogênese/efeitos dos fármacos , Ratos Sprague-Dawley , Estrôncio/farmacologia
9.
Stem Cell Res Ther ; 11(1): 131, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32197645

RESUMO

BACKGROUND: Hypercholesterolemia increases the risk of tendon pain and tendon rupture. Tendon-derived stem cells (TDSCs) play a vital role in the development of tendinopathy. Our previous research found that high cholesterol inhibits tendon-related gene expression in TDSCs. Whether high cholesterol has other biological effects on TDSCs remains unknown. METHODS: TDSCs isolated from female SD rats were exposed to 10 mg/dL cholesterol for 24 h. Then, cell apoptosis was assessed using flow cytometry and fluorescence microscope. RFP-GFP-LC3 adenovirus transfection was used for measuring autophagy. Signaling transduction was measured by immunofluorescence and immunoblotting. In addition, Achilles tendons from ApoE -/- mice fed with a high-fat diet were histologically assessed using HE staining and immunohistochemistry. RESULTS: In this work, we verified that 10 mg/dL cholesterol suppressed cell proliferation and migration and induced G0/G1 phase arrest. Additionally, cholesterol induced apoptosis and autophagy simultaneously in TDSCs. Apoptosis induction was related to increased expression of cleaved caspase-3 and BAX and decreased expression of Bcl-xL. The occurrence of autophagic flux and accumulation of LC3-II demonstrated the induction of autophagy by cholesterol. Compared with the effects of cholesterol treatment alone, the autophagy inhibitor 3-methyladenine (3-MA) enhanced apoptosis, while the apoptosis inhibitor Z-VAD-FMK diminished cholesterol-induced autophagy. Moreover, cholesterol triggered reactive oxygen species (ROS) generation and activated the AKT/FOXO1 pathway, while the ROS scavenger NAC blocked cholesterol-induced activation of the AKT/FOXO1 pathway. NAC and the FOXO1 inhibitor AS1842856 rescued the apoptosis and autophagy induced by cholesterol. Finally, high cholesterol elevated the expression of cleaved caspase-3, Bax, LC3-II, and FOXO1 in vivo. CONCLUSION: The present study indicated that high cholesterol induced apoptosis and autophagy through ROS-activated AKT/FOXO1 signaling in TDSCs, providing new insights into the mechanism of hypercholesterolemia-induced tendinopathy. High cholesterol induces apoptosis and autophagy through the ROS-activated AKT/FOXO1 pathway in tendon-derived stem cells.


Assuntos
Hipercolesterolemia , Proteínas Proto-Oncogênicas c-akt , Animais , Apoptose , Autofagia , Linhagem Celular Tumoral , Colesterol , Feminino , Proteína Forkhead Box O1 , Camundongos , Proteínas do Tecido Nervoso , Proteínas Proto-Oncogênicas c-akt/genética , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Células-Tronco , Tendões
10.
Mol Med Rep ; 20(4): 3555-3564, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31432182

RESUMO

Calcium phosphate­based bone substitutes have been widely used for bone repair, augmentation and reconstruction in bone implant surgery. While some of these substitutes have shown excellent biological efficacy, there remains a need to improve the performance of the current calcium phosphate­based bone substitutes. Strontium ions (Sr) can promote new osteogenesis, inhibit osteoclast formation and increase osteoconductivity. However, the therapeutic effect and mechanism of strontium­containing α­calcium sulfate hemihydrate (Sr­CaS) remains unclear. The present study created bone injuries in rats and treated the injuries with Sr­CaS. Then Cell Counting Kit­8, soft agar colony formation, flow cytometry, Transwell and Alizarin Red staining assays were performed to assess the bone cells for their proliferation, growth, apoptosis, invasion, and osteogenic differentiation abilities. The bone reconstructive states were measured by the microCT method, hematoxylin and eosin staining and Masson staining. Bone­related factors were analyzed by the reverse transcription­quantitative PCR assay; transforming growth factor (TGF)­ß, mothers against decapentaplegic homolog (Smad)2/3 and ß­catenin expression was measured by western blot analysis and osteocalcin (OCN) expression was assessed by immunohistochemistry. Sr­CaS did not significantly affect the proliferation and apoptosis of bone marrow stem cells (BMSCs), but did accelerate the migration and osteogenic differentiation of BMSCs in vitro. Sr­CaS promoted bone repair and significantly increased the values for bone mineral density, bone volume fraction, and trabecular thickness, but decreased trabecular spacing in vivo in a concentration­-dependent manner. In addition, Sr­CaS dramatically upregulated the expression levels of genes associated with osteogenic differentiation (Runt­related transcription factor 2, Osterix, ALP, OCN and bone sialoprotein) both in vitro and in vivo. Sr­CaS also increased Smad2/3, TGF­ß and phosphorylated­ß­catenin protein expression in vitro and in vivo. These results indicated that materials that contain 5 or 10% Sr can improve bone defects by regulating the TGF­ß/Smad signaling pathway.


Assuntos
Substitutos Ósseos/uso terapêutico , Sulfato de Cálcio/uso terapêutico , Osteogênese/efeitos dos fármacos , Proteínas Smad/metabolismo , Estrôncio/uso terapêutico , Fator de Crescimento Transformador beta/metabolismo , Animais , Osso e Ossos/lesões , Células Cultivadas , Masculino , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
11.
FASEB J ; 33(10): 11137-11147, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31298955

RESUMO

So far, there has been no effective cure for osteoporotic cortical bone, the most significant change in long bone structure during aging and the main cause of bone fragility fractures, because its underlying molecular and cellular mechanisms remain largely unknown. We used 3- and 15-mo-old mice as well as 15-mo-old mice treated with vehicle and gefitinib to evaluate structural, cellular, and molecular changes in cortical bone. We found that the senescence of osteoprogenitors was increased, whereas the expression of phosphorylated epidermal growth factor receptor (EGFR) on the endosteal surface of cortical bone down-regulated in middle-aged 15-mo-old mice compared with young 3-mo-old mice. Further decreasing EGFR signaling by gefitinib treatment in middle-aged mice resulted in promoted senescence of osteoprogenitors and accelerated cortical bone degeneration. Moreover, inhibiting EGFR signaling suppressed the expression of enhancer of zeste homolog 2 (Ezh2), the repressor of cell senescence-inducer genes, through ERK1/2 pathway, thereby promoting senescence in osteoprogenitors. Down-regulated EGFR signaling plays a physiologically significant role during aging by reducing Ezh2 expression, leading to the senescence of osteoprogenitors and the decline in bone formation on the endosteal surface of cortical bone.-Liu, G., Xie, Y., Su, J., Qin, H., Wu, H., Li, K., Yu, B., Zhang, X. The role of EGFR signaling in age-related osteoporosis in mouse cortical bone.


Assuntos
Osso Cortical/metabolismo , Receptores ErbB/metabolismo , Osteoporose/metabolismo , Transdução de Sinais/fisiologia , Envelhecimento/metabolismo , Animais , Senescência Celular/fisiologia , Regulação para Baixo/fisiologia , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Feminino , Sistema de Sinalização das MAP Quinases/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Osteoblastos/metabolismo , Osteogênese/fisiologia
13.
J Cell Physiol ; 234(10): 17946-17958, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30834523

RESUMO

To identify the effects of running on articular cartilage and subchondral bone remodeling, C57BL/6 mice were randomly divided into three groups: control, moderate-, and strenuous running. Magnetic resonance imaging showed bone marrow lesions in the knee subchondral bone in the strenuous-running group in contrast with the other two groups. The microcomputed tomography analysis showed promoted bone formation in the subchondral bone in mice subjected to strenuous running. Histological and immunohistochemistry results indicated that terminal differentiation of chondrocytes and degeneration of articular cartilage were enhanced but, synthesis of platelet-derived growth factor-AA (PDGF-AA) in the subchondral bone was suppressed after strenuous running. In vitro, excessive mechanical treatments suppressed the expression of PDGF-AA in osteoblasts, and the condition medium from mechanical-treated osteoblasts stimulated maturation and terminal differentiation of chondrocytes. These results indicate that strenuous running suppresses the synthesis of PDGF-AA in subchondral bone, leading to downregulated PDGF/Akt signal in articular cartilage and thus cartilage degeneration.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Fêmur/metabolismo , Osteoblastos/metabolismo , Osteogênese , Esforço Físico , Fator de Crescimento Derivado de Plaquetas/metabolismo , Corrida , Tíbia/metabolismo , Animais , Cartilagem Articular/patologia , Diferenciação Celular , Células Cultivadas , Condrócitos/patologia , Regulação para Baixo , Feminino , Fêmur/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Fator de Crescimento Derivado de Plaquetas/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Tíbia/diagnóstico por imagem
14.
Toxicol Lett ; 295: 249-255, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-29981921

RESUMO

This study investigated the mechanisms underlying the retarded development of long bone in fetus by prenatal nicotine exposure (PNE) which had been demonstrated by our previous work. Nicotine (2.0 mg/kg.d) or saline was injected subcutaneously into pregnant rats every morning from gestational day (GD) 9 to 20. Fetal femurs or tibias were harvested for analysis on GD 20. We found massive accumulation of hypertrophic chondrocytes and a delayed formation of primary ossification center (POC) in the fetal femur or tibia of rat fetus after PNE, which was accompanied by a decreased amount of osteoclasts in the POC and up-regulated expression of osteoprotegerin (OPG) but by no obvious change in the expression of receptor activator of NF-κB ligand (RANKL). In primary osteoblastic cells, both nicotine (0, 162, 1620, 16,200 ng/ml) and corticosterone (0, 50, 250, 1250 nM) promoted the mRNA expression of OPG but concentration-dependently suppressed that of RANKL. Furthermore, blocking α4ß2-nicotinic acetylcholine receptor (α4ß2-nAChR) or glucocorticoid receptor rescued the above effects of nicotine and corticosterone, respectively. In conclusion, retarded osteoclastogenesis may contribute to delayed endochondral ossification in long bone in fetal rats with PNE. The adverse effects of PNE may be mediated via the direct effect of nicotine and indirect effect of maternal corticosterone on osteoblastic cells.


Assuntos
Desenvolvimento Ósseo/efeitos dos fármacos , Fêmur/efeitos dos fármacos , Nicotina/toxicidade , Agonistas Nicotínicos/toxicidade , Osteogênese/efeitos dos fármacos , Tíbia/efeitos dos fármacos , Animais , Células Cultivadas , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Condrócitos/patologia , Corticosterona/toxicidade , Feminino , Fêmur/embriologia , Fêmur/metabolismo , Idade Gestacional , Exposição Materna/efeitos adversos , Osteoclastos/efeitos dos fármacos , Osteoclastos/metabolismo , Osteoclastos/patologia , Osteoprotegerina/metabolismo , Gravidez , Ligante RANK/metabolismo , Ratos Wistar , Receptores de Glucocorticoides/metabolismo , Receptores Nicotínicos/metabolismo , Tíbia/embriologia , Tíbia/metabolismo
15.
J Orthop Surg (Hong Kong) ; 26(1): 2309499017749981, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29343155

RESUMO

BACKGROUND: Pin tract infection is a common problem in orthopedic and traumatology surgery. The aim of this study was to investigate the efficacy of an implant coated with carboxymethyl chitosan-zinc (CMC-Zn2+) in prevention of pin tract infection. MATERIALS AND METHODS: Twenty-four male New Zealand White rabbits were randomized into two equal groups ( n = 12, uncoated and CMC-Zn2+). The implants were colonized with 1 × 106 colony forming units of Staphylococcus aureus and inserted into the lateral right proximal tibia in each rabbit. In each group, at 2 and 4 weeks post-surgery, five and seven rabbits were killed, respectively, to harvest the soft tissues around the implant as well as the hard tissue for histological analysis. The bone cross-sectional view, X-ray, and micro-computed tomography (µCT) were performed. RESULTS: The surgical sites in each animal were evaluated individually at both time points. No evident signs of infections were found in the CMC-Zn2+ group, while a high rate of infection was observed in the uncoated group where minor infections were 85.71% ( n = 12) and major infections 14.29% ( n = 12). The radiography, µCT, and histological analysis showed no evident signs of infection in both groups at 2 weeks post-surgery. However, at 4 weeks, signs of infection were found in all the animals in the uncoated group, whereas in the CMC-Zn2+ group, no infections were observed. The difference between the two groups was highly significant ( p = 0.00). CONCLUSIONS: Our study showed that CMC-Zn2+-coated implants were effective in preventing pin tract infection.


Assuntos
Pinos Ortopédicos/efeitos adversos , Quitosana/análogos & derivados , Materiais Revestidos Biocompatíveis , Próteses e Implantes/efeitos adversos , Infecções Relacionadas à Prótese/prevenção & controle , Infecções Estafilocócicas/prevenção & controle , Zinco , Animais , Estudos Transversais , Modelos Animais de Doenças , Fixação Interna de Fraturas/efeitos adversos , Masculino , Coelhos , Staphylococcus aureus/isolamento & purificação , Tíbia/patologia , Fraturas da Tíbia/cirurgia , Microtomografia por Raio-X
16.
Proc Natl Acad Sci U S A ; 113(50): 14360-14365, 2016 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-27911782

RESUMO

Osteoarthritis (OA) is the most common joint disease, characterized by progressive destruction of the articular cartilage. The surface of joint cartilage is the first defensive and affected site of OA, but our knowledge of genesis and homeostasis of this superficial zone is scarce. EGFR signaling is important for tissue homeostasis. Immunostaining revealed that its activity is mostly dominant in the superficial layer of healthy cartilage but greatly diminished when OA initiates. To evaluate the role of EGFR signaling in the articular cartilage, we studied a cartilage-specific Egfr-deficient (CKO) mouse model (Col2-Cre EgfrWa5/flox). These mice developed early cartilage degeneration at 6 mo of age. By 2 mo of age, although their gross cartilage morphology appears normal, CKO mice had a drastically reduced number of superficial chondrocytes and decreased lubricant secretion at the surface. Using superficial chondrocyte and cartilage explant cultures, we demonstrated that EGFR signaling is critical for maintaining the number and properties of superficial chondrocytes, promoting chondrogenic proteoglycan 4 (Prg4) expression, and stimulating the lubrication function of the cartilage surface. In addition, EGFR deficiency greatly disorganized collagen fibrils in articular cartilage and strikingly reduced cartilage surface modulus. After surgical induction of OA at 3 mo of age, CKO mice quickly developed the most severe OA phenotype, including a complete loss of cartilage, extremely high surface modulus, subchondral bone plate thickening, and elevated joint pain. Taken together, our studies establish EGFR signaling as an important regulator of the superficial layer during articular cartilage development and OA initiation.


Assuntos
Artrite Experimental/metabolismo , Cartilagem Articular/metabolismo , Receptores ErbB/metabolismo , Osteoartrite/metabolismo , Animais , Artrite Experimental/patologia , Artrite Experimental/prevenção & controle , Células Cultivadas , Condrócitos/metabolismo , Condrócitos/patologia , Condrogênese , Receptores ErbB/deficiência , Receptores ErbB/genética , Humanos , Masculino , Camundongos , Camundongos Knockout , Osteoartrite/patologia , Osteoartrite/prevenção & controle , Proteoglicanas/metabolismo , Transdução de Sinais
17.
FASEB J ; 30(2): 785-97, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26499267

RESUMO

This study aimed to evaluate whether female adult offspring born with intrauterine growth retardation induced by prenatal nicotine exposure (PNE) are susceptible to osteoarthritis (OA) and to explore the underlying programming mechanisms. Pregnant rats were treated with nicotine or saline at 2.0 mg/kg/d from gestational d 11 to 20. The female adult offspring with or without PNE were forced with a strenuous treadmill running for 6 wk to induce OA. Nicotine's effects on fetal articular chondrocytes were studied by exposing chondrocytes to nicotine for 10 d, and dihydro-ß-erythroidine, a selective α4ß2-nicotinic acetylcholine receptor (nAChR) inhibitor, was used to identify the change of nicotine's effect. For adult offspring, increased cartilage destruction and accelerated OA progression were observed in the PNE group with running; the expression of α1 chain of type II collagen (Col2A1), aggrecan, SRY-type high mobility group box 9 (Sox9), and IGF1 signaling molecules in the cartilage of PNE offspring were decreased. For fetuses, elevated serum corticosteroid and nicotine levels and suppressed IGF1 levels were observed; expression of Col2A1, aggrecan, Sox9, and IGF1 were reduced. The result of chondrocytes revealed that nicotine impeded the expression of Col2A1, aggrecan, and IGF1; blocking α4ß2-nAChR rescued nicotine's suppression. In conclusion, PNE increases the susceptibility of adult offspring to OA; the potential mechanism involves IGF1 low-functional programming in articular cartilage caused directly by the action of nicotine on α4ß2-nAChR.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Insulin-Like I/metabolismo , Exposição Materna/efeitos adversos , Nicotina/efeitos adversos , Osteoartrite/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , Suscetibilidade a Doenças , Feminino , Fator de Crescimento Insulin-Like I/genética , Nicotina/farmacologia , Osteoartrite/induzido quimicamente , Osteoartrite/genética , Osteoartrite/patologia , Gravidez , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/patologia , Ratos , Ratos Wistar
18.
Bone Res ; 2: 14015, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26120493

RESUMO

Osteoarthritis (OA) is a degenerative joint disease and a major cause of pain and disability in older adults. We have previously identified epidermal growth factor receptor (EGFR) signaling as an important regulator of cartilage matrix degradation during epiphyseal cartilage development. To study its function in OA progression, we performed surgical destabilization of the medial meniscus (DMM) to induce OA in two mouse models with reduced EGFR activity, one with genetic modification (Egfr(Wa5/+) mice) and the other one with pharmacological inhibition (gefitinib treatment). Histological analyses and scoring at 3 months post-surgery revealed increased cartilage destruction and accelerated OA progression in both mouse models. TUNEL staining demonstrated that EGFR signaling protects chondrocytes from OA-induced apoptosis, which was further confirmed in primary chondrocyte culture. Immunohistochemistry showed increased aggrecan degradation in these mouse models, which coincides with elevated amounts of ADAMTS5 and matrix metalloproteinase 13 (MMP13), the principle proteinases responsible for aggrecan degradation, in the articular cartilage after DMM surgery. Furthermore, hypoxia-inducible factor 2α (HIF2α), a critical catabolic transcription factor stimulating MMP13 expression during OA, was also upregulated in mice with reduced EGFR signaling. Taken together, our findings demonstrate a primarily protective role of EGFR during OA progression by regulating chondrocyte survival and cartilage degradation.

19.
J Biol Chem ; 288(45): 32229-32240, 2013 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-24047892

RESUMO

The epidermal growth factor receptor (EGFR) is an essential player in the development of multiple organs during embryonic and postnatal stages. To understand its role in epiphyseal cartilage development, we generated transgenic mice with conditionally inactivated EGFR in chondrocytes. Postnatally, these mice exhibited a normal initiation of cartilage canals at the perichondrium, but the excavation of these canals into the cartilage was strongly suppressed, resulting in a delay in the formation of the secondary ossification center (SOC). This delay was accompanied by normal chondrocyte hypertrophy but decreased mineralization and apoptosis of hypertrophic chondrocytes and reduced osteoclast number at the border of marrow space. Immunohistochemical analyses demonstrated that inactivation of chondrocyte-specific EGFR signaling reduced the amounts of matrix metalloproteinases (MMP9, -13, and -14) and RANKL (receptor activator of NF-κB ligand) in the hypertrophic chondrocytes close to the marrow space and decreased the cartilage matrix degradation in the SOC. Analyses of EGFR downstream signaling pathways in primary epiphyseal chondrocytes revealed that up-regulation of MMP9 and RANKL by EGFR signaling was partially mediated by the canonical Wnt/ß-catenin pathway, whereas EGFR-enhanced MMP13 expression was not. Further biochemical studies suggested that EGFR signaling stimulates the phosphorylation of LRP6, increases active ß-catenin level, and induces its nuclear translocation. In line with these in vitro studies, deficiency in chondrocyte-specific EGFR activity reduced ß-catenin amount in hypertrophic chondrocytes in vivo. In conclusion, our work demonstrates that chondrocyte-specific EGFR signaling is an important regulator of cartilage matrix degradation during SOC formation and epiphyseal cartilage development and that its actions are partially mediated by activating the ß-catenin pathway.


Assuntos
Condrócitos/metabolismo , Receptores ErbB/metabolismo , Lâmina de Crescimento/embriologia , Via de Sinalização Wnt/fisiologia , Animais , Colagenases/biossíntese , Colagenases/genética , Receptores ErbB/genética , Matriz Extracelular/genética , Matriz Extracelular/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Regulação Enzimológica da Expressão Gênica , Lâmina de Crescimento/metabolismo , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Camundongos Knockout , Fosforilação/fisiologia , Ligante RANK/genética , Ligante RANK/metabolismo , beta Catenina/genética , beta Catenina/metabolismo
20.
Plast Reconstr Surg ; 131(3): 343e-350e, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23446583

RESUMO

BACKGROUND: Triptolide is an immunosuppressive fraction purified from a Chinese medicinal plant. In an effort to develop a new immunosuppressive strategy for vascularized composite allotransplantation, the authors investigated the effects of combined treatment with cyclosporin A and triptolide on the survival of rat groin flap allotransplants. METHODS: Groin flap transplantation was performed from Brown Norway rats to Fischer 344 recipients, which were then treated with triptolide, cyclosporin A, or both. Flap biopsy specimens were harvested, stained, and submitted to histopathologic evaluation. Levels of CCR5, CCR7, CCL19, CCL21, and Foxp3 in spleen were examined by real-time polymerase chain reaction, and the percentage of CD4+CD25+ regulatory T cells was detected by flow cytometry. RESULTS: The mean survival time for allografts in recipients receiving triptolide and cyclosporin A was 57 ± 7.7 days compared with 20.5 ± 2.3 days for cyclosporin A alone, 23.3 ± 3.6 days for triptolide alone, and 7.8 ± 0.8 days for no treatment. Histologic examination also showed that inflammatory cell infiltration was reduced in grafts with combination treatment. Down-regulation of CCR5, CCR7, and CCL19 in the combination treatment was accompanied by increased expression of Foxp3. Flow cytometric analysis also revealed that the percentage of CD4+CD25+ regulatory T cells in the combination treatment was higher than in the monotherapy groups. CONCLUSIONS: Combination therapy with triptolide and cyclosporin A substantially prolonged allograft survival, which means calcineurin inhibitor-related drug-toxicity may be alleviated and treatment cost reduced. This immunosuppressive effect is mediated by inhibition of dendritic cells maturation and the expansion of regulatory T cells.


Assuntos
Ciclosporina/administração & dosagem , Diterpenos/administração & dosagem , Terapia de Imunossupressão , Imunossupressores/administração & dosagem , Fenantrenos/administração & dosagem , Retalhos Cirúrgicos/irrigação sanguínea , Animais , Compostos de Epóxi/administração & dosagem , Virilha/cirurgia , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA