Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Cell Death Dis ; 15(6): 386, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824143

RESUMO

Doxorubicin's antitumor effectiveness may be constrained with ineffective tumor penetration, systemic adverse effects, as well as drug resistance. The co-loading of immune checkpoint inhibitors and doxorubicin into liposomes can produce synergistic benefits and address problems, including quick drug clearance, toxicity, and low drug penetration efficiency. In our previous study, we modified a nanobody targeting CTLA-4 onto liposomes (LPS-Nb36) to be an extremely potent CTLA-4 signal blocker which improve the CD8+ T-cell activity against tumors under physiological conditions. In this study, we designed a drug delivery system (LPS-RGD-Nb36-DOX) based on LPS-Nb36 that realized the doxorubicin and anti-CTLA-4 Nb co-loaded and RGD modification, and was applied to antitumor therapy. We tested whether LPS-RGD-Nb36-DOX could targets the tumor by in vivo animal photography, and more importantly, promote cytotoxic T cells proliferation, pro-inflammatory cytokine production, and cytotoxicity. Our findings demonstrated that the combination of activated CD8+ T cells with doxorubicin/anti-CTLA-4 Nb co-loaded liposomes can effectively eradicate tumor cells both in vivo and in vitro. This combination therapy is anticipated to have synergistic antitumor effects. More importantly, it has the potential to reduce the dose of chemotherapeutic drugs and improve safety.


Assuntos
Antígeno CTLA-4 , Doxorrubicina , Sistemas de Liberação de Medicamentos , Lipossomos , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/uso terapêutico , Animais , Antígeno CTLA-4/antagonistas & inibidores , Antígeno CTLA-4/metabolismo , Camundongos , Sistemas de Liberação de Medicamentos/métodos , Humanos , Linhagem Celular Tumoral , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Feminino , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL
2.
Front Pharmacol ; 14: 1079539, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937875

RESUMO

Background: Dendrobium nobile (D. nobile), a traditional Chinese medicine, has received attention as an anti-tumor drug, but its mechanism is still unclear. In this study, we applied network pharmacology, bioinformatics, and in vitro experiments to explore the effect and mechanism of Dendrobin A, the active ingredient of D. nobile, against pancreatic ductal adenocarcinoma (PDAC). Methods: The databases of SwissTargetPrediction and PharmMapper were used to obtain the potential targets of Dendrobin A, and the differentially expressed genes (DEGs) between PDAC and normal pancreatic tissues were obtained from The Cancer Genome Atlas and Genotype-Tissue Expression databases. The protein-protein interaction (PPI) network for Dendrobin A anti-PDAC targets was constructed based on the STRING database. Molecular docking was used to assess Dendrobin A anti-PDAC targets. PLAU, one of the key targets of Dendrobin A anti-PDAC, was immunohistochemically stained in clinical tissue arrays. Finally, in vitro experiments were used to validate the effects of Dendrobin A on PLAU expression and the proliferation, apoptosis, cell cycle, migration, and invasion of PDAC cells. Results: A total of 90 genes for Dendrobin A anti-PDAC were screened, and a PPI network for Dendrobin A anti-PDAC targets was constructed. Notably, a scale-free module with 19 genes in the PPI indicated that the PPI is highly credible. Among these 19 genes, PLAU was positively correlated with the cachexia status while negatively correlated with the overall survival of PDAC patients. Through molecular docking, Dendrobin A was found to bind to PLAU, and the Dendrobin A treatment led to an attenuated PLAU expression in PDAC cells. Based on clinical tissue arrays, PLAU protein was highly expressed in PDAC cells compared to normal controls, and PLAU protein levels were associated with the differentiation and lymph node metastatic status of PDAC. In vitro experiments further showed that Dendrobin A treatment significantly inhibited the proliferation, migration, and invasion, inducing apoptosis and arresting the cell cycle of PDAC cells at the G2/M phase. Conclusion: Dendrobin A, a representative active ingredient of D. nobile, can effectively fight against PDAC by targeting PLAU. Our results provide the foundation for future PDAC treatment based on D. nobile.

3.
Drug Des Devel Ther ; 17: 659-673, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36883114

RESUMO

Purpose: This study aimed to explore the pharmacological mechanism of Dangshen (Codonopsis pilosula) against hepatocellular carcinoma (HCC) based on network pharmacology and bioinformatics, and to verify the anticancer effect of luteolin, the active ingredient of Codonopsis pilosula, on HCC cells. Methods: The effective compounds and potential targets of Codonopsis pilosula were established using the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) database. The genes related to HCC were obtained through the GeneCards database. The interactive genes were imported into the Visualization and Integrated Discovery database for Gene Ontology (GO) annotation and Kyoto Encyclopedia of Genes and Genomes (KEGG) signal enrichment, and the hub genes were screened out. The Cancer Genome Atlas database was used to construct a prognosis model, and the prognosis and clinicopathological correlation were analyzed. In in vitro experiments, we verified the effects of luteolin, an active compound of Codonopsis pilosula, on the proliferation, cell cycle, apoptosis and migration of HCC cells. Results: A total of 21 effective compounds of Codonopsis pilosula and 98 potential downstream target genes were screened through the TCMSP database, and 1406 HCC target genes were obtained through the GeneCards database. Finally, 53 interacting genes between the two databases were obtained, among which, the 10 key node genes were CASP3, TP53, MDM2, AKT1, ESR1, BCL2L1, MCL1, HSP90AA1, CASP9, and CCND1, involving 77 typical GO terms and 72 KEGG signals. The Kaplan-Meier survival curve of the model group showed that the overall survival of the low-risk group was significantly higher than that of the high-risk group. Luteolin significantly inhibited the proliferation and migration of HCC cells, induced apoptosis, and increased the G2/M phase ratio. Mechanistically, luteolin significantly inhibited the phosphorylation of MAPK-JNK and Akt (Thr308) and subsequently led to upregulation of ESR1. Pharmacological inhibition of ESR1 with fulvestrant enhanced cell viability and migration and attenuated apoptosis. Conclusion: Codonopsis pilosula has potential for clinical development due to its anti-HCC properties. Luteolin, the effective component of Codonopsis pilosula, plays anti-HCC role through AKT- or MAPK-JNK signaling mediated ESR1.


Assuntos
Antineoplásicos , Carcinoma Hepatocelular , Codonopsis , Neoplasias Hepáticas , Luteolina , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Biologia Computacional , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Luteolina/farmacologia , Luteolina/uso terapêutico , Farmacologia em Rede , Proteínas Proto-Oncogênicas c-akt
4.
Front Oncol ; 12: 842060, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35392231

RESUMO

Human papillomavirus (HPV) is a common virus, and about 5% of all cancers worldwide is caused by persistent high-risk HPV infections. Here, we reported a comprehensive analysis of the molecular features for HPV-related cancer types using TCGA (The Cancer Genome Atlas) data with HPV status. We found that the HPV-positive cancer patients had a unique oncogenic process, tumor microenvironment, and drug response compared with HPV-negative patients. In addition, HPV improved overall survival for the four cancer types, namely, cervical squamous cell carcinoma (CESC), head and neck squamous cell carcinoma (HNSC), stomach adenocarcinoma (STAD), and uterine corpus endometrial carcinoma (UCEC). The stronger activity of cell-cycle pathways and lower driver gene mutation rates were observed in HPV-positive patients, which implied the different carcinogenic processes between HPV-positive and HPV-negative groups. The increased activities of immune cells and differences in metabolic pathways helped explain the heterogeneity of prognosis between the two groups. Furthermore, we constructed HPV prediction models for different cancers by the virus infection score (VIS) which was linearly correlated with HPV load and found that VIS was associated with drug response. Altogether, our study reveals that HPV-positive cancer patients have unique molecular characteristics which help the development of precision medicine in HPV-positive cancers.

5.
Mol Med Rep ; 25(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738620

RESUMO

Chronic hypertension can lead to kidney damage, known as hypertensive nephropathy or hypertensive nephrosclerosis. Further understanding of the molecular mechanisms via which hypertensive nephropathy develops is essential for effective diagnosis and treatment. The present study investigated the mechanisms by which endothelial progenitor cells (EPCs) repair primary rat kidney cells (PRKs). ELISA, Cell Counting Kit­8 and flow cytometry assays were used to analyze the effects of EPCs or EPC­MVs on the oxidative stress, inflammation, cell proliferation, apoptosis and cycle of PRKs induced by AngII. A PRK injury model was established using angiotensin II (Ang II). After Ang II induction, PRK proliferation was decreased, apoptosis was increased and the cell cycle was blocked at the G1 phase before entering the S phase. It was found that the levels of reactive oxygen species and malondialdehyde were increased, while the levels of glutathione peroxidase and superoxide dismutase were decreased. Moreover, the levels of the inflammatory cytokines IL­1ß, IL­6 and TNF­α were significantly increased. Thus, Ang II damaged PRKs by stimulating oxidative stress and promoting the inflammatory response. However, when PRKs were co­cultured with EPCs, the damage induced by Ang II was significantly reduced. The current study collected the microvesicles (MVs) secreted by EPCs and co­cultured them with Ang II­induced PRKs, and identified that EPC­MVs retained their protective effect on PRKs. In conclusion, EPCs protect PRKs from Ang II­induced damage via secreted MVs.


Assuntos
Micropartículas Derivadas de Células/fisiologia , Células Progenitoras Endoteliais/metabolismo , Rim/lesões , Angiotensina II/efeitos adversos , Angiotensina II/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Micropartículas Derivadas de Células/metabolismo , Citocinas/metabolismo , Células Progenitoras Endoteliais/fisiologia , Hipertensão Renal/metabolismo , Hipertensão Renal/fisiopatologia , Rim/metabolismo , Masculino , Nefrite/metabolismo , Nefrite/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Cultura Primária de Células , Ratos , Ratos Endogâmicos WKY , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/metabolismo
6.
Mol Oncol ; 15(2): 725-738, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33226737

RESUMO

Pancreatic cancer (PC) is one of the most common human malignancies worldwide and remains a major clinical challenge. Here, we found that benproperine phosphate (BPP), a cough suppressant, showed a significant anticancer effect on PC both in vitro and in vivo via the induction of autophagy-mediated cell death. Mechanistic studies revealed that BPP triggered AMPK/mTOR-mediated autophagy initiation and disturbed Ras-related protein Rab-11A (RAB11A)-mediated autophagosome-lysosome fusion, resulting in excessive accumulation of autophagosomes. Inhibition of autophagy or overexpression of RAB11A partially reversed BPP-induced growth inhibition in PC cells, suggesting that BPP might induce lethal autophagy arrest in PC cells. In conclusion, our results identify BPP as a potent antitumor agent for PC via the induction of autophagy arrest, therefore providing a new potential therapeutic strategy for the treatment of PC.


Assuntos
Antitussígenos/farmacologia , Autofagia/efeitos dos fármacos , Compostos Benzidrílicos/farmacologia , Reposicionamento de Medicamentos , Neoplasias Pancreáticas , Piperidinas/farmacologia , Animais , Linhagem Celular Tumoral , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA