Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Med Sci Monit ; 30: e942946, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38698627

RESUMO

BACKGROUND Cryopreservation preserves male fertility, crucial in oncology, advanced age, and infertility. However, it damages sperm motility, membrane, and DNA. Zinc (Zn), an antioxidant, shows promise in improving sperm quality after thawing, highlighting its potential as a cryoprotectant in reproductive medicine. MATERIAL AND METHODS Gradient concentration of ZnSO4 (0, 12.5, 25, 50, and 100 µM) was added in the Glycerol-egg yolk-citrate (GEYC) cryopreservative medium as an extender. Alterations in sperm viability and motility parameters after cryopreservation were detected in each group. Sperm plasma membrane integrity (PMI), acrosome integrity (ACR), DNA fragment index (DFI), and changes in sperm mitochondrial function were examined, including: mitochondrial potential (MMP), sperm reactive oxygen species (ROS), and sperm ATP. RESULTS We found that 50 µM ZnSO4 was the most effective for the curvilinear velocity (VCL) and the average path velocity (VAP) of sperm after cryo-resuscitation. Compared to the Zn-free group, sperm plasma membrane integrity (PMI) was increased, DNA fragmentation index (DFI) was decreased, reactive oxygen species (ROS) was reduced, and mitochondrial membrane potential (MMP) was increased after cryorevival in the presence of 50 µM ZnSO4. CONCLUSIONS Zn ion is one of the antioxidants in the cell. The results of our current clinical study are sufficient to demonstrate that Zn can improve preserves sperm quality during cryopreservation when added to GEYC. The addition of 50 µM ZnSO4 increased curve velocity, mean path velocity, sperm survival (or plasma membrane integrity), and mitochondrial membrane potential while reducing ROS production and DNA breaks compared to GEYC thawed without ZnSO4.


Assuntos
Criopreservação , Crioprotetores , Fragmentação do DNA , Potencial da Membrana Mitocondrial , Espécies Reativas de Oxigênio , Preservação do Sêmen , Motilidade dos Espermatozoides , Espermatozoides , Zinco , Masculino , Criopreservação/métodos , Humanos , Espermatozoides/efeitos dos fármacos , Espermatozoides/metabolismo , Crioprotetores/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Motilidade dos Espermatozoides/efeitos dos fármacos , Preservação do Sêmen/métodos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Fragmentação do DNA/efeitos dos fármacos , Zinco/farmacologia , Zinco/metabolismo , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Análise do Sêmen , Sobrevivência Celular/efeitos dos fármacos , Adulto , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Acrossomo/efeitos dos fármacos , Acrossomo/metabolismo , Congelamento
2.
Environ Toxicol ; 39(6): 3694-3709, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38511791

RESUMO

This study delves into the potential therapeutic benefits of Fufang Sanling Granules for kidney cancer, focusing on their active components and the underlying mechanisms of their interaction with cancer-related targets. By constructing a drug-active component-target network based on eight herbs, key active compounds such as kaempferol, quercetin, and linolenic acid were identified, suggesting their pivotal roles in modulating immune responses and cellular signaling pathways relevant to cancer progression. The research further identified 51 central drug-disease genes through comprehensive bioinformatics analyses, implicating their involvement in crucial biological processes and pathways. A novel risk score model, encompassing six genes with significant prognostic value for renal cancer, was established and validated, showcasing its effectiveness in predicting patient outcomes through mutation analysis and survival studies. The model's predictive power was further confirmed by its ability to stratify patients into distinct risk groups with significant survival differences, highlighting its potential as a prognostic tool. Additionally, the study explored the relationship between gene expression within the identified black module and the risk score, uncovering significant associations with the extracellular matrix and immune infiltration patterns. This reveals the complex interplay between the tumor microenvironment and cancer progression. The integration of the risk score with clinical parameters through a nomogram significantly improved the model's predictive accuracy, offering a more comprehensive tool for predicting kidney cancer prognosis. In summary, by combining detailed molecular analyses with clinical insights, this study presents a robust framework for understanding the therapeutic potential of Fufang Sanling Granules in kidney cancer. It not only sheds light on the active components and their interactions with cancer-related genes but also introduces a reliable risk score model, paving the way for personalized treatment strategies and improved patient management in the future.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Renais , Humanos , Neoplasias Renais/genética , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Neoplasias Renais/imunologia , Prognóstico , Medicamentos de Ervas Chinesas/uso terapêutico , Variação Genética , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/genética
3.
Plant Physiol Biochem ; 207: 108411, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309181

RESUMO

Peanut (Arachis hypogaea L.) is one of the most important oil and industrial crops. However, heavy-metal pollution and frequent soil diseases, poses a significant threat to the production of green and healthy peanuts. Herein, we investigated the effects of heavy metal Cd2+ toxicity to the peanuts, and screened out two peanut cultivars H108 and YZ 9102 with higher Cd2+-tolerance. RNA-seq revealed that Natural resistance-associated macrophage proteins (NRAMP)-like genes were involved in the Cd2+ stress tolerance in H108. Genome-wide identification revealed that 28, 13 and 9 Nramp-like genes existing in the A. hypogaea, A. duranensis and A. ipaensis, respectively. The 50 peanut NRAMP genes share conserved architectural characters, and they were classified into two groups. Expressions of AhNramps, particularly AhNramp4, AhNramp12, AhNramp19, and AhNramp25 could be greatly induced by not only cadmium toxicity, but also copper and zinc stresses. The expression profiles of AhNramp14, AhNramp16 and AhNramp25 showed significant differences in the H108 (resistance) and H107 (susceptible) under the infection of bacterial wilt. In addition, we found that the expression profiles of AhNramp14, AhNramp16, and AhNramp25 were greatly up- or down-regulated by the application of exogenous salicylic acid, methyl jasmonate, and abscisic acid. The AhNramp25, of which expression was affected by both heavy metal toxicity and bacterial wilt infection, were selected as strong candidate genes for peanut stress breeding. Our findings will provide an additional information required for further analysis of AhNramps involved in tolerance to heavy metal toxicity and resistance to bacterial wilt of peanut.


Assuntos
Arachis , Cádmio , Arachis/metabolismo , Cádmio/toxicidade , Cádmio/metabolismo , Melhoramento Vegetal , Imunidade Inata , Macrófagos
4.
Gene ; 897: 148040, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38065426

RESUMO

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive lung disease involving multiple factors and genes. Astragaloside IV (ASV) is one of the main bioactive ingredients extracted from the root of Astragalus membranaceus, which plays an important role in anti-inflammatory, antioxidant and improve cardiopulmonary function. Epithelial-mesenchymal transition (EMT) is a key driver of the process of pulmonary fibrosis, and Zinc finger E-box-binding homeobox 1 (ZEB1) can promote pulmonary fibrosis in an EMT-dependent manner. Here, we found that ASV effectively inhibited the ZEB1 and EMT in both bleomycin (BLM)-induced rat pulmonary fibrosis and TGF-ß1-treated A549 cells. To further elucidate the molecular mechanisms underlying effects of ASV in IPF, we explored the truth using bioinformatics, plasmid construction, immunofluorescence staining, western blotting and other experiments. Dual luciferase reporter assay and bioinformatics proved that miR-200c not only acts as an upstream regulatory miRNA of ZEB1 but also has binding sites for the lncRNA-ATB. In A549 cell-based EMT models, ASV reduced the expression of lncRNA-ATB and upregulated miR-200c. Furthermore, overexpression of lncRNA-ATB and silencing of miR-200c reversed the down-regulation of ZEB1 and the inhibition of EMT processes by ASV. In addition, the intervention of ASV prevented lncRNA-ATB as a ceRNA from regulating the expression of ZEB1 through sponging miR-200c. Taken together, the results showed that ASV inhibited the EMT process through the lncRNA-ATB/miR-200c/ZEB1 signaling pathway, which provides a novel approach to the treatment of IPF.


Assuntos
MicroRNAs , Fibrose Pulmonar , RNA Longo não Codificante , Saponinas , Triterpenos , Ratos , Animais , Fibrose Pulmonar/induzido quimicamente , Fibrose Pulmonar/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , MicroRNAs/metabolismo , Transdução de Sinais , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Linhagem Celular Tumoral
5.
Genes (Basel) ; 13(12)2022 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-36553680

RESUMO

Metallothionein (MT) is a multifunctional inducible protein in animals, plants, and microorganisms. MT is rich in cysteine residues (10-30%), can combine with metal ions, has a low molecular weight, and plays an essential biological role in various stages of the growth and development of organisms. Due to its strong ability to bind metal ions and scavenge free radicals, metallothionein has been used in medicine, health care, and other areas. Zinc is essential for plant growth, but excessive zinc (Zn) is bound to poison plants, and cadmium (Cd) is a significant environmental pollutant. A high concentration of cadmium can significantly affect the growth and development of plants and even lead to plant death. In this study, the human metallothionein gene HsMT1L under the control of the CaMV 35S constitutive promoter was transformed into tobacco, and the tolerance and accumulation capacity of transgenic tobacco plants to Zn and Cd were explored. The results showed that the high-level expression of HsMT1L in tobacco could significantly enhance the accumulation of Zn2+ and Cd2+ in both the aboveground parts and the roots compared to wild-type tobacco plants and conferred a greater tolerance to Zn and Cd in transgenic tobacco. Subcellular localization showed that HsMT1L was localized to the nucleus and cytoplasm in the tobacco. Our study suggests that HsMT1L can be used for the phytoremediation of soil for heavy metal removal.


Assuntos
Cádmio , Metalotioneína , Plantas Geneticamente Modificadas , Zinco , Humanos , Cádmio/toxicidade , Cádmio/metabolismo , Metalotioneína/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Zinco/metabolismo , Zinco/toxicidade
6.
Int J Mol Sci ; 23(24)2022 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-36555808

RESUMO

Phytochelatins (PCs) are class III metallothioneins in plants. They are low molecular-weight polypeptides rich in cysteine residues which can bind to metal ions and affect the physiological metabolism in plants. Unlike other types of metallothioneins, PCs are not the product of gene coding but are synthesized by phytochelatin synthase (PCS) based on glutathione (GSH). The chemical formula of phytochelatin is a mixture of (γ-Glu-Cys)n-Gly (n = 2-11) and is influenced by many factors during synthesis. Phytochelatin-like (PCL) is a gene-encoded peptide (Met-(α-Glu-Cys)11-Gly) designed by our laboratory whose amino acid sequence mimics that of a natural phytochelatin. This study investigated how PCL expression in transgenic plants affects resistance to Cd and Cd accumulation. Under Cd2+ stress, transgenic plants were proven to perform significantly better than the wild-type (WT), regarding morphological traits and antioxidant abilities, but accumulated Cd to higher levels, notably in the roots. Fluorescence microscopy showed that PCL localized in the cytoplasm and nucleus.


Assuntos
Aminoaciltransferases , Arabidopsis , Fitoquelatinas/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Cádmio/farmacologia , Cádmio/metabolismo , Arabidopsis/genética , Glutationa/metabolismo , Peptídeos/farmacologia , Plantas Geneticamente Modificadas/metabolismo , Metalotioneína/genética , Metalotioneína/metabolismo , Cisteína/metabolismo , Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo
7.
Materials (Basel) ; 15(3)2022 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-35160984

RESUMO

In this study, the influence of Er addition on the microstructure, type transformation of second phases, and corrosion resistance of an Al-Zn-Mg-Cu alloy were explored. The results revealed that the added Er element could significantly refine the alloy grains and change the second-phase composition at the grain boundary of the alloy. In the as-cast state, the Er element significantly enhanced the corrosion resistance of the alloy due to its refining effect on the grains and second phases at the grain boundary. The addition of the alloying element Er to the investigated alloy changed the type of corrosion attack on the alloy's surface. In the presence of Er, the dominant type of corrosion attack is pitting corrosion, while the alloy without Er is prone to intergranular corrosion attack. After a solution treatment, the Al8Cu4Er phase was formed, in which the interaction with the Cu element and the competitive growth relation to the Al3Er phase were the key factors influencing the corrosion resistance of the alloy. The anodic corrosion mechanism of the Al8Cu4Er and Al3Er phases evidently lowered the alloy corrosion rate, and the depth of the corrosion pit declined from 197 µm to 155 µm; however, further improvement of corrosion resistance was restricted by the morphology and size of the Al8Cu4Er phase after its formation and growth; therefore, adjusting the matching design of the Cu and Er elements can allow Er to improve the corrosion resistance of the Al-Zn-Mg-Cu aluminum alloy to the greatest extent.

8.
Front Plant Sci ; 12: 690586, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456935

RESUMO

In rhizospheres, chemical barrier-forming natural compounds play a key role in preventing pathogenic bacteria from infecting plant roots. Here, we sought to identify specific phenolic exudates in tobacco (Nicotiana tobaccum) plants infected by the soil-borne pathogen Ralstonia solanacearum that may exhibit antibacterial activity and promote plant resistance against pathogens. Among detected phenolic acids, only caffeic acid was significantly induced in infected plants by R. solanacearum relative to healthy plants, and the concentration of caffeic acid reached 1.95 µg/mL. In vivo, caffeic acid at 200 µg/mL was highly active against R. solanacearum and obviously damaged the membrane structure of the R. solanacearum cells, resulting in the thinning of the cell membrane and irregular cavities in cells. Moreover, caffeic acid significantly inhibited biofilm formation by repressing the expression of the lecM and epsE genes. In vitro, caffeic acid could effectively activate phenylalanine ammonia-lyase (PAL) and peroxidase (POD) and promote the accumulation of lignin and hydroxyproline. In pot and field experiments, exogenous applications of caffeic acid significantly reduced and delayed the incidence of tobacco bacterial wilt. Taken together, all these results suggest that caffeic acid played a crucial role in defending against R. solanacearum infection and was a potential and effective antibacterial agent for controlling bacterial wilt.

9.
Medicine (Baltimore) ; 100(13): e25148, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33787596

RESUMO

BACKGROUND: The heterogeneity of colorectal cancer (CRC) poses a significant challenge to the precise treatment of patients. CRC has been divided into 4 consensus molecular subtypes (CMSs) with distinct biological and clinical characteristics, of which CMS4 has the mesenchymal identity and the highest relapse rate. Autophagy plays a vital role in CRC development and therapeutic response. METHODS: The gene expression profiles collected from 6 datasets were applied to this study. Network analysis was applied to integrate the subtype-specific molecular modalities and autophagy signature to establish an autophagy-based prognostic signature for CRC (APSCRC). RESULTS: Network analysis revealed that 6 prognostic autophagy genes (VAMP7, DLC1, FKBP1B, PEA15, PEX14, and DNAJB1) predominantly regulated the mesenchymal modalities of CRC. The APSCRC was constructed by these 6 core genes and applied for risk calculation. Patients were divided into high- and low-risk groups based on APSCRC score in all cohorts. Patients within the high-risk group showed an unfavorable prognosis. In multivariate analysis, the APSCRC remained an independent predictor of prognosis. Moreover, the APSCRC achieved higher prognostic power than commercialized multigene signatures. CONCLUSIONS: We proposed and validated an autophagy-based signature, which is a promising prognostic biomarker of CRC patients. Further prospective studies are warranted to test and validate its efficiency for clinical application.


Assuntos
Autofagia/genética , Neoplasias Colorretais/genética , Heterogeneidade Genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Proteínas Reguladoras de Apoptose/genética , Biomarcadores Tumorais/genética , Feminino , Proteínas Ativadoras de GTPase/genética , Proteínas de Choque Térmico HSP40/genética , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Prognóstico , Proteínas R-SNARE/genética , Proteínas Repressoras/genética , Proteínas de Ligação a Tacrolimo/genética , Transcriptoma , Proteínas Supressoras de Tumor/genética
10.
Medicine (Baltimore) ; 99(41): e22549, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33031300

RESUMO

BACKGROUND: Epithelial ovarian cancer (EOC) has been classified into four molecular subtypes, of which the mesenchymal subtype has the poorest survival. Our goal is to develop an immune-based prognostic signature by incorporating molecular subtypes for EOC patients. METHODS: The gene expression profiles of EOC samples were collected from seven public datasets as well as an internal retrospective validation cohort, containing 1192 EOC patients. Network analysis was applied to integrate the mesenchymal modalities and immune signature to establish an immune-based prognostic signature for EOC (IPSEOC). The signature was trained and validated in eight independent datasets. RESULTS: Seven immune genes were identified as key regulators of the mesenchymal subtype and were used to construct the IPSEOC. The IPSEOC significantly divided patients into high- and low-risk groups in discovery (OS: P < .0001), 6 independent public validation sets (OS: P = .04 to P = .002), and an internal retrospective validation cohort (OS: P = .025). Furthermore, pathway analysis revealed that differences between risk groups were mainly activation of mesenchymal-related signalling. Moreover, a significant correlation existed between the IPSEOC values versus clinical phenotypes including late tumor stages, drug resistance. CONCLUSION: We propose an immune-based signature, which is a promising prognostic biomarker in ovarian cancer. Prospective studies are needed to further validate its analytical accuracy and test the clinical utility.


Assuntos
Carcinoma Epitelial do Ovário/genética , Carcinoma Epitelial do Ovário/imunologia , Transição Epitelial-Mesenquimal/genética , Transição Epitelial-Mesenquimal/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , China , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Fenótipo , Prognóstico , Estudos Retrospectivos
11.
Onco Targets Ther ; 13: 7007-7017, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32764991

RESUMO

INTRODUCTION: The current prognosis of hepatocellular carcinoma (HCC) is unsatisfactory due to high rates of recurrence and metastasis, which has led to research focused on the discovery of metastasis genes. METHODS: In this study, we combined in silico analysis and in vitro transwell experiments to identify a metastasis gene. Then, we used an in vivo experiment to validate the metastasis. Furthermore, a series of experiments such as FACS, Western blot, and ELISA were applied to explore the function of the metastasis gene. RESULTS: LTBP4 (latent transforming growth factor beta binding protein 4) was confirmed as a metastasis gene, whose expression levels are correlated with the overall survival rate of HCC patients. We further showed that the knockout of LTBP4 in an HCC cell line increased cell proliferation, activated the cell cycle, and induced metastasis events. Moreover, we proved that LTBP4-KO could increase the percentage of active TGFß1 secreted by HCC cell lines, as well as the recruitment of MDSCs (myeloid-derived suppressor cells) by active TGFß1 (transforming growth factor beta 1), which further inhibited CD8+ T cell proliferation and activated the immune suppression signal. CONCLUSION: Our results demonstrate that the LTBP4-TGFß1-MDSCs axis is a critical pathway for the immune suppression signals of HCC primary tumors.

12.
Biomed Res Int ; 2020: 9780981, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32352015

RESUMO

BACKGROUND: Gastric cancer (GC) has been divided into four molecular subtypes, of which the mesenchymal subtype has the poorest survival. Our goal is to develop a prognostic signature by integrating the immune system and molecular modalities involved in the mesenchymal subtype. METHODS: The gene expression profiles collected from 6 public datasets were applied to this study, including 1,221 samples totally. Network analysis was applied to integrate the mesenchymal modalities and immune signature to establish an immune-based prognostic signature for GC (IPSGC). RESULTS: We identified six immune genes as key factors of the mesenchymal subtype and established the IPSGC. The IPSGC can significantly divide patients into high- and low-risk groups in terms of overall survival (OS) and relapse-free survival (RFS) in discovery (OS: P < 0.001) and 5 independent validation sets (OS range: P = 0.05 to P < 0.001; RFS range: P = 0.03 to P < 0.001). Further, in multivariate analysis, the IPSGC remained an independent predictor of prognosis and performed better efficiency compared to clinical characteristics. Moreover, macrophage M2 was significantly enriched in the high-risk group, while plasma cells were enriched in the low-risk group. CONCLUSIONS: We propose an immune-based signature identified by network analysis, which is a promising prognostic biomarker and help for the selection of GC patients who might benefit from more rigorous therapies. Further prospective studies are warranted to test and validate its efficiency for clinical application.


Assuntos
Biomarcadores Tumorais , Perfilação da Expressão Gênica , Recidiva Local de Neoplasia , Neoplasias Gástricas , Transcriptoma , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Recidiva Local de Neoplasia/diagnóstico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/metabolismo , Estudos Retrospectivos , Neoplasias Gástricas/diagnóstico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
13.
Analyst ; 145(13): 4671-4679, 2020 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-32458862

RESUMO

Genotyping of the epidermal growth factor receptor (EGFR) mutation status is of great importance in the screening of appropriate patients with advanced non-small cell lung carcinoma (NSCLC) to receive superior tyrosine kinase inhibitor (TKIs) therapy. Yet conventional assays are generally costly with a relatively long turnaround time for obtaining results, which can lead to a bottleneck for immediately starting TKI therapy in late-staged patients. In this study, we propose an on-site electrochemical platform for sensitive simultaneous genotyping of the two major EGFR mutations (19del and L858R) through plasma ctDNA based on tetrahedral DNA nanostructure decorated screen-printed electrodes (SPE). Linear-after-the-exponential (LATE)-PCR combined with the amplification refractory mutation system (ARMS) was adopted to produce abundant biotin-labeled single-stranded DNA with high amplification efficiency and specificity. Disposable SPE decorated with self-assembled tetrahedral nanostructured DNA probes that showed ordered orientation and good target accessibility enabled the highly efficient hybridization of the specific amplicons through a sandwich-type and quantitatively translated the interfacial hybridization event into electrochemical signals via enzymatic amplification. Taking advantage of the ARMS-based LATE-PCR and the tetrahedral nanostructure-decorated SPE platform, we achieved the accurate detection of around 30 pg DNA of 19del or L858R, or as low as 0.1% of them in the presence of wild-type DNA. Moreover, the EGFR mutation profiles of 13 NSCLC patients we enlisted were accurately genotyped by our electrochemical platform, the results of which were in good agreement with those of commercial genetic detection methods.


Assuntos
DNA Tumoral Circulante/sangue , DNA/química , Técnicas Eletroquímicas/métodos , Receptores ErbB/genética , Técnicas de Genotipagem/métodos , Nanoestruturas/química , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , DNA Tumoral Circulante/genética , Feminino , Humanos , Neoplasias Pulmonares/genética , Masculino , Pessoa de Meia-Idade , Mutação , Conformação de Ácido Nucleico , Reação em Cadeia da Polimerase
14.
Adv Sci (Weinh) ; 7(4): 1901672, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32099754

RESUMO

Like many important crops, peanut is a polyploid that underwent polyploidization, evolution, and domestication. The wild allotetraploid peanut species Arachis monticola (A. monticola) is an important and unique link from the wild diploid species to cultivated tetraploid species in the Arachis lineage. However, little is known about A. monticola and its role in the evolution and domestication of this important crop. A fully annotated sequence of ≈2.6 Gb A. monticola genome and comparative genomics of the Arachis species is reported. Genomic reconstruction of 17 wild diploids from AA, BB, EE, KK, and CC groups and 30 tetraploids demonstrates a monophyletic origin of A and B subgenomes in allotetraploid peanuts. The wild and cultivated tetraploids undergo asymmetric subgenome evolution, including homoeologous exchanges, homoeolog expression bias, and structural variation (SV), leading to subgenome functional divergence during peanut domestication. Significantly, SV-associated homoeologs tend to show expression bias and correlation with pod size increase from diploids to wild and cultivated tetraploids. Moreover, genomic analysis of disease resistance genes shows the unique alleles present in the wild peanut can be introduced into breeding programs to improve some resistance traits in the cultivated peanuts. These genomic resources are valuable for studying polyploid genome evolution, domestication, and improvement of peanut production and resistance.

15.
Onco Targets Ther ; 12: 7005-7014, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31695415

RESUMO

BACKGROUND: Ovarian cancer has the highest death rate of all fatal gynecological cancers. Increasing evidence has depicted the correlation between serous ovarian carcinoma prognosis and immune signature. Therefore, the aim of this study is to develop a robust prognostic immune-related gene pairs (IRGPs) signature for estimating overall survival (OS) of HGSOC. METHODS: Gene expression profiling and clinical information of serous ovarian carcinoma patients were derived from three public data sets, divided into training and validation cohorts. Immune genes significantly associated with prognosis were selected. RESULTS: Among 1,534 immune genes, a 20 IRGPs signature was built which was significantly associated with OS in the training cohort (P=1.44×10-14; hazard ratio [HR] =3.05 [2.26, 4.10]). In the validation datasets, the IRGPs signature significantly divided patients into high- vs low- risk groups considering their prognosis (P=4.30×10-3; HR =1.48 [1.13, 1.95]) and was prognostic in multivariate analysis. Functional analysis showed that several biological processes, including EMT and TGF-ß related pathways, enriched in the high-risk group. Macrophages M2 was significantly higher in the high-risk group compared with the low-risk group. CONCLUSION: We successfully constructed a robust IRGPs signature with prognostic values for serous ovarian carcinoma, providing new insights into post-operational treatment strategies.

16.
Biomed Res Int ; 2019: 1056431, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275959

RESUMO

BACKGROUND: Epithelial ovarian cancer (EOC) is a heterogeneous disease, which has been recently classified into four molecular subtypes, of which the mesenchymal subtype exhibited the worst prognosis. We aimed to identify a microRNA- (miRNA-) based signature by incorporating the molecular modalities involved in the mesenchymal subtype for risk stratification, which would allow the identification of patients who might benefit from more rigorous treatments. METHOD: We characterized the regulatory mechanisms underlying the mesenchymal subtype using network analyses integrating gene and miRNA expression profiles from The Cancer Genome Atlas (TCGA) cohort to identify a miRNA signature for prognosis prediction. RESULTS: We identified four miRNAs as the master regulators of the mesenchymal subtype and developed a risk score model. The 4-miRNA signature significantly predicted overall survival (OS) and progression-free survival (PFS) in discovery (p=0.004 and p=0.04) and two independent public datasets (GSE73582: OS, HR: 2.26 (1.26-4.05), p=0.005, PFS, HR: 2.03 (1.34-3.09), p<0.001; GSE25204: OS, HR: 3.07 (1.73-5.46), p<0.001, PFS, HR: 2.59 (1.72-3.88), p<0.001). Moreover, in multivariate analyses, the miRNA signature maintained as an independent prognostic predictor and achieved superior efficiency compared to the currently used clinical factors. CONCLUSIONS: In conclusion, our network analysis identified a 4-miRNA signature which has prognostic value superior to currently reported clinical covariates. This signature warrants further testing and validation for use in clinical practice.


Assuntos
Carcinoma Epitelial do Ovário/diagnóstico , Carcinoma Epitelial do Ovário/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , MicroRNAs/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Carcinoma Epitelial do Ovário/tratamento farmacológico , Intervalo Livre de Doença , Feminino , Humanos , Mesoderma/patologia , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Análise Multivariada , Prognóstico , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes
17.
Medicine (Baltimore) ; 98(27): e16273, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31277152

RESUMO

BACKGROUND: Although the outcome of patients with gastric cancer (GC) has improved significantly with the recent implementation of annual screening programs. Reliable prognostic biomarkers are still needed due to the disease heterogeneity. Increasing pieces of evidence revealed an association between immune signature and GC prognosis. Thus, we aim to build an immune-related signature that can estimate prognosis for GC. METHODS: For identification of a prognostic immune-related gene signature (IRGS), gene expression profiles and clinical information of patients with GC were collected from 3 public cohorts, divided into training cohort (n = 300) and 2 independent validation cohorts (n = 277 and 433 respectively). RESULTS: Within 1811 immune genes, a prognostic IRGS consisting of 16 unique genes was constructed which was significantly associated with survival (hazard ratio [HR], 3.9 [2.78-5.47]; P < 1.0 × 10). In the validation cohorts, the IRGS significantly stratified patients into high- vs low-risk groups in terms of prognosis across (HR, 1.84 [1.47-2.30]; P = 6.59 × 10) and within subpopulations with stage I&II disease (HR, 1.96 [1.34-2.89]; P = 4.73 × 10) and was prognostic in univariate and multivariate analyses. Several biological processes, including TGF-ß and EMT signaling pathways, were enriched in the high-risk group. T cells CD4 memory resting and Macrophage M2 were significantly higher in the high-risk risk group compared with the low-risk group. CONCLUSION: In short, we developed a prognostic IRGS for estimating prognosis in GC, including stage I&II disease, providing new insights into the identification of patients with GC with a high risk of mortality.


Assuntos
Biomarcadores Tumorais/imunologia , DNA de Neoplasias/genética , Perfilação da Expressão Gênica/métodos , Regulação Neoplásica da Expressão Gênica , Neoplasias Gástricas/genética , Transcriptoma/genética , Biomarcadores Tumorais/genética , DNA de Neoplasias/imunologia , Feminino , Humanos , Masculino , Prognóstico , Fatores de Risco , Neoplasias Gástricas/imunologia , Neoplasias Gástricas/metabolismo
18.
Mol Ther Nucleic Acids ; 16: 531-542, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31071529

RESUMO

Although microRNAs have been validated to play prominent roles in the occurrence and development of human bladder cancer (BC), alterations and function of many microRNAs (miRNAs) in bladder cancer invasion are not fully explored yet. miR-146b was reported to be a tumor suppressor or oncomiRNA in various types of cancer. However, its accurate expression, function, and mechanism in bladder cancer remain unclear. Here we discovered that miR-146b was frequently upregulated in bladder cancer tissues compared with adjacent non-cancerous tissues. Inhibition of miR-146b resulted in a significant inhibitory effect on the invasion of bladder cancer cells by reducing mmp2 mRNA transcription and protein expression. We further demonstrated that knockdown of miR-146b attenuated ETS2 expression, which was the transcription factor of matrix metalloproteinase (MMP)2. Moreover, mechanistic studies revealed that miR-146b inhibition stabilized ARE/poly(U)-binding/degradation factor 1 (auf1) mRNA by directly binding to its mRNA 3' UTR, further reduced ets2 mRNA stability, and finally inhibited mmp2 transcription and attenuated bladder cancer invasion abilities. The identification of the miR-146b/AUF1/ETS2/MMP2 mechanism for promoting bladder cancer invasion provides significant insights into understanding the nature of bladder cancer metastasis. Targeting the pathway described here may be a novel approach for inhibiting invasion and metastasis of bladder cancer.

19.
Int J Mol Sci ; 20(10)2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31137458

RESUMO

Understanding the mechanism of abiotic-tolerance and producing germplasm of abiotic tolerance are important in plant research. Wild species often show more tolerance of environmental stress factors than their cultivated counterparts. Genes from wild species show potential abilities to improve abiotic resistance in cultivated species. Here, a tomato proline-, lysine-, and glutamic-rich type gene SpPKE1 was isolated from abiotic-resistant species (Solanum pennellii LA0716) for over-expression in tomato and tobacco for salt tolerance. The protein encoded by SpPKE1 was predominantly localized in the cytoplasm in tobacco. SpPKE1 and SlPKE1 (from cultivated species S. lycopersicum cv. M82) shared 89.7% similarity in amino acid sequences and their transcripts abundance in flowers and fruits was reduced by the imposition of drought or oxidative stress and the exogenous supply of abscisic acid. The DNA of the PKE1 promoter was highly methylated in fruit and leaf, and the methylation of the coding sequence in leaf was significantly higher than that in fruit at different development stages. The over-expression of SpPKE1 under the control of a CaMV (Cauliflower Mosaic Virus) 35S promoter in transgenic tomato and tobacco plants enhanced their tolerance to salt stress. PKE1 was downregulated by abiotic stresses but enhanced the plant's salt stress tolerance. Therefore, this gene may be involved in post-transcriptional regulation and may be an important candidate for molecular breeding of salt-tolerant plants.


Assuntos
Nicotiana/genética , Proteínas de Plantas/genética , Tolerância ao Sal/genética , Solanum lycopersicum/genética , Metilação de DNA , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Solanum lycopersicum/fisiologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Nicotiana/fisiologia
20.
Medicine (Baltimore) ; 97(42): e12788, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30334969

RESUMO

BACKGROUND: The identification of high-risk colorectal cancer (CRC) patient is key to individualized treatment after surgery and reliable prognostic biomarkers are needed identifying high-risk CRC patients. METHODS: We developed a gene pair based prognostic signature that could can the prognosis risk in patients with CRC. This study retrospectively analyzed 4 public CRC datasets, and 1123 patients with CRC were divided into a training cohort (n = 300) and 3 independent validation cohorts (n = 507, 226, and 90 patients). RESULTS: A signature of 9 prognosis-related gene pairs (PRGPs) consisting of 17 unique genes was constructed. Then, a PRGP index (PRGPI) was constructed and divided patients into high- and low-risk groups according to the signature score. Patients in the high-risk group showed a poorer relapse-free survival than the low-risk group in both the training cohort [hazard ratio (HR) range, 4.6, 95% confidence interval (95% CI), 2.55-8.32; P < .0001] and meta-validation set (hazard ratio range, 4.09, 95% CI, 1.99-8.39; P < .0001). The PRGPI signature achieved a higher accuracy [mean concordance index (C-index): 0.6∼0.74] than a commercialized molecular signature (mean C-index, 0.48∼0.56) for estimation of relapse-free survival in comparable validation sets. CONCLUSION: The gene pair based prognostic signature is a promising biomarker for estimating relapse-free survival of CRC.


Assuntos
Neoplasias do Colo/genética , Neoplasias Colorretais/genética , Recidiva Local de Neoplasia/genética , Transcriptoma/genética , Idoso , Biomarcadores Tumorais/genética , Neoplasias do Colo/mortalidade , Neoplasias Colorretais/mortalidade , Intervalo Livre de Doença , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Recidiva Local de Neoplasia/mortalidade , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA