Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38559150

RESUMO

Chronic systemic inflammation contributes to a substantially elevated risk of myocardial infarction in people living with HIV (PLWH). Endothelial cell dysfunction disrupts vascular homeostasis regulation, increasing the risk of vasoconstriction, inflammation, and thrombosis that contribute to cardiovascular disease. Our objective was to study the effects of plasma from PLWH on endothelial cell (EC) function, with the hypothesis that cytokines and chemokines are major drivers of EC activation. We first broadly phenotyped chemokine and cytokine receptor expression on arterial ECs, capillary ECs, venous ECs, and vascular smooth muscle cells (VSMCs) in adipose tissue in the subcutaneous adipose tissue of 59 PLWH using single cell transcriptomic analysis. We used CellChat to predict cell-cell interactions between ECs and other cells in the adipose tissue and Spearman correlation to measure the association between ECs and plasma cytokines. Finally, we cultured human arterial ECs (HAECs) in plasma-conditioned media from PLWH and performed bulk sequencing to study the direct effects ex-vivo. We observed that arterial and capillary ECs expressed higher interferon and tumor necrosis factor (TNF) receptors. Venous ECs had more interleukin (IL)-1R1 and ACKR1 receptors, and VSMCs had high significant IL-6R expression. CellChat predicted ligand-receptor interactions between adipose tissue immune cells as senders and capillary ECs as recipients in TNF-TNFRSF1A/B interactions. Chemokines expressed largely by capillary ECs were predicted to bind ACKR1 receptors on venous ECs. Beyond the adipose tissue, the proportion of venous ECs and VSMCs were positively plasma IL-6. In ex-vivo experiments, HAECs cultured with plasma-conditioned media from PLWH expressed transcripts that enriched for the TNF-α and reactive oxidative phosphorylation pathways. In conclusion, ECs demonstrate heterogeneity in cytokine and chemokine receptor expression. Further research is needed to fully elucidate the role of cytokines and chemokines in EC dysfunction and to develop effective therapeutic strategies.

2.
Glycoconj J ; 39(1): 131-141, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35286528

RESUMO

Antibiotic-associated diarrhea (AAD) is a common side-effect of antibiotic treatment resulting from an imbalance in the colonic bacteria. The hypothesis of this study is to ask whether polysaccharide from the rhizome of Dioscorea opposita which is recorded as conventional herbs and food for diarrhea treatment in Southeast Asia, may be an active compound against diarrhea induced by antibiotics. To address, firstly, a homogenous polysaccharide, DOP0.2-S-3 was characterized as a homogalacturonan containing linear repeating units of → 4)-α-D-GalAp(1 → 4)-α-D-GalAp(1 → with the average molecular weight of 14 kDa. DOP0.2-S-3 significantly reduced the water content and defecation times caused by AAD in mice, while it also remarkably attenuated the cytokines of IL-1ß and IL-6 expression in mice colon tissues. DOP0.2-S-3 decreased potential pathogen and increased Bacteroidetes in the mice gut. These results suggested DOP0.2-S-3 might be a new leading compound for the functional foods or drug candidate development against AAD partially through regulating gut flora.


Assuntos
Dioscorea , Animais , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Interleucina-1 , Interleucina-6/genética , Camundongos , Pectinas
3.
JCI Insight ; 7(3)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-34941574

RESUMO

Discoidin domain receptor 1 (DDR1), a receptor tyrosine kinase activated by collagen, contributes to chronic kidney disease. However, its role in acute kidney injury and subsequent development of kidney fibrosis is not clear. Thus, we performed a model of severe ischemia/reperfusion-induced acute kidney injury that progressed to kidney fibrosis in WT and Ddr1-null mice. We showed that Ddr1-null mice had reduced acute tubular injury, inflammation, and tubulointerstitial fibrosis with overall decreased renal monocyte chemoattractant protein (MCP-1) levels and STAT3 activation. We identified breakpoint cluster region (BCR) protein as a phosphorylated target of DDR1 that controls MCP-1 production in renal proximal tubule epithelial cells. DDR1-induced BCR phosphorylation or BCR downregulation increased MCP-1 secretion, suggesting that BCR negatively regulates the levels of MCP-1. Mechanistically, phosphorylation or downregulation of BCR increased ß-catenin activity and in turn MCP-1 production. Finally, we showed that DDR1-mediated STAT3 activation was required to stimulate the secretion of TGF-ß. Thus, DDR1 contributes to acute and chronic kidney injury by regulating BCR and STAT3 phosphorylation and in turn the production of MCP-1 and TGF-ß. These findings identify DDR1 an attractive therapeutic target for ameliorating both proinflammatory and profibrotic signaling in kidney disease.


Assuntos
Receptor com Domínio Discoidina 1/genética , Regulação da Expressão Gênica , Inflamação/complicações , Túbulos Renais Proximais/metabolismo , Proteínas Proto-Oncogênicas c-bcr/genética , RNA/genética , Fator de Transcrição STAT3/genética , Injúria Renal Aguda , Animais , Linhagem Celular , Células Cultivadas , Receptor com Domínio Discoidina 1/biossíntese , Feminino , Fibrose/complicações , Fibrose/genética , Fibrose/patologia , Inflamação/genética , Inflamação/patologia , Túbulos Renais Proximais/patologia , Masculino , Camundongos , Camundongos Knockout , Fosforilação , Proteínas Proto-Oncogênicas c-bcr/biossíntese , Fator de Transcrição STAT3/biossíntese , Transdução de Sinais
4.
Am J Physiol Gastrointest Liver Physiol ; 311(5): G807-G816, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27586651

RESUMO

Epidermal growth factor receptor (EGFR) and its ligands have been implicated in liver fibrosis. However, it has not been directly shown that hepatocellular genetic ablation of either this receptor tyrosine kinase or ERBB3, its interactive signaling partner, affects hepatic fibrosis. Carbon tetrachloride (CCl4)-induced liver fibrosis in hepatocyte-specific (HS) mouse models of EGFR and ERBB3 ablation was evaluated in both single gene knockouts and an HS-EGFR-ERBB3 double knockout (DKO). Loss of hepatocellular EGFR or ERBB3 did not impact cytochrome P450-2E1 expression, the extent of centrilobular injury, or the initial regenerative response, but it did diminish liver fibrosis induced by chronic intraperitoneal administration of CCl4 The reduction of liver fibrosis correlated with reduced α-smooth muscle actin expression. Maximal impact to fibrogenesis occurred in the ERBB3 and EGFR-ERBB3 DKO models, suggesting that EGFR-ERBB3 heterodimeric signaling in damaged hepatocytes may play a more important role in liver fibrosis than EGFR-EGFR homodimeric signaling. Immunohistochemical analyses of phospho-EGFR and phospho-ERBB3 isoforms revealed clear staining in hepatocytes, activated stellate cells, and macrophages. Our results support a role for the hepatocellular ERBB tyrosine kinases in fibrogenesis and suggest that pharmacologic inhibition of EGFR-ERBB3 signaling may reverse or retard hepatic fibrosis.


Assuntos
Receptores ErbB/metabolismo , Hepatócitos/metabolismo , Cirrose Hepática/metabolismo , Receptor ErbB-3/metabolismo , Animais , Tetracloreto de Carbono , Citocromo P-450 CYP2E1/metabolismo , Receptores ErbB/genética , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/induzido quimicamente , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Receptor ErbB-3/genética , Transdução de Sinais
5.
Am J Physiol Gastrointest Liver Physiol ; 309(12): G942-54, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26492920

RESUMO

Epidermal growth factor receptor (EGFR) and ERBB3 have been implicated in hepatocellular carcinogenesis (HCC). However, it is not known whether altering the activity of either EGFR or ERBB3 affects HCC development. We now show that Egfr(Dsk5) mutant mice, which have a gain-of-function allele that increases basal EGFR kinase activity, develop spontaneous HCC by 10 mo of age. Their tumors show increased activation of EGFR, ERBB2, and ERBB3 as well as AKT and ERK1,2. Hepatocyte-specific models of EGFR and ERBB3 gene ablation were generated to evaluate how the loss of these genes affected tumor progression. Loss of either receptor tyrosine kinase did not alter liver development or regenerative liver growth following carbon tetrachloride injection. However, using a well-characterized model of HCC in which N-nitrosodiethylamine is injected into 14-day-old mice, we discovered that loss of hepatocellular ERBB3 but not EGFR, which occurred after tumor initiation, retarded liver tumor formation and cell proliferation. We found no evidence that this was due to increased apoptosis or diminished phosphatidylinositol-3-kinase activity in the ERBB3-null cells. However, the relative amount of phospho-STAT3 was diminished in tumors derived from these mice, suggesting that ERBB3 may promote HCC through STAT3 activation.


Assuntos
Transformação Celular Neoplásica/metabolismo , Receptores ErbB/deficiência , Hepatócitos/enzimologia , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/prevenção & controle , Receptor ErbB-3/deficiência , Fatores Etários , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Dietilnitrosamina , Receptores ErbB/genética , Genótipo , Hepatócitos/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Regeneração Hepática , Masculino , Camundongos da Linhagem 129 , Camundongos Endogâmicos C3H , Camundongos Knockout , Fenótipo , Fosforilação , Receptor ErbB-3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
6.
Am J Physiol Gastrointest Liver Physiol ; 308(5): G364-77, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25414100

RESUMO

The role(s) of the epidermal growth factor receptor (EGFR) in hepatocytes is unknown. We generated a murine hepatocyte specific-EGFR knockout (KO) model to evaluate how loss of hepatocellular EGFR expression affects processes such as EGF clearance, circulating EGF concentrations, and liver regeneration following 70% resection or CCl4-induced centrilobular injury. We were able to disrupt EGFR expression effectively in hepatocytes and showed that the ability of EGF and heregulin (HRG) to phosphorylate EGFR and ERBB3, respectively, required EGFR. Loss of hepatocellular EGFR impaired clearance of exogenous EGF from the portal circulation but paradoxically resulted in reduced circulating levels of endogenous EGF. This was associated with decreased submandibular salivary gland production of EGF. EGFR disruption did not result in increased expression of other ERBB proteins or Met, except in neonatal mice. Liver regeneration following 70% hepatectomy revealed a mild phenotype, with no change in cyclin D1 expression and slight differences in cyclin A expression compared with controls. Peak 5-bromo-2'-deoxyuridine labeling was shifted from 36 to 48 h. Centrilobular damage and regenerative response induced by carbon tetrachloride (CCl4) were identical in the KO and wild-type mice. In contrast, loss of Met increased CCl4-induced necrosis and delayed regeneration. Although loss of hepatocellular EGFR alone did not have an effect in this model, EGFR-Met double KOs displayed enhanced necrosis and delayed liver regeneration compared with Met KOs alone. This suggests that EGFR and Met may partially compensate for the loss of the other, although other compensatory mechanisms can be envisioned.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Receptores ErbB/metabolismo , Hepatócitos/metabolismo , Regeneração Hepática , Proteínas Proto-Oncogênicas c-met/metabolismo , Animais , Tetracloreto de Carbono/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Ciclina A/genética , Ciclina A/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/genética , Hepatócitos/fisiologia , Camundongos , Neuregulina-1/metabolismo , Proteínas Proto-Oncogênicas c-met/genética , Receptor ErbB-3/genética , Receptor ErbB-3/metabolismo
7.
Am J Physiol Gastrointest Liver Physiol ; 306(5): G370-81, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24407590

RESUMO

Dsk5 mice have a gain of function in the epidermal growth factor receptor (EGFR), caused by a point mutation in the kinase domain. We analyzed the effect of this mutation on liver size, histology, and composition. We found that the livers of 12-wk-old male Dsk5 heterozygotes (+/Dsk5) were 62% heavier compared with those of wild-type controls (+/+). The livers of the +/Dsk5 mice compared with +/+ mice had larger hepatocytes with prominent, polyploid nuclei and showed modestly increased cell proliferation indices in both hepatocytes and nonparenchymal cells. An analysis of total protein, DNA, and RNA (expressed relative to liver weight) revealed no differences between the mutant and wild-type mice. However, the livers of the +/Dsk5 mice had more cholesterol but less phospholipid and fatty acid. Circulating cholesterol levels were twice as high in adult male +/Dsk5 mice but not in postweaned young male or female mice. The elevated total plasma cholesterol resulted mainly from an increase in low-density lipoprotein (LDL). The +/Dsk5 adult mouse liver expressed markedly reduced protein levels of LDL receptor, no change in proprotein convertase subtilisin/kexin type 9, and a markedly increased fatty acid synthase and 3-hydroxy-3-methyl-glutaryl-CoA reductase. Increased expression of transcription factors associated with enhanced cholesterol synthesis was also observed. Together, these findings suggest that the EGFR may play a regulatory role in hepatocyte proliferation and lipid metabolism in adult male mice, explaining why elevated levels of EGF or EGF-like peptides have been positively correlated to increased cholesterol levels in human studies.


Assuntos
Receptores ErbB/metabolismo , Metabolismo dos Lipídeos/fisiologia , Lipídeos/sangue , Fígado/metabolismo , Tecido Adiposo/anatomia & histologia , Alelos , Animais , Sulfatos de Condroitina , Dermatan Sulfato , Receptores ErbB/genética , Feminino , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Heparitina Sulfato , Rim/anatomia & histologia , Fígado/anatomia & histologia , Masculino , Camundongos , Sarcoma de Células Pequenas , Transdução de Sinais , Baço/anatomia & histologia , Testículo/anatomia & histologia
8.
Am J Physiol Gastrointest Liver Physiol ; 295(2): G322-31, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18535289

RESUMO

Epidermal growth factor (EGF) stimulates freshly plated adult hepatocytes to synthesize DNA, but only after they pass through a lag phase of 40 h following EGF exposure. The longer the cells are maintained, they become more responsive to EGF and the lag phase shortens. Maximal EGF-mediated stimulation of DNA synthesis requires the induction of ErbB2, which is not normally expressed in adult hepatocytes. We used immunological methods to demonstrate increased expression during culture of two gene families required for EGF to stimulate hepatocyte DNA synthesis: Akt and ERK 1/2. Both families showed hyperexpression in culture particularly when cells were exposed to insulin and EGF. Unlike CDK-2 and cyclin D1, integral mediators of the G1/S phase transition, ERK 1/2 and Akt appeared in the absence of EGF, particularly when insulin was present. This hyperexpression, which high concentrations of dexamethasone reversed, increased basal and growth factor-stimulated phosphorylation of Akt and ERK 1/2. Pharmacological blockade of phosphatidylinositol kinase suppressed the Akt increase whereas pharmacological blockade or small interfering RNA downregulation of ErbB2 inhibited both Akt and ERK 1/2 expression. All three Akt isoforms contributed to the increase in total Akt. EGF but not insulin specifically upregulated Akt 2 and 3. Since Akt and ERK 1/2 are also hyperexpressed in poorly differentiated hepatomas, their dysregulation in cancer may involve transcriptional mechanisms normally operative in cultured hepatocytes. We hypothesize that the induction and activation of ErbB2 increases the expression of these kinases, enhancing the responsiveness of hepatocytes to EGF as they adapt to culture.


Assuntos
Hepatócitos/metabolismo , Proteína Quinase 1 Ativada por Mitógeno/biossíntese , Proteína Quinase 3 Ativada por Mitógeno/biossíntese , Proteínas Proto-Oncogênicas c-akt/biossíntese , Receptor ErbB-2/fisiologia , Animais , Diferenciação Celular/fisiologia , Células Cultivadas , Citocromo P-450 CYP2E1/biossíntese , Fator de Crescimento Epidérmico/fisiologia , Fosfatidilinositol 3-Quinases/fisiologia , Fosforilação , Ratos , Transdução de Sinais , Regulação para Cima
9.
Am J Physiol Gastrointest Liver Physiol ; 293(3): G552-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17585012

RESUMO

Glucocorticoids paradoxically exert both stimulatory and inhibitory effects on the proliferation of cultured rat hepatocytes. We studied the effects of dexamethasone, a synthetic glucocorticoid, on the proliferation of cultured rat hepatocytes. The timing of growth factor addition modified the action of high-dose dexamethasone (10(-6) M) on DNA synthesis. When we added transforming growth factor-alpha at the time of plating, 10(-6) M dexamethasone weakly stimulated DNA synthesis by 26% relative to cells cultured in dexamethasone-free media. When we delayed growth factor addition until 24-48 h after plating, 10(-6) M dexamethasone inhibited DNA synthesis by 50%. Using immunological methods, we analyzed the expression and signaling patterns of the ErbB kinases in dexamethasone-treated cells. High-dose dexamethasone stabilized the expression of epidermal growth factor receptor (EGFr) and ErbB3, and it suppressed the de novo expression of ErbB2 that occurs during the third and fourth day of culture in 10(-8) M dexamethasone. High-dose dexamethasone by 72 h suppressed basal and EGF-associated phosphorylation of ERK and Akt. The reduction in ERK1/2 phosphorylation correlated with suppression of a culture-dependent increase in Son-of sevenless 1 (Sos1) and ERK1/2 expression. High-dose dexamethasone in hepatocytes stabilized or upregulated several inhibitory effectors of EGFr/ErbB2 and ERK, including receptor-associated late transducer (RALT) and MKP-1, respectively. Thus 10(-6) M dexamethasone exerts a time-dependent and redundant inhibitory effect on EGFr-mediated proliferative signaling in hepatocytes, targeting not only the ErbB proteins but also their various positive and negative effectors.


Assuntos
Dexametasona/farmacologia , Receptores ErbB/metabolismo , Glucocorticoides/farmacologia , Hepatócitos/efeitos dos fármacos , Receptor ErbB-2/metabolismo , Receptor ErbB-3/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Crescimento Transformador alfa/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Replicação do DNA/efeitos dos fármacos , Relação Dose-Resposta a Droga , Fosfatase 1 de Especificidade Dupla , Hepatócitos/enzimologia , Hepatócitos/metabolismo , Proteínas Imediatamente Precoces/metabolismo , Masculino , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Proteína Fosfatase 1 , Proteínas Tirosina Fosfatases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína SOS1/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA