Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
PeerJ ; 12: e17494, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832035

RESUMO

Background: Autoantibodies targeting tumor-associated antigens (TAAbs) have emerged as promising biomarkers for early cancer detection. This research aimed to assess the diagnostic capacity of anti-BIRC5 autoantibody in detecting AFP-negative hepatocellular carcinoma (ANHCC). Methods: This research was carried out in three stages (discovery phase, validation phase, and evaluation phase) and included a total of 744 participants. Firstly, the anti-BIRC5 autoantibody was discovered using protein microarray, exhibiting a higher positive rate in ANHCC samples (ANHCCs) compared to normal control samples (NCs). Secondly, the anti-BIRC5 autoantibody was validated through enzyme-linked immunosorbent assay (ELISA) in 85 ANHCCs and 85 NCs from two clinical centers (Zhengzhou and Nanchang). Lastly, the diagnostic usefulness of the anti-BIRC5 autoantibody for hepatocellular carcinoma (HCC) was evaluated by ELISA in a cohort consisting of an additional 149 AFP-positive hepatocellular carcinoma samples (APHCCs), 95 ANHCCs and 244 NCs. The association of elevated autoantibody to high expression of BIRC5 in HCC was further explored by the database from prognosis, immune infiltration, DNA methylation, and gene mutation level. Results: In the validation phase, the area under the ROC curve (AUC) of anti-BIRC5 autoantibody to distinguish ANHCCs from NCs in Zhengzhou and Nanchang centers was 0.733 and 0.745, respectively. In the evaluation phase, the AUCs of anti-BIRC5 autoantibody for identifying ANHCCs and HCCs from NCs were 0.738 and 0.726, respectively. Furthermore, when combined with AFP, the AUC for identifying HCCs from NCs increased to 0.914 with a sensitivity of 77.5% and specificity of 91.8%. High expression of BIRC5 gene is not only correlated with poor prognosis of HCCs, but also significantly associated with infiltration of immune cells, DNA methylation, and gene mutation. Conclusion: The findings suggest that the anti-BIRC5 autoantibody could serve as a potential biomarker for ANHCC, in addition to its supplementary role alongside AFP in the diagnosis of HCC. Next, we can carry out specific verification and explore the function of anti-BIRC5 autoantibody in the occurrence and development of HCC.


Assuntos
Autoanticorpos , Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Survivina , alfa-Fetoproteínas , Humanos , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Autoanticorpos/sangue , Autoanticorpos/imunologia , Biomarcadores Tumorais/imunologia , Biomarcadores Tumorais/genética , Masculino , Feminino , Pessoa de Meia-Idade , Survivina/genética , Survivina/imunologia , alfa-Fetoproteínas/imunologia , alfa-Fetoproteínas/análise , Ensaio de Imunoadsorção Enzimática , Adulto
2.
BMC Cancer ; 24(1): 283, 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38431566

RESUMO

BACKGROUND: This study aims to investigate the expression of UBQLN1 in lung cancer (LC) tissue and the diagnostic capability of autoantibody to UBQLN1 (anti-UBQLN1) in the detection of LC and the discrimination of pulmonary nodules (PNs). METHODS: Sera from 798 participants were used to discover and validate the level of autoantibodies via HuProt microarray and Enzyme-linked immunosorbent assay (ELISA). Logistic regression analysis was applied to establish model. Receiver operating characteristic curve (ROC) analysis was performed to evaluate the diagnostic potential. Immunohistochemistry was performed to detect UBQLN1 expression in 88 LC tissues and 88 para-tumor tissues. qRT-PCR and western blotting were performed to detect the expression of UBQLN1 at the mRNA and protein levels, respectively. Trans-well assay and cell counting kit-8 (CCK-8) was used to investigate the function of UBQLN1. RESULTS: Anti-UBQLN1 was identified with the highest fold change by protein microarray. The level of anti-UBQLN1 in LC patients was obviously higher than that in NC or patients with benign lung disease of validation cohort 1 (P<0.05). The area under the curve (AUC) of anti-UBQLN1 was 0.610 (95%CI: 0.508-0.713) while reached at 0.822 (95%CI: 0.784-0.897) when combining anti-UBQLN1 with CEA, CYFRA21-1, CA125 and three CT indicators (vascular notch sign, lobulation sign and mediastinal lymph node enlargement) in the discrimination of PNs. UBQLN1 protein was overexpressed in lung adenocarcinoma (LUAD) tissues compared to para-tumor tissues. UBQLN1 knockdown remarkably inhibited the migration, invasion and proliferation of LUAD cell lines. CONCLUSIONS: Anti-UBQLN1 might be a potential biomarker for the diagnosis of LC and the discrimination of PNs.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Nódulos Pulmonares Múltiplos , Humanos , Neoplasias Pulmonares/diagnóstico , Imunidade Humoral , Antígenos de Neoplasias , Queratina-19 , Biomarcadores Tumorais , Proteínas Relacionadas à Autofagia/genética , Proteínas Adaptadoras de Transdução de Sinal/genética
3.
Cancer Cell Int ; 24(1): 78, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374122

RESUMO

BACKGROUND: Liver specific genes (LSGs) are crucial for hepatocyte differentiation and maintaining normal liver function. A deep understanding of LSGs and their heterogeneity in hepatocellular carcinoma (HCC) is necessary to provide clues for HCC diagnosis, prognosis, and treatment. METHODS: The bulk and single-cell RNA-seq data of HCC were downloaded from TCGA, ICGC, and GEO databases. Through unsupervised cluster analysis, LSGs-based HCC subtypes were identified in TCGA-HCC samples. The prognostic effects of the subtypes were investigated with survival analyses. With GSVA and Wilcoxon test, the LSGs score, stemness score, aging score, immune score and stromal score of the samples were estimated and compared. The HCC subtype-specific genes were identified. The subtypes and their differences were validated in ICGC-HCC samples. LASSO regression analysis was used for key gene selection and risk model construction for HCC overall survival. The model performance was estimated and validated. The key genes were validated for their heterogeneities in HCC cell lines with quantitative real-time PCR and at single-cell level. Their dysregulations were investigated at protein level. Their correlations with HCC response to anti-cancer drugs were estimated in HCC cell lines. RESULTS: We identified three LSGs-based HCC subtypes with different prognosis, tumor stemness, and aging level. The C1 subtype with low LSGs score and high immune score presented a poor survival, while the C2 subtype with high LSGs score and immune score indicated an enduring survival. Although no significant survival difference between C2 and C3 HCCs was shown, the C2 HCCs presented higher immune score and stroma score. The HCC subtypes and their differences were confirmed in ICGC-HCC dataset. A five-gene prognostic signature for HCC survival was constructed. Its good performance was shown in both the training and validation datasets. The five genes presented significant heterogeneities in different HCC cell lines and hepatocyte subclusters. Their dysregulations were confirmed at protein level. Furthermore, their significant associations with HCC sensitivities to anti-cancer drugs were shown. CONCLUSIONS: LSGs-based HCC subtype classification and the five-gene risk model might provide useful clues not only for HCC stratification and risk prediction, but also for the development of more personalized therapies for effective HCC treatment.

4.
Respir Res ; 25(1): 59, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38273401

RESUMO

BACKGROUND: Non-small cell lung cancer (NSCLC) accounts for the vast majority of lung cancers. Early detection is crucial to reduce lung cancer-related mortality. Aberrant DNA methylation occurs early during carcinogenesis and can be detected in blood. It is essential to investigate the dysregulated blood methylation markers for early diagnosis of NSCLC. METHODS: NSCLC-associated methylation gene folate receptor gamma (FOLR3) was selected from an Illumina 850K array analysis of peripheral blood samples. Mass spectrometry was used for validation in two independent case-control studies (validation I: n = 2548; validation II: n = 3866). Patients with lung squamous carcinoma (LUSC) or lung adenocarcinoma (LUAD), normal controls (NCs) and benign pulmonary nodule (BPN) cases were included. FOLR3 methylations were compared among different populations. Their associations with NSCLC clinical features were investigated. Receiver operating characteristic analyses, Kruskal-Wallis test, Wilcoxon test, logistics regression analysis and nomogram analysis were performed. RESULTS: Two CpG sites (CpG_1 and CpG_2) of FOLR3 was significantly lower methylated in NSCLC patients than NCs in the discovery round. In the two validations, both LUSC and LUAD patients presented significant FOLR3 hypomethylations. LUSC patients were highlighted to have significantly lower methylation levels of CpG_1 and CpG_2 than BPN cases and LUAD patients. Both in the two validations, CpG_1 methylation and CpG_2 methylation could discriminate LUSC from NCs well, with areas under the curve (AUCs) of 0.818 and 0.832 in validation I, and 0.789 and 0.780 in validation II. They could also differentiate LUAD from NCs, but with lower efficiency. CpG_1 and CpG_2 methylations could also discriminate LUSC from BPNs well individually in the two validations. With the combined dataset of two validations, the independent associations of age, gender, and FOLR3 methylation with LUSC and LUAD risk were shown and the age-gender-CpG_1 signature could discriminate LUSC and LUAD from NCs and BPNs, with higher efficiency for LUSC. CONCLUSIONS: Blood-based FOLR3 hypomethylation was shown in LUSC and LUAD. FOLR3 methylation heterogeneity between LUSC and LUAD highlighted its stronger associations with LUSC. FOLR3 methylation and the age-gender-CpG_1 signature might be novel diagnostic markers for the early detection of NSCLC, especially for LUSC.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/patologia , Carcinoma Pulmonar de Células não Pequenas/diagnóstico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/diagnóstico , Carcinoma de Células Escamosas/genética , Metilação de DNA/genética , Pulmão/patologia , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia
5.
Ecotoxicol Environ Saf ; 267: 115622, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37890257

RESUMO

Hexavalent chromium [Cr(VI)] is an occupational carcinogen that accumulates in the lungs and causes lung injury and even lung cancer. 36 SD male rats received inhalable intratracheal instillation of Cr(VI) (0.05, 0.25 mg Cr/kg) or the same volume (3 ml/kg) of normal saline weekly for 28 days (total 5 times). After 28 days of exposure, half of the rats in each group were sacrificed for investigation, and the rest stopped exposure and began to be self-repaired for two weeks. Histopathology analyses revealed that Cr(VI) induced slight dilatation and hemorrhage of perialveolar capillaries, pulmonary bronchodilation, and congestion with peripheral flaky-like necrosis accompanied by inflammatory cell infiltration, especially the 0.25 mg Cr/kg group. Cr(VI) exposure caused the increase of blood Cr, urinary Cr, MDA, urinary 8-hydroxy-2' -deoxyguanosine (8-OHdG), and the decrease of GSH and MDA, while two-week repair only reduced urinary Cr. Exposure to Cr(VI) significantly upregulated FOXO1 and downregulated p-AKT and p-FOXO1 for two weeks. PI3K in the 0.25 mg Cr/kg group was inhibited after two weeks of repair. Cr(VI) exposure mainly promoted GADD45a and CHK2 in the exposure group, promoted Bim, Bax/Bcl-2, and suppressed Bcl-2 and Bcl-xL in the repair group. These results demonstrate that Cr(VI) may induce DNA damage repair and apoptosis in the lung by activating the PI3K/AKT/FOXO1 pathway. Two-week repair may alleviate oxidative stress and DNA damage induced by Cr(VI) exposure but couldn't eliminate its effects. This study provides a new perspective for exploring the Cr(VI) induced lung cancer mechanism.


Assuntos
Neoplasias Pulmonares , Proteínas Proto-Oncogênicas c-akt , Ratos , Masculino , Animais , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cromo/metabolismo , Estresse Oxidativo , Pulmão , Apoptose , 8-Hidroxi-2'-Desoxiguanosina/metabolismo , Dano ao DNA , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Neoplasias Pulmonares/metabolismo
6.
Cytokine ; 164: 156139, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36738525

RESUMO

BACKGROUND: Bone marrow mesenchymal stem cells (BMSCs) are an important source of seed cells for regenerative medicine and tissue engineering therapy. BMSCs have multiple differentiation potentials and can release paracrine factors to facilitate tissue repair. Although the role of the osteogenic differentiation of BMSCs has been fully confirmed, the function and mechanism of BMSC paracrine factors in bone repair are still largely unclear. This study aimed to determine the roles of transforming growth factor beta-1 (TGF-ß1) produced by BMSCs in bone tissue repair. METHODS: To confirm our hypothesis, we used a Transwell system to coculture hBMSCs and human osteoblast-like cells without contact, which could not only avoid the interference of the osteogenic differentiation of hBMSCs but also establish the cell-cell relationship between hBMSCs and human osteoblast-like cells and provide stable paracrine substances. In the transwell coculture system, alkaline phosphatase activity, mineralized nodule formation, cell migration and chemotaxis analysis assays were conducted. RESULTS: Osteogenesis, migration and chemotaxis of osteoblast-like cells were regulated by BMSCs in a paracrine manner via the upregulation of osteogenic and migration-associated genes. A TGF-ß receptor I inhibitor (LY3200882) significantly antagonized BMSC-induced biological activity and related gene expression in osteoblast-like cells. Interestingly, coculture with osteoblast-like cells significantly increased the production of TGF-ß1 by BMSCs, and there was potential intercellular communication between BMSCs and osteoblast-like cells. CONCLUSIONS: Our findings provide evidence that the biological mechanism of BMSC-produced TGF-ß1 promotes bone regeneration and repair, providing a theoretical basis and new directions for the application of BMSC transplantation in the treatment of osteonecrosis and bone injury.


Assuntos
Células-Tronco Mesenquimais , Fator de Crescimento Transformador beta1 , Humanos , Fator de Crescimento Transformador beta1/metabolismo , Osteogênese , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , Osteoblastos/metabolismo , Células da Medula Óssea/metabolismo
7.
Cancer Cell Int ; 22(1): 393, 2022 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-36494696

RESUMO

BACKGROUND: The dysregulation of CD5L has been reported in hepatocellular carcinoma (HCC). However, its functions in HCC were controversial. In this study, we aimed to identify CD5L-associated pathways and markers and explore their values in HCC diagnosis, prognosis and treatment. METHODS: HCC datasets with gene expression profiles and clinical data in TCGA and ICGC were downloaded. The immune/stroma cell infiltrations were estimated with xCell. CD5L-associated pathways and CD5L-associated genes (CD5L-AGs) were identified with gene expression comparisons and gene set enrichment analysis (GSEA). Cox regression, Kaplan-Meier survival analysis, and least absolute shrinkage and selection operator (LASSO) regression analysis were performed. The correlations of the key genes with immune/stroma infiltrations, immunoregulators, and anti-cancer drug sensitivities in HCC were investigated. At protein level, the key genes dysregulations, their correlations and prognostic values were validated in clinical proteomic tumor analysis consortium (CPTAC) database. Serum CD5L and LCAT activity in 50 HCC and 30 normal samples were evaluated and compared. The correlations of serum LCAT activity with alpha-fetoprotein (AFP), albumin (ALB) and high-density lipoprotein (HDL) in HCC were also investigated. RESULTS: Through systemic analyses, 14 CD5L-associated biological pathways, 256 CD5L-AGs and 28 CD5L-associated prognostic and diagnostic genes (CD5L-APDGs) were identified. A risk model consisting of LCAT and CDC20 was constructed for HCC overall survival (OS), which could discriminate HCC OS status effectively in both the training and the validation sets. CD5L, LCAT and CDC20 were shown to be significantly correlated with immune/stroma cell infiltrations, immunoregulators and 31 anti-cancer drug sensitivities in HCC. At protein level, the dysregulations of CD5L, LCAT and CDC20 were confirmed. LCAT and CDC20 were shown to be significantly correlated with proliferation marker MKI67. In serum, no significance of CD5L was shown. However, the lower activity of LCAT in HCC serum was obvious, as well as its significant positive correlations ALB and HDL concentrations. CONCLUSIONS: CD5L, LCAT and CDC20 were dysregulated in HCC both at mRNA and protein levels. The LCAT-CDC20 signature might be new predicator for HCC OS. The associations of the three genes with HCC microenvironment and anti-cancer drug sensitivities would provide new clues for HCC immunotherapy and chemotherapy.

8.
World J Surg Oncol ; 20(1): 347, 2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36258216

RESUMO

BACKGROUND: Gelsolin-like capping actin protein (CapG) modulates actin dynamics and actin-based motility with a debatable role in tumorigenic progression. The motility-associated functions and potential molecular mechanisms of CapG in nasopharyngeal carcinoma (NPC) remain unclear. METHODS: CapG expression was detected by immunohistochemistry in a cohort of NPC tissue specimens and by Western blotting assay in a variety of NPC cell lines. Loss of function and gain of function of CapG in scratch wound-healing and transwell assays were performed. Inactivation of Rac1 and ROCK with the specific small molecular inhibitors was applied to evaluate CapG's role in NPC cell motility. GTP-bound Rac1 and phosphorylated-myosin light chain 2 (p-MLC2) were measured in the ectopic CapG overexpressing cells. Finally, CapG-related gene set enrichment analysis was conducted to figure out the significant CapG-associated pathways in NPC. RESULTS: CapG disclosed increased level in the poorly differentiated NPC tissues and highly metastatic cells. Knockdown of CapG reduced NPC cell migration and invasion in vitro, while ectopic CapG overexpression showed the opposite effect. Ectopic overexpression of CapG compensated for the cell motility loss caused by simultaneous inactivation of ROCK and Rac1 or inactivation of ROCK alone. GTP-bound Rac1 weakened, and p-MLC2 increased in the CapG overexpressing cells. Bioinformatics analysis validated a positive correlation of CapG with Rho motility signaling, while Rac1 motility pathway showed no significant relationship. CONCLUSIONS: The present findings highlight the contribution of CapG to NPC cell motility independent of ROCK and Rac1. CapG promotes NPC cell motility at least partly through MLC2 phosphorylation and contradicts with Rac1 activation.


Assuntos
Actinas , Neoplasias Nasofaríngeas , Humanos , Actinas/metabolismo , Carcinoma Nasofaríngeo/genética , Gelsolina/análise , Gelsolina/genética , Gelsolina/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias Nasofaríngeas/genética , Guanosina Trifosfato , Regulação Neoplásica da Expressão Gênica , Proteínas dos Microfilamentos/metabolismo , Proteínas Nucleares/genética
9.
Front Mol Biosci ; 9: 907832, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36060246

RESUMO

Noise exposure can lead to various kinds of disorders. Noise-induced hearing loss (NIHL) is one of the leading disorders confusing the noise-exposed workers. It is essential to identify NIHL markers for its early diagnosis and new therapeutic targets for its treatment. In this study, a total of 90 plasma samples from 60 noise-exposed steel factory male workers (the noise group) with (NIHL group, n = 30) and without NIHL (non-NIHL group, n = 30) and 30 male controls without noise exposure (control group) were collected. Untargeted human plasma metabolomic profiles were determined with HPLC-MS/MS. The levels of the metabolites in the samples were normalized to total peak intensity, and the processed data were subjected to multivariate data analysis. The Wilcoxon test and orthogonal partial least square-discriminant analysis (OPLS-DA) were performed. With the threshold of p < 0.05 and the variable importance of projection (VIP) value >1, 469 differential plasma metabolites associated with noise exposure (DMs-NE) were identified, and their associated 58 KEGG pathways were indicated. In total, 33 differential metabolites associated with NIHL (DMs-NIHL) and their associated 12 KEGG pathways were identified. There were six common pathways associated with both noise exposure and NIHL. Through multiple comparisons, seven metabolites were shown to be dysregulated in the NIHL group compared with the other two groups. Through LASSO regression analysis, two risk models were constructed for NIHL status predication which could discriminate NIHL from non-NIHL workers with the area under the curve (AUC) values of 0.840 and 0.872, respectively, indicating their efficiency in NIHL diagnosis. To validate the results of the metabolomics, cochlear gene expression comparisons between susceptible and resistant mice in the GSE8342 dataset from Gene Expression Omnibus (GEO) were performed. The immune response and cell death-related processes were highlighted for their close relations with noise exposure, indicating their critical roles in noise-induced disorders. We concluded that there was a significant difference between the metabolite's profiles between NIHL cases and non-NIHL individuals. Noise exposure could lead to dysregulations of a variety of biological pathways, especially immune response and cell death-related processes. Our results might provide new clues for noise exposure studies and NIHL diagnosis.

10.
J Ethnopharmacol ; 296: 115476, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35724747

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Ginkgo biloba L. extract (EGb) is one of the world's most extensively used herbal medicines. Due to the diverse pharmacological properties of EGb, it has been used in the treatment of neurological illnesses, as well as cardiovascular and cerebrovascular ailments. However, the effect and pharmacological mechanism of EGb on steroid-induced necrosis of the femoral head (SINFH) are still unclear. AIM OF THE STUDY: SINFH remains a challenging problem in orthopedics. Previous investigations have shown that EGb has the potential to reduce the occurrence of SINFH. The goal was to determine the effect and mechanism of EGb in preventing SINFH by inhibiting apoptosis and improving vascular endothelial cells (VECs) functions. MATERIALS AND METHODS: CCK-8, nitric oxide (NO) production and flow cytometry were used to determine the cell apoptosis and function. The scratch and angiogenesis tests assessed migration and tube formation. Western blot analysis detected the expressions of apoptosis-related proteins and PI3K/AKT/eNOS pathway-related proteins. Apoptosis and angiogenesis were also detected treated with the inhibitors. A mouse model of SINFH was established. Paraffin section was used to determine the necrotic pathology and apoptosis. Vessels in the femoral heads were assessed by immunofluorescence staining. RESULTS: When stimulated by methylprednisolone (MPS), cell viability, NO generation and tube formation were decreased, the apoptotic rate increased. Simultaneously, MPS decreased the expression levels of p-PI3K, p-AKT, and p-eNOS. EGb increased the expression levels of these proteins, restrained apoptosis, and restored cell functions. The addition of the inhibitors decreased anti-apoptotic effect and angiogenesis. In addition, when compared to the model mice, there were fewer empty lacunae and normal trabecular arrangement after taking different doses of EGb. The protective effect was also confirmed by the vascular quantitative analysis in vivo. CONCLUSION: This study established that EGb increased endothelial cell activity and inhibited apoptosis and function loss induced by MPS, elucidating the effect and molecular mechanism of EGb on early SINFH.


Assuntos
Necrose da Cabeça do Fêmur , Ginkgo biloba , Animais , Apoptose , Células Endoteliais , Necrose da Cabeça do Fêmur/induzido quimicamente , Necrose da Cabeça do Fêmur/tratamento farmacológico , Necrose da Cabeça do Fêmur/prevenção & controle , Camundongos , Neovascularização Patológica/tratamento farmacológico , Óxido Nítrico , Óxido Nítrico Sintase Tipo III/metabolismo , Fosfatidilinositol 3-Quinases , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Esteroides/farmacologia
11.
Reprod Biol ; 22(2): 100648, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35533615

RESUMO

Cervical cancer (CC) is a common gynecological malignant tumor, causing poor survival rate. Circular RNAs (circRNAs) are abundantly expressed in CC with their stable loop structure. However, the underlying mechanism and biological function of circRNAs remained unclear. Using quantitative real-time polymerase chain reaction (qRT-PCR) or western blot assay, we measured the expression of hsa_circ_0001495, miR-526b-3p, and transmembrane Bax inhibitor motif containing 6 (TMBIM6) in CC tissues and cells. The relationship between miR-526b-3p and hsa_circ_0001495 or TMBIM6 was investigated by bioinformatics analysis, dual-luciferase and RIP analysis. Enzyme linked immunosorbent assay (ELISA) was conducted to evaluate glucose consumption and lactate production. 5-ethynyl-2'-deoxyuridine (EDU) assay were used to test cell proliferation. Cell apoptosis was analyzed by using flow cytometry assay. Transwell and wound-healing assays were used to measure cell invasion and migration. The expression of proteins was examined by western blot. Xenograft assay was applied to detect the effect of hsa_circ_0001495 in vivo. Our finding showed that hsa_circ_0001495 and TMBIM6 expression were upregulated, while miR-526b-3p was downregulated in CC tissues and cell lines. Hsa_circ_0001495 knockdown or TMBIM6 knockdown suppressed cell proliferation, migration, glycolysis, while promoted cell apoptosis in vitro, and hsa_circ_0001495 silence curbed tumor growth in vivo. Beside, hsa_circ_0001495 exerted its function in CC by positively regulating TMBIM6. Furthermore, hsa_circ_0001495 acted as a sponge for miR-526b-3p to regulate TMBIM6 expression. Hsa_circ_0001495/miR-526b-3p/TMBIM6 axis also regulated the phosphorylation of mammalian target of rapamycin (mTOR) in CC cells. In summary, hsa_circ_0001495 regulated the progression of CC by regulating miR-526b-3p/TMBIM6/mTOR pathway.


Assuntos
MicroRNAs , Neoplasias do Colo do Útero , Proteínas Reguladoras de Apoptose/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Circular/genética , Sirolimo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Neoplasias do Colo do Útero/genética , Proteína X Associada a bcl-2/metabolismo
12.
Neoplasma ; 69(3): 571-582, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35144474

RESUMO

Esophageal squamous cell carcinoma (ESCC), one of the main histopathological subtypes of esophageal cancer (EC), is characterized by high morbidity and mortality. Clinical treatment for ESCC lacks specific molecular targets and effective therapeutic drugs. Skimmianine (SK), one of the natural fluroquinolone alkaloids, is widely present in Rutaceae family plants. Here, we mainly used CCK-8 assay, clone formation, flow cytometry analysis, wound-healing assay, Transwell assay, western blot, quantitative real-time PCR (qRT-PCR), molecular docking analysis, tumor xenograft assay, and immunohistochemistry (IHC) staining to investigate the potential anti-tumor effect of SK on ESCC. We demonstrated that SK inhibited the proliferation of TE-1 and Eca109 cells via inducing the G0/G1 phase cell cycle arrest, prevented the migration and invasion of tumor cells via regulating epithelial-mesenchymal transition (EMT) in vitro. In addition, SK obviously suppressed the growth of xenografted Eca109 tumors in nude mice. The anti-tumor mechanism of SK could be blocking the activation of extracellular signal-regulated kinases 1/2 (ERK1/2) in the mitogen-activated protein kinase (MAPK)/ERK signaling pathway. Our basic research suggests that SK can be a potential therapeutic agent for ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Quinolinas
13.
BMC Cancer ; 21(1): 1196, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34758762

RESUMO

Aurora A kinase is a cell cycle regulator that is dysregulated in several different malignancies. Nevertheless, its regulatory mechanisms are still not fully understood. Here, we report that ubiquitin specific peptidase 3 (USP3) promotes proliferation and metastasis of esophageal squamous cell carcinoma (ESCC) cells by mediating deubiquitination of Aurora A. Analysis of human clinical samples indicated that USP3 and Aurora A are highly expressed in ESCC. Cellular experiments confirmed that high expression of USP3 and Aurora A in ESCC cells promoted malignant cell proliferation and invasion. In this mechanism, USP3 leads to suppression of Aurora A ubiquitination, resulting less proteasome degradation. We constructed the deubiquitinated mimetic K143R of Aurora A and found that K143R significantly promoted the proliferation and invasion of ESCC cells and was not regulated by the deubiquitination of USP3. Moreover, Aurora A K143R potentiated the kinase activity of Aurora A in ESCC cells. Thus, our findings demonstrate that the tumorigenic feature of ESCC is in part mediated by USP3-facilitated deubiquitination of Aurora A.


Assuntos
Aurora Quinase A/metabolismo , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Regulação Neoplásica da Expressão Gênica , Proteases Específicas de Ubiquitina/metabolismo , Carcinogênese/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Humanos , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Ubiquitinação
14.
PeerJ ; 9: e12197, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34616632

RESUMO

Dysregulation and prognostic roles of Karyopherin α2 (KPNA2) were reported in many malignancies including hepatocellular carcinoma (HCC). A multi-omics analysis of KPNA2 is needed to gain a deeper understanding of its multilevel molecular characteristics and provide novel clues for HCC diagnosis, prognosis, and target therapy. Herein multi-omic alterations of KPNA2 were analyzed at genetic, epigenetic, transcript, and protein levels with evaluation of their relevance with clinicopathological features of HCC by integrative analyses. The significant correlations of KPNA2 expression with its gene copy number variation (CNV) and methylation status were shown through Spearman correlation analyses. With Cox regression, Kaplan-Meier survival, and receiver operating characteristic (ROC) analyses, based on the factors of KPNA2 CNV, methylation, expression, and tumor stage, risk models for HCC overall survival (OS) and disease-free survival (DFS) were constructed which could discriminate the 1-year, 3-year, and 5-year OS/DFS status effectively. With Microenvironment Cell Populations-counter (MCP-counter), the immune infiltrations of HCC samples were evaluated and their associations with KPNA2 were shown. KPNA2 expression in liver was found to be influenced by low fat diet and presented significant correlations with fatty acid metabolism and fatty acid synthase activity in HCC. KPNA2 was detected lowered in HCC patient's plasma by enzyme linked immunosorbent assay (ELISA), consistent with its translocation to nuclei of HCC cells. In conclusion, KPNA2 multilevel dysregulation in HCC and its correlations with immune infiltration and the fatty acid metabolism pathway indicated its multiple roles in HCC. The clinicopathological significance of KPNA2 was highlighted through the in-depth analyses at multilevels.

15.
Comput Math Methods Med ; 2021: 9987067, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34257703

RESUMO

Lung cancer has a high mortality rate. Promoting early diagnosis and screening of lung cancer is the most effective way to enhance the survival rate of lung cancer patients. Through computer technology, a comprehensive evaluation of genetic testing results and basic clinical information of lung cancer patients could effectively diagnose early lung cancer and indicate cancer risks. This study retrospectively collected 70 pairs of lung cancer tissue samples and normal human tissue samples. The methylation frequencies of 6 genes (FHIT, p16, MGMT, RASSF1A, APC, DAPK) in lung cancer patients, the basic clinical information, and tumor marker levels of these patients were analyzed. Then, the python package "sklearn" was employed to build a support vector machine (SVM) classifier which performed 10-fold cross-validation to construct diagnostic models that could identify lung cancer risk of suspected cases. Receiver operation characteristic (ROC) curves were drawn, and the performance of the combined diagnostic model based on several factors (clinical information, tumor marker level, and methylation frequency of 6 genes in blood) was shown to be better than that of models with only one pathological feature. The AUC value of the combined model was 0.963, and the sensitivity, specificity, and accuracy were 0.900, 0.971, and 0.936, respectively. The above results revealed that the diagnostic model based on these features was highly reliable, which could screen and diagnose suspected early lung cancer patients, contributing to increasing diagnosis rate and survival rate of lung cancer patients.


Assuntos
Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/genética , Metilação de DNA/genética , Diagnóstico por Computador/métodos , Detecção Precoce de Câncer/métodos , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/genética , Máquina de Vetores de Suporte , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Biologia Computacional , Diagnóstico por Computador/estatística & dados numéricos , Detecção Precoce de Câncer/estatística & dados numéricos , Feminino , Humanos , Neoplasias Pulmonares/sangue , Masculino , Pessoa de Meia-Idade , Curva ROC , Estudos Retrospectivos
16.
Adv Clin Chem ; 103: 1-45, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34229848

RESUMO

Lung cancer (LC) accounts for the majority of cancer-related deaths worldwide. Although screening the high-risk population by low-dose CT (LDCT) has reduced mortality, the cost and high false positivity rate has prevented its general diagnostic use. As such, better and more specific minimally invasive biomarkers are needed in general and for early LC detection, specifically. Autoantibodies produced by humoral immune response to tumor-associated antigens (TAA) are emerging as a promising noninvasive biomarker for LC. Given the low sensitivity of any one single autoantibody, a panel approach could provide a more robust and promising strategy to detect early stage LC. In this review, we summarize the background of TAA autoantibodies (TAAb) and the techniques currently used for identifying TAA, as well as recent findings of LC specific antigens and TAAb. This review provides guidance toward the development of accurate and reliable TAAb as immunodiagnostic biomarkers in the early detection of LC.


Assuntos
Anticorpos Antineoplásicos/sangue , Antígenos de Neoplasias/imunologia , Autoanticorpos/sangue , Neoplasias Pulmonares/diagnóstico , Neoplasias Pulmonares/imunologia , Humanos , Proteínas de Neoplasias/sangue , Proteínas de Neoplasias/metabolismo
17.
Medicine (Baltimore) ; 100(6): e24700, 2021 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-33578606

RESUMO

RATIONALE: Double primary lung cancer (DPLC) is a relatively rare type of lung cancers. According to whether the diagnosis interval between lesions is more than 6 months, it can be divided into synchronous DPLC (sDPLC) and metachronous DPLC (mDPLC). Here, we describe a case of sDPLC in which one of the components is a rare colloid adenocarcinoma (CA). PATIENT CONCERNS: A 69-year-old male was admitted to the hospital due to chest distress and shortness of breath for 1 year, getting worse in the last 15 days. DIAGNOSIS: Both HE staining and IHC supported the diagnosis of CA in the right lower lobe and moderately differentiated squamous cell carcinoma in the right upper lobe. INTERVENTIONS: The patient was treated with 3 cycles of adjuvant chemotherapy with pemetrexed and lobaplatin after the right upper lobectomy, wedge resection of the right lower lobe and lymph node dissection under video-assisted thoracoscope. OUTCOMES: Our plan was to follow him up with general physical examination, chest-abdomen CT and serum tumor markers every 6 months for 2 years. The patient was still alive until the last follow-up in November 2020. LESSONS: CA of the lung is a rare primary lung adenocarcinoma. The diagnosis should be based on the patient's clinical characteristics, imaging examination and pathological characteristics, and also need to be differentiated from other mucinous adenocarcinomas. Interestingly, our patient developed not only a CA in the right lower lobe, but also a moderately differentiated squamous cell carcinoma in the right upper lobe.


Assuntos
Adenocarcinoma Mucinoso/patologia , Adenocarcinoma/patologia , Carcinoma de Células Escamosas/patologia , Neoplasias Pulmonares/patologia , Neoplasias Primárias Múltiplas/patologia , Adenocarcinoma/terapia , Adenocarcinoma Mucinoso/metabolismo , Adenocarcinoma Mucinoso/terapia , Assistência ao Convalescente/métodos , Idoso , Biomarcadores Tumorais/sangue , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/terapia , Quimioterapia Adjuvante/métodos , Diagnóstico Diferencial , Dispneia/diagnóstico , Dispneia/etiologia , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/metabolismo , Excisão de Linfonodo/métodos , Masculino , Estadiamento de Neoplasias/métodos , Neoplasias Primárias Múltiplas/terapia , Cirurgia Torácica Vídeoassistida/métodos , Tomografia Computadorizada por Raios X/métodos , Resultado do Tratamento
18.
Bioact Mater ; 6(6): 1765-1776, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33313453

RESUMO

Regeneration of long-bone segmental defects remains a challenge for orthopedic surgery. Current treatment options often require several revision procedures to maintain acceptable alignment and achieve osseous healing. A novel hollow tubular system utilizing magnesium-strontium (Mg-Sr) alloy with autogenous morselized bone filled inside to repair segmental defects was developed. To improve the corrosion and biocompatible properties, two coatings, Ca-P and Sr-P coatings, were prepared on surface of the implants. Feasibility of applying these coated implants was systematically evaluated in vitro and in vivo, and simultaneously to have a better understanding on the relationship of degradation and bone regeneration on the healing process. According to the in vitro corrosion study by electrochemical measurements, greater corrosion resistance was obtained for Ca-P coated sample, and attributed to the double-layer protective structure. The cytotoxicity and alkaline phosphatase (ALP) assays demonstrated enhanced bioactivity for Sr-P coated group because of the long-lasting release of beneficial Sr2+. At 12 weeks post-implantation with Mg-Sr alloy porous device, the segmental defects were effectively repaired with respect to both integrity and continuity. In addition, compared with the Ca-P coated implant, the Sr-P coated implant was more proficient at promoting bone formation and mineralization. In summary, the Sr-P coated implants have bioactive properties and exceptional durability, and promote bone healing that is close to the natural rate, implying their potential application for the regeneration of segmental defects.

19.
Front Immunol ; 12: 728853, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35140701

RESUMO

Immunoglobulin M (IgM) autoantibodies, as the early appearing antibodies in humoral immunity when stimulated by antigens, might be excellent biomarkers for the early detection of lung cancer (LC). We aimed to develop a multi-analyte integrative model combining IgM autoantibodies and a traditional tumor biomarker that could be a valuable and powerful auxiliary diagnostic tool and might improve the accuracy of early detection of lung adenocarcinoma (LUAD). A customized protein array based on cancer driver genes was constructed and applied in the discovery cohort consisting of 68 LUAD patients and 68 normal controls (NCs); 31 differentially expressed IgM autoantibodies were identified. The top 5 candidate IgM autoantibodies [based on the area under the receiver operating characteristic curve (AUC) ranking], namely, TSHR, ERBB2, survivin, PIK3CA, and JAK2, were validated in the validation cohort using enzyme-linked immunosorbent assay (ELISA), which included 147 LUAD samples, 72 lung squamous cell carcinoma (LUSC) samples, 44 small cell lung carcinoma (SCLC) samples, and 147 NCs. These indicators presented diagnostic capacity for LUAD, with AUCs of 0.599, 0.613, 0.579, 0.601, and 0.633, respectively (p < 0.05). However, none of them showed a significant difference between the SCLC and NC groups, and only the IgM autoantibody against JAK2 showed a higher expression in LUSC than in NC (p = 0.046). Through logistic regression analysis, with the five IgM autoantibodies and carcinoembryonic antigen (CEA), one diagnostic model was constructed for LUAD. The model yielded an AUC of 0.827 (sensitivity = 56.63%, specificity = 93.98%). The diagnostic efficiency was superior to that of either CEA (AUC = 0.692) or IgM autoantibodies alone (AUC = 0.698). Notably, the accuracy of this model in early-stage LUAD reached 83.02%. In conclusion, we discovered and identified five novel IgM indicators and developed a multi-analyte model combining IgM autoantibodies and CEA, which could be a valuable and powerful auxiliary diagnostic tool and might improve the accuracy of early detection of LUAD.


Assuntos
Adenocarcinoma de Pulmão/imunologia , Autoanticorpos/imunologia , Antígeno Carcinoembrionário/imunologia , Imunoglobulina M/imunologia , Neoplasias Pulmonares/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos de Neoplasias/imunologia , Biomarcadores Tumorais/imunologia , Carcinoma de Células Escamosas/imunologia , Detecção Precoce de Câncer/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Oncogenes/imunologia , Curva ROC
20.
Front Genet ; 11: 593273, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33193737

RESUMO

Karyopherin α2 (KPNA2) was reported to be overexpressed and have unfavorable prognostic effects in many malignancies including hepatocellular carcinoma (HCC). Although its contributions to inflammatory response were reported in many studies, its specific associations with immune infiltrations and immune pathways during cancer progression were unclear. Here, we aimed to identify new markers for HCC diagnosis and prognosis through KPNA2-associated immune analyses. RNA-seq expression data of HCC datasets were downloaded from The Cancer Genome Atlas and International Cancer Genome Consortium. The gene expressions were counts per million normalized. The infiltrations of 24 kinds of immune cells in the samples were evaluated with ImmuCellAI (Immune Cell Abundance Identifier). The Spearman correlations of the immune infiltrations with KPNA2 expression were investigated, and the specific positive correlation of B-cell infiltration with KPNA2 expression in HCC tumors was identified. Fifteen genes in KEGG (Kyoto Encyclopedia of Genes and Genomes) B-cell receptor signaling pathway presented significant correlations with KPNA2 expression in HCC. Among them, GRB2 and NRAS were indicated to be independent unfavorable prognostic factors for HCC overall survival. Clinical Proteomic Tumor Analysis Consortium HCC dataset was investigated to validate the results at protein level. The upregulation and unfavorable prognostic effects of KPNA2 and GRB2 were confirmed, whereas, unlike its mRNA form, NRAS protein was presented to be downregulated and have favorable prognostic effects. Through receiver operating characteristic curve analysis, the diagnostic potential of the three proteins was shown. The RNA-binding proteins (RBPs) of KPNA2, NRAS, and GRB2, downloaded via The Encyclopedia of RNA Interactomes, were investigated for their clinical significance in HCC at protein level. An eight-RBP signature with independent prognostic value and dysregulations in HCC was identified. All the RBPs were significantly correlated with MKI67 expression and at least one of KPNA2, GRB2, and NRAS at protein level in HCC, indicating their roles in HCC progression and the regulation of the three proteins. We concluded that KPNA2, GRB2, NRAS, and their RBPs might have coordinating roles in HCC immunoregulation and progression. They might be new markers for HCC diagnosis and prognosis predication and new targets for HCC immunotherapy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA