Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Atherosclerosis ; 385: 117342, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37879153

RESUMO

BACKGROUND AND AIMS: Vascular calcification (VC) is regarded as an independent risk factor for cardiovascular events in type 2 diabetic patients. Glucose transporter 1 (GLUT1) involves VC. Intermedin/Adrenomedullin-2 (IMD/ADM2) is a cardiovascular protective peptide that can inhibit multiple disease-associated VC. However, the role and mechanism of IMD in diabetic VC remain unclear. Here, we investigated whether IMD inhibits diabetic VC by inhibiting GLUT1. METHODS AND RESULTS: It was found that plasma IMD concentration was significantly decreased in type 2 diabetic patients and in fructose-induced diabetic rats compared with that in controls. Plasma IMD content was inversely correlated with fasting blood glucose level and VC severity. IMD alleviated VC in fructose-induced diabetic rats. Deficiency of Adm2 aggravated and Adm2 overexpression attenuated VC in high-fat diet-induced diabetic mice. In vitro, IMD mitigated high glucose-induced calcification of vascular smooth muscle cells (VSMCs). Mechanistically, IMD reduced advanced glycation end products (AGEs) content and the level of receptor for AGEs (RAGE). IMD decreased glucose transporter 1 (GLUT1) levels. The inhibitory effect of IMD on RAGE protein level was blocked by GLUT1 knockdown. GLUT1 knockdown abolished the effect of IMD on alleviating VSMC calcification. IMD receptor antagonist IMD17-47 and cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) inhibitor H89 abolished the inhibitory effects of IMD on GLUT1 and VSMC calcification. CONCLUSIONS: These findings revealed that IMD exerted its anti-calcification effect by inhibiting GLUT1, providing a novel therapeutic target for diabetic VC.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hormônios Peptídicos , Calcificação Vascular , Animais , Humanos , Camundongos , Ratos , Adrenomedulina/metabolismo , AMP Cíclico/metabolismo , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Tipo 2/metabolismo , Frutose/efeitos adversos , Frutose/metabolismo , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Miócitos de Músculo Liso/metabolismo , Hormônios Peptídicos/farmacologia , Transdução de Sinais , Calcificação Vascular/metabolismo
2.
Int Heart J ; 62(4): 752-755, 2021 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-34276017

RESUMO

This study aimed to evaluate the concentration of plasma elabela (ELA) in patients with coronary heart disease (CHD) and its correlation with the disease classification.We enrolled 238 patients diagnosed by coronary angiography as CHD and 86 controls. The CHD group was divided into three subgroups: stable angina (SA), unstable angina (UAP), and acute myocardial infarction (AMI). The plasma levels of ELA were measured in all participants and compared among different groups. The relationship between ELA and CHD classification was analyzed.ELA levels were markedly higher by 10.71% in patients with CHD than in controls (P < 0.05). The concentration of ELA in UAP and AMI subgroups were higher than in controls and SA subgroup. The former difference was significant (P < 0.05), but the latter was not. In addition, the ELA concentration was not correlated with SYNTAX score, left ventricular ejection fraction, and other biochemical variables.The newfound hormone, ELA, significantly increased in patients with UAP and AMI. There is a tendency that ELA levels might be correlated with CHD classification, but not with lesion severity. ELA may play a role in acute coronary syndrome.


Assuntos
Isquemia Miocárdica/sangue , Hormônios Peptídicos/sangue , Idoso , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Isquemia Miocárdica/classificação
3.
Cell Death Dis ; 12(5): 436, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33934111

RESUMO

Atherosclerotic plaque vulnerability and rupture increase the risk of acute coronary syndromes. Advanced lesion macrophage apoptosis plays important role in the rupture of atherosclerotic plaque, and endoplasmic reticulum stress (ERS) has been proved to be a key mechanism of macrophage apoptosis. Intermedin (IMD) is a regulator of ERS. Here, we investigated whether IMD enhances atherosclerotic plaque stability by inhibiting ERS-CHOP-mediated apoptosis and subsequent inflammasome in macrophages. We studied the effects of IMD on features of plaque vulnerability in hyperlipemia apolipoprotein E-deficient (ApoE-/-) mice. Six-week IMD1-53 infusion significantly reduced atherosclerotic lesion size. Of note, IMD1-53 lowered lesion macrophage content and necrotic core size and increased fibrous cap thickness and vascular smooth muscle cells (VSMCs) content thus reducing overall plaque vulnerability. Immunohistochemical analysis indicated that IMD1-53 administration prevented ERS activation in aortic lesions of ApoE-/- mice, which was further confirmed in oxidized low-density lipoproteins (ox-LDL) induced macrophages. Similar to IMD, taurine (Tau), a non-selective ERS inhibitor significantly reduced atherosclerotic lesion size and plaque vulnerability. Moreover, C/EBP-homologous protein (CHOP), a pro-apoptosis transcription factor involved in ERS, was significantly increased in advanced lesion macrophages, and deficiency of CHOP stabilized atherosclerotic plaques in AopE-/- mice. IMD1-53 decreased CHOP level and apoptosis in vivo and in macrophages treated with ox-LDL. In addition, IMD1-53 infusion ameliorated NLRP3 inflammasome and subsequent proinflammatory cytokines in vivo and in vitro. IMD may attenuate the progression of atherosclerotic lesions and plaque vulnerability by inhibiting ERS-CHOP-mediated macrophage apoptosis, and subsequent NLRP3 triggered inflammation. The inhibitory effect of IMD on ERS-induced macrophages apoptosis was probably mediated by blocking CHOP activation.


Assuntos
Inflamassomos/metabolismo , Macrófagos/metabolismo , Neuropeptídeos/farmacologia , Fragmentos de Peptídeos/farmacologia , Placa Aterosclerótica/metabolismo , Animais , Apoptose/fisiologia , Humanos , Camundongos , Placa Aterosclerótica/patologia
4.
Aging (Albany NY) ; 13(4): 5164-5184, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535178

RESUMO

The Notch1-mediated inflammatory response participates in the development of abdominal aortic aneurysm (AAA). The vascular endogenous bioactive peptide intermedin (IMD) plays an important role in maintaining vascular homeostasis. However, whether IMD inhibits AAA by inhibiting Notch1-mediated inflammation is unclear. In this study, we found Notch intracellular domain (NICD) and hes1 expression were higher in AAA patients' aortas than in healthy controls. In angiotensin II (AngII)-induced AAA mouse model, IMD treatment significantly reduced AAA incidence and maximal aortic diameter. IMD inhibited AngII-enlarged aortas and -degraded elastic lamina, reduced NICD, hes1 and inflammatory factors expression, decreased infiltration of CD68 positive macrophages and the NOD-like receptor family pyrin domain containing 3 protein level. IMD inhibited lipopolysaccharide-induced macrophage migration in vitro and regulated macrophage polarization. Moreover, IMD overexpression significantly reduced CaCl2-induced AAA incidence and down-regulated NICD and hes1 expression. However, IMD deficiency showed opposite results. Mechanically, IMD treatment significantly decreased cleavage enzyme-a disintegrin and metalloproteinase domain-containing protein 10 (ADAM10) level. Pre-incubation with IMD17-47 (IMD receptors blocking peptide) and the phosphatidylinositol 3-kinase/protein kinase b (PI3K/Akt) inhibitor LY294002 reversed ADAM10 level. In conclusion, exogenous and endogenous IMD could inhibit the development of AAA by inhibiting Notch1 signaling-mediated inflammation via reducing ADAM10 through IMD receptor and PI3K/Akt pathway.


Assuntos
Aneurisma da Aorta Abdominal/genética , Inflamação/genética , Neuropeptídeos/genética , Receptor Notch1/metabolismo , Proteína ADAM10/genética , Proteína ADAM10/metabolismo , Angiotensina II/toxicidade , Animais , Aneurisma da Aorta Abdominal/metabolismo , Aneurisma da Aorta Abdominal/patologia , Cloreto de Cálcio/toxicidade , Movimento Celular , Cromonas/farmacologia , Modelos Animais de Doenças , Humanos , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Morfolinas/farmacologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Hormônios Peptídicos/farmacologia , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fatores de Transcrição HES-1/genética , Fatores de Transcrição HES-1/metabolismo
5.
Infect Immun ; 89(3)2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33257536

RESUMO

Schistosomiasis is a parasitic helminth disease that can cause organ lesions leading to health damage. During a schistosome infection, schistosome eggs can flow into the liver along the portal vein. Numerous inflammatory cells gather around the eggs, causing granulomas and fibrosis in the liver. In this process, many molecules are involved in the initiation and regulation of the fibrous scar formation. However, the precise molecular mechanisms responsible for the progression of granuloma formation and fibrosis initiation caused by schistosome infection have not been extensively studied. In this study, C57BL/6 wild-type mice and Stat3flox/flox Alb-Cre mice were infected with cercariae of Schistosoma japonicum Liver injury, effector molecule levels, and RNA transcriptome resequencing of liver tissue were detected at 4, 5, and 6 weeks postinfection. We investigated the role of STAT3 (signal transducer and activator of transcription 3) in Schistosoma-induced liver injury in mice. After 6 weeks postinfection, there was obvious liver fibrosis. A sustained pathological process (inflammation, oxidative stress, proliferation, and apoptosis) occurred in S. japonicum-induced liver fibrosis initiation. Meanwhile, we observed activation of the STAT3 pathway in hepatic injury during S. japonicum infection by RNA transcriptome resequencing. Liver deficiency of phospho-STAT3 alleviated infection-induced liver dysfunction, hepatic granuloma formation, and fibrosis initiation. It also promoted STAT3-dependent apoptosis and reduced liver inflammation, oxidative stress, and proliferation. Our results suggest that STAT3 signal pathway and its mediating inflammation, oxidative stress, proliferation, and apoptosis are involved in S. japonicum-induced liver injury and may be a new potential guideline for the treatment of schistosomiasis.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Inflamação/genética , Cirrose Hepática/genética , Estresse Oxidativo/genética , Fator de Transcrição STAT3/genética , Esquistossomose Japônica/genética , Animais , Inflamação/parasitologia , Cirrose Hepática/parasitologia , Schistosoma japonicum/genética , Esquistossomose Japônica/patologia
6.
Pharmacol Res ; 159: 104926, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32502636

RESUMO

Cardiac remodeling is accompanied by cardiac hypertrophy, fibrosis, dysfunction, and eventually leading to heart failure. Intermedin (IMD), as a paracrine/autocrine peptide, has a protective effect in cardiovascular diseases. In this study, we elucidated the role and the underlying mechanism of IMD in pathological remodeling. Pathological remodeling mouse models were induced by abdominal aorta constriction for 4 weeks or angiotensin II (Ang II) infusion for 2 weeks in wildtype, IMD-overexpression, IMD-knockout and klotho-knockdown mice. Western blot, real-time PCR, histological staining, echocardiography and hemodynamics were used to detect the role of IMD in cardiac remodeling. Cardiac hypertrophy, fibrosis and dysfunction were significantly aggravated in IMD-knockout mice versus wildtype mice, and the expression of klotho was downregulated. Conversely, cardiac remodeling was alleviated in IMD-overexpression mice, and the expression of klotho was upregulated. Hypertension induced by Ang II infusion rather than abdominal aorta constriction was mitigated by IMD. However, the cardioprotective effect of IMD was blocked in klotho-knockdown mice. Similar results were found in cultured neonatal rat cardiomyocytes, which was pretreated with IMD before Ang II stimulation. Mechanistically, IMD inhibited the phosphorylation of Ca2+/calmodulin-dependent protein kinase II (CaMKII) and the activity of calcineurin to protect against cardiac hypertrophy through upregulating klotho in vivo and in vitro. Furthermore, peroxisome proliferator-activated receptor γ (PPARγ) might mediate IMD upregulating klotho. In conclusion, pathological remodeling may be alleviated by endogenous IMD, which inhibits the expression of calcineurin and p-CaMKII by upregulating klotho via the PPARγ pathway. It suggested that IMD might be a therapeutic target for heart disease.


Assuntos
Glucuronidase/metabolismo , Hipertrofia Ventricular Esquerda/prevenção & controle , Miócitos Cardíacos/metabolismo , Neuropeptídeos/metabolismo , Disfunção Ventricular Esquerda/prevenção & controle , Função Ventricular Esquerda , Remodelação Ventricular , Angiotensina II , Animais , Aorta Abdominal/fisiopatologia , Aorta Abdominal/cirurgia , Calcineurina/metabolismo , Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Células Cultivadas , Constrição , Modelos Animais de Doenças , Fibrose , Glucuronidase/genética , Hipertrofia Ventricular Esquerda/metabolismo , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Proteínas Klotho , Camundongos Endogâmicos C57BL , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Neuropeptídeos/genética , PPAR gama/metabolismo , Hormônios Peptídicos/farmacologia , Fosforilação , Ratos Sprague-Dawley , Transdução de Sinais , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
7.
Aging (Albany NY) ; 12(7): 5651-5674, 2020 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-32229709

RESUMO

Vascular calcification is a common phenomenon in older adults. Intermedin (IMD) is a cardiovascular bioactive peptide inhibiting vascular calcification. In this study, we aimed to investigate whether IMD1-53 attenuates aging-associated vascular calcification. Vascular calcification was induced by vitamin D3 plus nicotine (VDN) in young and old rats. The calcification in aortas was more severe in old rats treated with VDN than young control rats, and IMD expression was lower. Exogenous administration of IMD1-53 significantly inhibited the calcium deposition in aortas and the osteogenic transdifferentiation of vascular smooth muscle cells (VSMCs) in VDN-treated old rats. Moreover, levels of aging-related p16, p21 and ß-galactosidase were all greatly decreased by IMD1-53. These results were further confirmed in rat and human VSMCs in vitro. In addition, IMD-deficient mouse VSMCs showed senescence features coinciding with osteogenic transition as compared with wild-type mouse VSMCs. Mechanistically, IMD1-53 significantly increased the expression of the anti-aging factor sirtuin 1 (sirt1); the inhibitory effects of IMD1-53 on calcification and senescence were blocked by sirt1 knockdown. Furthermore, preincubation with inhibitors of PI3K, AMPK or PKA efficiently blunted the upregulatory effect of IMD1-53 on sirt1. Consequently, IMD1-53 could attenuate aging-associated vascular calcification by upregulating sirt1 via activating PI3K/Akt, AMPK and cAMP/PKA signaling.


Assuntos
Envelhecimento/metabolismo , Aorta/efeitos dos fármacos , Hormônios Peptídicos/uso terapêutico , Sirtuína 1/metabolismo , Regulação para Cima/efeitos dos fármacos , Calcificação Vascular/tratamento farmacológico , Envelhecimento/patologia , Animais , Aorta/metabolismo , Aorta/patologia , Transdiferenciação Celular/efeitos dos fármacos , Colecalciferol , Modelos Animais de Doenças , Masculino , Camundongos , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Nicotina , Osteogênese/efeitos dos fármacos , Hormônios Peptídicos/farmacologia , Ratos , Ratos Sprague-Dawley , Sirtuína 1/genética , Calcificação Vascular/induzido quimicamente , Calcificação Vascular/metabolismo , Calcificação Vascular/patologia
8.
Infect Immun ; 87(12)2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31570558

RESUMO

Schistosomiasis is a parasitic helminth disease that can cause severe inflammatory pathology, leading to organ damage, in humans. During a schistosomal infection, the eggs are trapped in the host liver, and products derived from eggs induce a polarized Th2 cell response, resulting in granuloma formation and eventually fibrosis. Previous studies indicated that the nucleotide-binding oligomerization domain-, leucine-rich repeat-, and pyrin domain-containing protein 3 (NLRP3) inflammasome is involved in schistosomiasis-associated liver fibrosis and that taurine could ameliorate hepatic granulomas and fibrosis caused by Schistosoma japonicum infection. Nevertheless, the precise role and molecular mechanism of the NLRP3 inflammasome and the protective effects of taurine in S. japonicum infection have not been extensively studied. In this study, we investigated the role of the NLRP3 inflammasome and the hepatoprotective mechanism of taurine in schistosoma-induced liver injury in mice. NLRP3 deficiency ameliorated S. japonicum-infection-induced hepatosplenomegaly, liver dysfunction, and hepatic granulomas and fibrosis; it also reduced NLRP3-dependent liver pyroptosis. Furthermore, taurine suppressed hepatic thioredoxin-interacting protein (TXNIP)/NLRP3 inflammasome activation in mice with S. japonicum infections, thereby inhibiting the activation of downstream inflammatory mediators such as interleukin-1ß and subsequent pyroptosis. Our results suggest that the TXNIP/NLRP3 inflammasome pathway and mediating pyroptosis are involved in S. japonicum-induced liver injury and may be a potential therapeutic target for schistosomiasis treatment. In addition, taurine may be useful to alleviate or to prevent the occurrence of schistosomiasis-associated liver fibrosis.


Assuntos
Proteínas de Transporte/antagonistas & inibidores , Inflamassomos/antagonistas & inibidores , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Schistosoma japonicum/imunologia , Esquistossomose Japônica/imunologia , Taurina/farmacologia , Tiorredoxinas/antagonistas & inibidores , Animais , Modelos Animais de Doenças , Fígado/lesões , Fígado/parasitologia , Cirrose Hepática/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Piroptose/imunologia , Esquistossomose Japônica/parasitologia , Transdução de Sinais/imunologia
9.
Yao Xue Xue Bao ; 47(4): 452-8, 2012 Apr.
Artigo em Chinês | MEDLINE | ID: mdl-22799026

RESUMO

This study is to investigate the anti-tumor effect in vitro of methotrexate modified by LH-RH peptide (LH-RH-MTX). LH-RH receptors highly expressing MCF-7 human breast carcinoma cell line and lowly expressing K562 human erythroleukemia cell line were served as the tested cells. The cell proliferation inhibition rates of LH-RH-MTX were detected by MTT colorimetric assay. The effects of LH-RH-MTX on the cell cycle and apoptosis rates were detected by flow cytometry. The inhibition rate of LH-RH-MTX on MCF-7 cells was much higher than that on K562 cells, and the inhibition rate of LH-RH-MTX on MCF-7 cells was much higher than that of free MTX at the same concentration. The inhibition rate of LH-RH-MTX on rat bone marrow mononuclear cells was less than that of free MTX. The number of MCF-7 cells in S phase increased after administration of LH-RH-MTX. The apoptosis rate of LH-RH-MTX group significantly increased compared with that of the control group and MTX group. The relative expression of LHRHR mRNA of LH-RH-MTX group markedly decreased compared with that of the control group and MTX group. LH-RH-MTX is realizable to reduce drug side effects, increase the therapeutic index and achieve tumor-targeted therapy.


Assuntos
Antimetabólitos Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Sistemas de Liberação de Medicamentos , Metotrexato/farmacologia , Receptores LHRH/biossíntese , Animais , Antimetabólitos Antineoplásicos/síntese química , Apoptose/efeitos dos fármacos , Células da Medula Óssea/citologia , Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Hormônio Liberador de Gonadotropina/química , Hormônio Liberador de Gonadotropina/farmacologia , Humanos , Células K562 , Leucócitos Mononucleares , Células MCF-7 , Metotrexato/síntese química , RNA Mensageiro/metabolismo , Ratos , Receptores LHRH/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA