Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Plant J ; 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38972042

RESUMO

Nucleotide-binding leucine-rich repeat (NLR) proteins are crucial intracellular immune receptors in plants, responsible for detecting invading pathogens and initiating defense responses. While previous studies on the evolution and function of NLR genes were mainly limited to land plants, the evolutionary trajectory and immune-activating character of NLR genes in algae remain less explored. In this study, genome-wide NLR gene analysis was conducted on 44 chlorophyte species across seven classes and seven charophyte species across five classes. A few but variable number of NLR genes, ranging from one to 20, were identified in five chlorophytes and three charophytes, whereas no NLR gene was identified from the remaining algal genomes. Compared with land plants, algal genomes possess fewer or usually no NLR genes, implying that the expansion of NLR genes in land plants can be attributed to their adaptation to the more complex terrestrial pathogen environments. Through phylogenetic analysis, domain composition analysis, and conserved motifs profiling of the NBS domain, we detected shared and lineage-specific features between NLR genes in algae and land plants, supporting the common origin and continuous evolution of green plant NLR genes. Immune-activation assays revealed that both TNL and RNL proteins from green algae can elicit hypersensitive responses in Nicotiana benthamiana, indicating the molecular basis for immune activation has emerged in the early evolutionary stage of different types of NLR proteins. In summary, the results from this study suggest that NLR proteins may have taken a role as intracellular immune receptors in the common ancestor of green plants.

2.
Int J Mol Sci ; 25(4)2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38396734

RESUMO

Dioscorea alata L. (Dioscoreaceae) is a widely cultivated tuber crop with variations in tuber color, offering potential value as health-promoting foods. This study focused on the comparison of D. alata tubers possessing two distinct colors, white and purple, to explore the underlying mechanisms of color variation. Flavonoids, a group of polyphenols known to influence plant color and exhibit antioxidant properties, were of particular interest. The total phenol and total flavonoid analyses revealed that purple tubers (PTs) have a significantly higher content of these metabolites than white tubers (WTs) and a higher antioxidant activity than WTs, suggesting potential health benefits of PT D. alata. The transcriptome analysis identified 108 differentially expressed genes associated with the flavonoid synthesis pathway, with 57 genes up-regulated in PTs, including CHS, CHI, DFR, FLS, F3H, F3'5'H, LAR, ANS, and ANR. The metabolomics analysis demonstrated that 424 metabolites, including 104 flavonoids and 8 tannins, accumulated differentially in PTs and WTs. Notably, five of the top ten up-regulated metabolites were flavonoids, including 6-hydroxykaempferol-7-O-glucoside, pinocembrin-7-O-(6″-O-malonyl)glucoside, 6-hydroxykaempferol-3,7,6-O-triglycoside, 6-hydroxykaempferol-7-O-triglycoside, and cyanidin-3-O-(6″-O-feruloyl)sophoroside-5-O-glucoside, with the latter being a precursor to anthocyanin synthesis. Integrating transcriptome and metabolomics data revealed that the 57 genes regulated 20 metabolites within the flavonoid synthesis pathway, potentially influencing the tubers' color variation. The high polyphenol content and antioxidant activity of PTs indicate their suitability as nutritious and health-promoting food sources. Taken together, the findings of this study provide insights into the molecular basis of tuber color variation in D. alata and underscore the potential applications of purple tubers in the food industry and human health promotion. The findings contribute to the understanding of flavonoid biosynthesis and pigment accumulation in D. alata tubers, opening avenues for future research on enhancing the nutritional quality of D. alata cultivars.


Assuntos
Dioscorea , Transcriptoma , Humanos , Dioscorea/genética , Dioscorea/metabolismo , Antioxidantes , Antocianinas/metabolismo , Flavonoides , Perfilação da Expressão Gênica , Metabolômica , Glucosídeos , Cor , Regulação da Expressão Gênica de Plantas
3.
Fish Shellfish Immunol ; 145: 109350, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38168633

RESUMO

The transforming growth factor beta regulator 1 (TBRG1) is a growth inhibitory protein that acts as a tumor suppressor in human cancers, gaining its name for the transcriptional regulation by TGF-ß. While extensive research has been conducted on the tumor-related function of TBRG1 in mammals, its significance in invertebrates remains largely unexplored. In this study, a homolog of TBRG1 was first structurally and functionally analyzed in the red swamp crayfish Procambarus clarkii. The full-length cDNA sequence was 2143 base pairs (bp) with a 1305 bp open reading frame (ORF) encoding a deduced protein of 434 amino acids (aa). The changes of PcTBRG1 transcripts upon immune challenges indicated its involvement in innate immunity. After knocking down PcTBRG1, the decline of bacteria clearance capacity revealed the participation of PcTBRG1 in the immune response. Furthermore, the downregulation of AMPs' expression after the cotreatment of RNAi and bacteria challenge suggested that PcTBRG1 might participate in innate immunity through regulating AMPs' expression. These results provided initial insight into the immune-related function of TBRG1 in invertebrates.


Assuntos
Astacoidea , Regulação da Expressão Gênica , Humanos , Animais , Sequência de Aminoácidos , Imunidade Inata/genética , Interferência de RNA , Proteínas de Artrópodes/genética , Mamíferos , Proteínas Nucleares/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética
4.
J Agric Food Chem ; 71(50): 20062-20072, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38078849

RESUMO

Reactive oxygen species (ROS) are crucial for signal transduction and the maintenance of cellular homeostasis. However, superfluous ROS may engender chronic pathologies. Feather keratin is a promising new source of antioxidant peptides that can eliminate excess ROS and potentially treat oxidative stress-related diseases, but the underlying mechanisms have remained elusive. This study investigated the antioxidant effects and mechanisms against H2O2-induced oxidative damage in HepG2 cells of the two latest discovered antioxidant peptides, CRPCGPTP (CP-8) and ANSCNEPCVR (AR-10), first decrypted from feather keratin. The results revealed that CP-8 and AR-10 did not exhibit cytotoxicity to HepG2 cells while reducing intracellular ROS accumulation. Simultaneously, they enhanced the activities of catalase (CAT), superoxide dismutase (SOD), and glutathione peroxidase (GSH-Px), thus alleviating H2O2-induced cell apoptosis. Molecular docking analysis demonstrated that CP-8, AR-10 interacted well with the key amino acids in the Kelch domain of Keap1, thereby directly disrupting the Keap1-Nrf2 interaction. The peptides' biosafety and antioxidant activity via Keap1/Nrf2 signaling lay the groundwork for further animal studies and applications as functional food additives.


Assuntos
Antioxidantes , Fator 2 Relacionado a NF-E2 , Animais , Humanos , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Proteína 1 Associada a ECH Semelhante a Kelch/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Queratinas , Plumas , Células Hep G2 , Simulação de Acoplamento Molecular , Estresse Oxidativo
5.
J Hazard Mater ; 458: 131896, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37364439

RESUMO

Pesticides are important for agricultural development; however, animals involved in rice-fish farming absorb the pesticides used during the farming process. Thiamethoxam (TMX) is extensively used in agriculture and is gradually occupying the market for traditional pesticides. Therefore, this study aimed to investigate whether selenomethionine (SeMet) could affect the survival rate, bioaccumulation of TMX, serum biochemical parameters, lipid peroxidation, antioxidants in the hepatopancreas, and expression of stress genes after exposure of red swamp crayfish to 10 ppt TMX for 7 days. The results showed that the survival rate significantly increased and the bioaccumulation of TMX significantly decreased with SeMet administration (P < 0.05). Furthermore, severe histological damage to the hepatopancreas of red crayfish was observed after exposure to TMX; however, this damage was alleviated after SeMet administration. SeMet also significantly reduced the TMX-induced changes in serum biochemical parameters, malondialdehyde content, and antioxidant enzyme activity in crayfish hepatopancreas (P < 0.05). Notably, analysis of the expression of 10 stress response genes showed that 0.5 mg/kg SeMet might decrease cell damage in the hepatopancreas. Consequently, our findings suggest that higher levels of TMX in crayfish may cause hepatopancreatic cell toxicity, which can be harmful to human health; however, SeMet could mitigate these effects, providing an understanding of pesticide compounds and food safety.


Assuntos
Praguicidas , Selênio , Humanos , Animais , Antioxidantes/metabolismo , Selênio/metabolismo , Astacoidea , Tiametoxam/metabolismo , Estresse Oxidativo , Bioacumulação , Selenometionina , Praguicidas/metabolismo
6.
J Agric Food Chem ; 71(21): 8061-8070, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37161263

RESUMO

Feather keratin is an underappreciated protein resource of high quality, with limited bioavailability, and it urgently requires eco-friendly methods to enhance its value. Here, we report on the preparation, purification, and identification of novel peptides with antioxidant and xanthine oxidase (XOD) inhibitory activities from fermented feather broth, using Bacillus licheniformis 8-4. Two peptides, namely, DLCRPCGPTPLA (DA-12) and ANSCNEPCVR (AR-10), displayed remarkable 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) radical scavenging abilities with half-maximal inhibitory concentrations (IC50) values of 0.048, 0.034, and 0.95, 0.84 mg/mL, respectively. These values exceed those of the previously reported feather keratin-derived antioxidant peptides. Another peptide, GNQQVHLQSQDM (GM-12), demonstrated XOD activity inhibition, with an IC50 value of 12.15 mg/mL, and it quenched the fluorescence of XOD. Furthermore, after simulating gastrointestinal digestion, DA-12, AR-10, and GM-12 retained their biological activities. Meanwhile, DA-12 and GM-12 showed an unexpected synergistic inhibition on XOD activity accompanied by fluorescence quenching. This study provides new insights into the potential applications of feather keratin, including functionalized feed with antioxidative and antigout (anti-hyperuricemia) activities.


Assuntos
Antioxidantes , Xantina Oxidase , Animais , Antioxidantes/farmacologia , Xantina Oxidase/metabolismo , Plumas , Queratinas , Peptídeos/farmacologia
7.
Mol Biotechnol ; 65(10): 1644-1652, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36737554

RESUMO

Glutathione peroxidase (GPx) is an important antioxidant enzyme. Selenocysteine (Sec)-containing GPxs (Sec-GPxs) are usually superior to their conventional cysteine-containing counterparts (Cys-GPxs), which make up the majority of the natural GPxs but display unsuitable activity and stability for industrial applications. This study first heterologously expressed and characterized a Cys-GPx from Lactococcus lactis (LlGPx), systematically exchanged all the three Cys to Sec and introduced an extra Sec. The results showed that the insertion of Sec at the active site could effectively increase the enzyme activity and confer a lower optimal pH value on the mutants. The double mutant C36U/L157U increased by 2.65 times (5.12 U/mg). The thermal stability of the C81U mutant was significantly improved. These results suggest that site-directed Sec incorporation can effectively improve the enzymatic properties of LlGPx, which may be also used for the protein engineering of other industrial enzymes containing catalytic or other functional cysteine residues.


Assuntos
Biossíntese de Proteínas , Glutationa Peroxidase/genética , Glutationa Peroxidase/metabolismo , Biocatálise , Mutação , Domínio Catalítico , Engenharia de Proteínas
8.
Cancer Sci ; 114(5): 1972-1985, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36692143

RESUMO

The Brother of Regulator of Imprinted Sites (BORIS, gene symbol CTCFL) has previously been shown to promote colorectal cancer cell proliferation, inhibit cancer cell apoptosis, and resist chemotherapy. However, it is unknown whether Boris plays a role in the progression of in situ colorectal cancer. Here Boris knockout (KO) mice were constructed. The function loss of the cloned Boris mutation that was retained in KO mice was verified by testing its activities in colorectal cell lines compared with the Boris wild-type gene. Boris knockout reduced the incidence and severity of azoxymethane/dextran sulfate-sodium (AOM/DSS)-induced colon cancer. The importance of Boris is emphasized in the progression of in situ colorectal cancer. Boris knockout significantly promoted the phosphorylation of γH2AX and the DNA damage in colorectal cancer tissues and suppressed Wnt and MAPK pathways that are responsible for the callback of DNA damage repair. This indicates the strong inhibition of colorectal cancer in Boris KO mice. By considering that the DSS-promoted inflammation contributes to tumorigenesis, Boris KO mice were also studied in DSS-induced colitis. Our data showed that Boris knockout alleviated DSS-induced colitis and that Boris knockdown inhibited the NF-κB signaling pathway in RAW264.7 cells. Therefore Boris knockout eliminates colorectal cancer generation by inhibiting DNA damage repair in cancer cells and relieving inflammation in macrophages. Our findings demonstrate the importance of Boris in the development of in situ colorectal cancer and provide evidence for the feasibility of colorectal cancer therapy on Boris.


Assuntos
Colite , Neoplasias Colorretais , Animais , Masculino , Camundongos , Azoximetano/toxicidade , Colite/induzido quimicamente , Colite/genética , Colite/complicações , Neoplasias Colorretais/induzido quimicamente , Neoplasias Colorretais/genética , Neoplasias Colorretais/tratamento farmacológico , Sulfato de Dextrana/toxicidade , Sulfato de Dextrana/uso terapêutico , Modelos Animais de Doenças , Dano ao DNA/genética , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout
10.
Mol Immunol ; 151: 143-157, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36150275

RESUMO

The epidermal growth factor receptor (EGFR) is a pleiotropic glycoprotein which plays a role in regulating cell proliferation, migration and differentiation. However, the genetic diversity of EGFR in crustaceans as well as its function, such as whether it is involved in immune regulation, remains obscure. In this study, two EGFR genes, including EGFR1 and EGFR2, and three transcripts were identified and characterized in Scylla Paramamosain for the first time. To our knowledge, this is the first time that more than one EGFR gene was identified in a single species. The complete open reading frames (ORFs) of SpEGFR1, SpEGFR2a and SpEGFR2b were 4377 bp, 4404 bp and 4341 bp encoding deduced proteins of 1458 amino acids (aa), 1467 aa and 1446 aa, respectively. All EGFR had a signal peptide region and two Recep_L_domain region, followed by a transmembrane region and a conserved tyrosine kinase domain (TyrKc), and phylogenetic analysis demonstrated three SpEGFRs clustered together with invertebrate EGFR branch. Tissue specific expression analysis depicted that all SpEGFRs presented similar transcription patterns. The expression levels of SpEGFR1 and SpEGFR2s in hepatopancreas and gills were significantly altered after the stimulation of bacterial and viral pathogens including Staphylococcus aureus, Vibrio alginolyticus, White spot syndromre virus and Polycytidylinic acid. The in vivo RNA interference assays demonstrated that expression levels of SpIKK, two members of NF-κB (SpRelish and SpDorsal) and six antimicrobial peptide (AMP) genes (SpCrustin and SpALF1-5) were significantly reduced when SpEGFR1 or SpEGFR2 was silenced, respectively. The transcription patterns of SpIKK, SpRelish, SpDorsal and AMPs exhibited similar down- or up-regulation trend when the primary cultured hemocytes were treated with EGFR antagonist or agonist for 24 h. These results suggested that SpEGFR might play an important role in innate immune responses to bacterial and viral infections by regulating the NF-κB pathway. It also provided a better understanding of the origin or evolution of EGFR in crustaceans and even invertebrates.


Assuntos
Braquiúros , Genes erbB-1 , Animais , Aminoácidos/genética , Proteínas de Artrópodes/metabolismo , Receptores ErbB/genética , Regulação da Expressão Gênica , Imunidade Inata/genética , NF-kappa B/genética , NF-kappa B/metabolismo , Filogenia , Sinais Direcionadores de Proteínas/genética
13.
Int J Biol Macromol ; 196: 13-22, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-34838856

RESUMO

Multidrug-resistant (MDR) Staphylococcus aureus biofilms have emerged as a serious threat to human health. Recently, the development of antibiotic replacement therapy has gained much attention due to the potential application of bacteriocin. The present study sought to evaluate the antibacterial effect of bacteriocin XJS01 against MDR S. aureus, a previously reported bacteriocin against S. aureus strain 2612:1606BL1486 (S. aureus_26, an MDR strain demonstrated here), and its potential application as an antibiofilm agent. The minimum bactericide concentration of XJS01 against MDR S. aureus_26 was 33.18 µg/mL. XJS01 exhibited excellent storage stability and resistance against acid and reduced the density of established MDR S. aureus_26 biofilm. The hemolytic and HEK293T cytotoxicity activities of XJS01 and the histological analyses in mice confirmed its safety. Moreover, XJS01 effectively disrupted the MDR S. aureus_26 biofilm established on the skin wound surface and reduced the biofilm-isolated bacteria, thereby decreasing the release of pro-inflammatory cytokines and the proliferation of alternatively activated macrophages. Compared to mupirocin, XJS01 exhibited an excellent therapeutic effect on mice skin wounds, confirming it to be a potential alternative to antibiotics.


Assuntos
Bacteriocinas/farmacologia , Biofilmes/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Bacteriocinas/química , Citocinas/metabolismo , Modelos Animais de Doenças , Hemólise , Humanos , Concentração de Íons de Hidrogênio , Macrófagos/imunologia , Macrófagos/metabolismo , Macrófagos/patologia , Camundongos , Testes de Sensibilidade Microbiana , Cicatrização
14.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 43(3): 435-444, 2021 Jun 30.
Artigo em Chinês | MEDLINE | ID: mdl-34238421

RESUMO

Circular RNA(circRNA)is a novel type of endogenous non-coding RNA.Most circRNAs act as microRNA(miRNA)sponges to regulate the expression of functional genes.In addition,some circRNAs can be translated and interact with RNA-binding proteins to perform biological functions.The expression of circRNAs is prevalent in tissues and body fluids,and their abnormal expression is related to tumor progression.circRNAs are stable even under the treatment of RNase R because of their circular conformation.As circRNAs have construct stability,wide variety,specific regulation of tumor progression and high expression in body fluids,it is potential for circRNAs to serve as candidate diagnostic,prognostic and therapeutic targets.However,the knowledge about circRNAs remains poor.In addition to the not completely resolved functions and generation mechanisms of circRNAs,the annotations of circRNAs are also waiting for expanding.Here,we review the generation mechanisms,biological functions,and application of circRNAs in tumor research,aiming to provide integrated information for the future research.


Assuntos
MicroRNAs , RNA Circular , Biomarcadores Tumorais/genética , Prognóstico
15.
Kaohsiung J Med Sci ; 37(3): 236-244, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33089927

RESUMO

Preeclampsia (PE) is a major cause of perinatal and maternal mortality and morbidity, which affects 2% to 8% of pregnancies in the world. The aberrant maternal inflammation and angiogenic imbalance have been demonstrated to contribute to the pathogenesis of PE. This research aimed to investigate the effect of Astragaloside IV (AsIV) in the treatment of PE and the underlying mechanisms. A rat PE-like model was established by tail vein injection of lipopolysaccharide (LPS) and different doses of AsIV (40 and 80 mg/kg) were treated at the same time. Systolic blood pressure, total urine protein and urine volume were observed. Serum and placenta inflammatory cytokines were measured by ELISA kit. The mRNA and protein expression of relative genes were analyzed by qRT-PCR and Western blotting. In PE-like rats, there were obvious increases in systolic blood pressure, total urine protein and urine volume, which were obviously alleviated by treatment with AsIV. Serum levels of interleukin (IL)-1ß, tumor necrosis factor alpha (TNF-α), IL-6 and IL-18, as well as IL-4, IL-10, PIGF, VEGF and sFlt-1, were all reversed by treatment with AsIV. Meanwhile, AsIV treatment improved abnormal pregnancy outcomes, such as low litter size and low fetal weight. In addition, AsIV treatment downregulated the mRNA expression of inflammatory gene IL-1ß and IL-6 in PE rats model, and AsIV treatment inhibited the activation of TLR-4, NF-κB, and sFlt-1 in the placenta of PE rats. Our findings indicated the first evidence that AsIV alleviated PE-like signs, and this improvement effect is possibly through inhibition of inflammation response via the TLR4/NF-κB signaling pathway.


Assuntos
Inflamação/patologia , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/patologia , Saponinas/uso terapêutico , Triterpenos/uso terapêutico , Animais , Pressão Sanguínea/efeitos dos fármacos , Citocinas/sangue , Citocinas/genética , Modelos Animais de Doenças , Feminino , Frequência Cardíaca/efeitos dos fármacos , Inflamação/sangue , Inflamação/complicações , Lipopolissacarídeos , NF-kappa B/metabolismo , Fenótipo , Placenta/metabolismo , Fator de Crescimento Placentário/sangue , Pré-Eclâmpsia/sangue , Gravidez , Resultado da Gravidez , Proteinúria/complicações , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos Sprague-Dawley , Saponinas/farmacologia , Receptor 4 Toll-Like/metabolismo , Triterpenos/farmacologia , Urina , Fator A de Crescimento do Endotélio Vascular/sangue , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/sangue
16.
Cell Death Dis ; 10(7): 508, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-31263103

RESUMO

The accumulation of tumour-associated macrophages (TAMs) in the hypoxic tumour microenvironment (TME) is associated with malignant progression in cancer. However, the mechanisms by which the hypoxic TME facilitates TAM infiltration are not fully understood. This study showed that high ZEB1 expression in hypoxic cervical cancer cell islets was positively correlated with CD163+ TAM accumulation. ZEB1 in hypoxic cancer cells promoted the migration of TAMs in vitro and altered the expression of multiple chemokines, especially CCL8. Mechanistically, hypoxia-induced ZEB1 activated the transcription of CCL8, which attracted macrophages via the CCR2-NF-κB pathway. Furthermore, ZEB1 and CCL8 were independent prognostic factors in cervical cancer patients based on The Cancer Genome Atlas (TCGA) data analysis. In conclusion, hypoxia-induced ZEB1 exerts unexpected functions in cancer progression by fostering a prometastatic environment through increased CCL8 secretion and TAM recruitment; thus, ZEB1 may serve as a candidate biomarker of tumour progression and provide a potential target for disrupting hypoxia-mediated TME remodelling.


Assuntos
Quimiocina CCL8/metabolismo , Hipóxia/metabolismo , Macrófagos/metabolismo , Neoplasias do Colo do Útero/metabolismo , Neoplasias do Colo do Útero/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Adulto , Western Blotting , Linhagem Celular Tumoral , Quimiocina CCL8/genética , Progressão da Doença , Ensaio de Imunoadsorção Enzimática , Feminino , Imunofluorescência , Humanos , Imuno-Histoquímica , Pessoa de Meia-Idade , NF-kappa B/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Microambiente Tumoral/genética , Microambiente Tumoral/fisiologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
17.
Angiogenesis ; 22(3): 397-410, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30993566

RESUMO

AIMS: Recently, cancer-derived exosomes were shown to have pro-metastasis function in cancer, but the mechanism remains unclear. Angiogenesis is essential for tumor progression and is a great promising therapeutic target for advanced cervical cancer. Here, we investigated the role of cervical cancer cell-secreted exosomal miR-221-3p in tumor angiogenesis. METHODS AND RESULTS: miR-221-3p was found to be closely correlated with microvascular density in cervical squamous cell carcinoma (CSCC) by evaluating the microvascular density with immunohistochemistry and miR-221-3p expression with in situ hybridization in clinical specimens. Using the groups of CSCC cell lines (SiHa and C33A) with miR-221-3p overexpression and silencing, the CSCC exosomes were characterized by electron microscopy, western blotting, and fluorescence microscopy. The enrichment of miR-221-3p in CSCC exosomes and its transfer into human umbilical vein endothelial cells (HUVECs) were confirmed by qRT-PCR. CSCC exosomal miR-221-3p promoted angiogenesis in vitro in Matrigel tube formation assay, spheroid sprouting assay, migration assay, and wound healing assay. Then, exosome intratumoral injection indicated that CSCC exosomal miR-221-3p promoted tumor growth in vivo. Thrombospondin-2 (THBS2) was bioinformatically predicted to be a direct target of miR-221-3p, and this was verified by using the in vitro and in vivo experiments described above. Additionally, overexpression of THBS2 in HUVECs rescued the angiogenic function of miR-221-3p. CONCLUSIONS: Our results suggest that CSCC exosomes transport miR-221-3p from cancer cells to vessel endothelial cells and promote angiogenesis by downregulating THBS2. Therefore, CSCC-derived exosomal miR-221-3p could be a possible novel diagnostic biomarker and therapeutic target for CSCC progression.


Assuntos
Carcinoma de Células Escamosas/irrigação sanguínea , Carcinoma de Células Escamosas/genética , Exossomos/metabolismo , MicroRNAs/metabolismo , Neovascularização Patológica/genética , Trombospondinas/metabolismo , Neoplasias do Colo do Útero/irrigação sanguínea , Neoplasias do Colo do Útero/genética , Adulto , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Exossomos/ultraestrutura , Feminino , Regulação Neoplásica da Expressão Gênica , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , MicroRNAs/genética , Microvasos/patologia , Pessoa de Meia-Idade , Neovascularização Patológica/patologia , Transporte de RNA
18.
Oncogene ; 38(8): 1256-1268, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30254211

RESUMO

Cancer-secreted exosomal miRNAs are emerging mediators of cancer-stromal cross-talk in the tumor environment. Our previous miRNAs array of cervical squamous cell carcinoma (CSCC) clinical specimens identified upregulation of miR-221-3p. Here, we show that miR-221-3p is closely correlated with peritumoral lymphangiogenesis and lymph node (LN) metastasis in CSCC. More importantly, miR-221-3p is characteristically enriched in and transferred by CSCC-secreted exosomes into human lymphatic endothelial cells (HLECs) to promote HLECs migration and tube formation in vitro, and facilitate lymphangiogenesis and LN metastasis in vivo according to both gain-of-function and loss-of-function experiments. Furthermore, we identify vasohibin-1 (VASH1) as a novel direct target of miR-221-3p through bioinformatic target prediction and luciferase reporter assay. Re-expression and knockdown of VASH1 could respectively rescue and simulate the effects induced by exosomal miR-221-3p. Importantly, the miR-221-3p-VASH1 axis activates the ERK/AKT pathway in HLECs independent of VEGF-C. Finally, circulating exosomal miR-221-3p levels also have biological function in promoting HLECs sprouting in vitro and are closely associated with tumor miR-221-3p expression, lymphatic VASH1 expression, lymphangiogenesis, and LN metastasis in CSCC patients. In conclusion, CSCC-secreted exosomal miR-221-3p transfers into HLECs to promote lymphangiogenesis and lymphatic metastasis via downregulation of VASH1 and may represent a novel diagnostic biomarker and therapeutic target for metastatic CSCC patients in early stages.


Assuntos
Carcinoma de Células Escamosas/genética , Proteínas de Ciclo Celular/genética , MicroRNAs/genética , Neoplasias do Colo do Útero/genética , Animais , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Exossomos/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Linfangiogênese/genética , Metástase Linfática/genética , Camundongos , Neoplasias do Colo do Útero/patologia , Fator C de Crescimento do Endotélio Vascular/genética , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Carcinog ; 58(3): 388-397, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30362630

RESUMO

To explore the mechanisms through which hypoxic tumor microenvironment (TME) modulates the transition of tumor-associated macrophages (TAMs). The migration ability of RAW264.7 macrophages was determined by transwell assay. Flow cytometric, western blot and immunofluorescence analyses of CD206 further validated the M2 polarization of macrophages. Immunofluorescence, western blot and qRT-PCR were performed to detect the expression of neuropilin-1 (Nrp-1) and carbonic anhydrase IX (CAIX). An intermittent hypobaric hypoxia (IH) animal model was established to evaluate the role of hypoxia in activating M2-like TAMs in vivo. We also used immunohistochemistry to analyze the association between CAIX, CD163+ macrophages and Nrp-1 in a series of 72 human cervical cancer specimens. We found that the hypoxic cervical TME educated the recruited macrophages to transform into the M2 phenotype. Nrp-1 expression was significantly increased in hypoxia-primed cervical cancer cells. Blocking Nrp-1 expression prevented hypoxic cells from recruiting and polarizing macrophages towards the M2 phenotype. Hypoxia exposure significantly increased the expression of Nrp-1 as well as the infiltration of macrophages in vivo. Consistently, immunochemical staining in serial tissue sections of cervical cancer revealed upregulated levels of Nrp-1 in CAIX-positive hypoxic regions along with a concurrent significant elevation of M2 macrophages. Nrp-1 and M2-like TAMs were related to the malignant properties of cervical cancer, such as the FIGO stage and lymph node metastasis. Nrp-1 plays critical roles in hypoxic TME-induced activation and pro-tumoral effects of TAMs in cervical cancer. Interfering with Nrp-1 may be a potential therapeutic strategy in treating cervical cancer.


Assuntos
Biomarcadores Tumorais/metabolismo , Hipóxia/fisiopatologia , Macrófagos/patologia , Neuropilina-1/metabolismo , Microambiente Tumoral , Neoplasias do Colo do Útero/patologia , Animais , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/metabolismo , Apoptose , Biomarcadores Tumorais/genética , Anidrase Carbônica IX/genética , Anidrase Carbônica IX/metabolismo , Movimento Celular , Proliferação de Células , Feminino , Humanos , Metástase Linfática , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Neuropilina-1/genética , Prognóstico , Células Tumorais Cultivadas , Neoplasias do Colo do Útero/genética , Neoplasias do Colo do Útero/metabolismo
20.
Mol Med Rep ; 17(5): 6647-6654, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29512790

RESUMO

N-acetyl cysteine (NAC) has been extensively reported to exert neuroprotective effects on the central nervous system. Oxidative stress may contribute to the underlying mechanisms causing Alzheimer's disease (AD). The effect of NAC against oxidative stress injury was investigated in a cellular model of AD in the present study and the underlying mechanisms were revealed. The neuroprotective action of NAC (1, 10, 100 and 1,000 µmol/l) on a cellular model of AD [hydrogen peroxide (H2O2)­induced (3, 30 and 300 µmol/l) toxicity in primary rat hippocampus neurons] demonstrated the underlying mechanisms. Cytotoxicity was measured using the MTT assay, and light microscopy and the dichloro-dihydro-fluorescein diacetate method were used to detect the reactive oxygen species (ROS) levels. Furthermore, the levels of mitogen-activated protein kinases (MAPKs) signal transduction and tau protein phosphorylation were measured via western blotting. NAC (100 µmol/l) protected hippocampus neurons against H2O2­mediated toxicity, as evidenced by enhanced cell viability. Using MTT assay and light microscopy for the observation of cell death, NAC ameliorated cell viability, which was induced by H2O2 injury (P<0.05). NAC was found to mitigate the excessive production of ROS (P<0.05). Another mechanism involved in the neuroprotective action of NAC may be its ability to inhibit MAPK signal transduction following H2O2 exposure. In addition, NAC may protect cells against H2O2­induced toxicity by attenuating increased tau phosphorylation. Thus, the protective ability of NAC is hypothesized to result from inhibition of oxidative stress and downregulation of MAPK signal transduction and tau phosphorylation.


Assuntos
Acetilcisteína/farmacologia , Antioxidantes/farmacologia , Lesões Encefálicas/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Hipocampo/lesões , Peróxido de Hidrogênio/efeitos adversos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Neurônios/enzimologia , Fármacos Neuroprotetores/farmacologia , Animais , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/enzimologia , Lesões Encefálicas/patologia , Hipocampo/enzimologia , Hipocampo/patologia , Peróxido de Hidrogênio/farmacologia , Neurônios/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA