Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 10(11): 1795-1804, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35244123

RESUMO

Blood-contacting catheters occupy a vital position in modern clinical treatment including but not limited to cardiovascular diseases, but catheter-related thrombosis associated with high morbidity and mortality remains a major health concern. Hence, there is an urgent need for functionalized catheter surfaces with superior hemocompatibility that prevent protein adsorption and thrombus formation. In this work, we developed a strategy for constructing a kind of polyphenol-amine coating on the TPU surface (TLA) with tannic acid and lysine via simple dip-coating, inspired by dopamine adhesion. Based on the long-term stability and modifiable properties of TLA coatings, heparin was introduced by an amide reaction to provide anticoagulant activity (TLH). X-ray photoelectron spectroscopy and surface zeta potential measurements fully indicated the successful immobilization of heparin. Water contact angle measurements demonstrated good hydrophilicity and stability for 15 days of TLH coatings. Furthermore, the TLH coatings exhibited significant hemocompatibility and no cytotoxicity. The good antithrombotic properties of the functionalized surfaces were confirmed by an ex vivo blood circulation model. The present work is supposed to find potential clinical applications for preventing surface-induced thrombosis of blood-contacting catheters.


Assuntos
Anticoagulantes , Trombose , Aminas , Anticoagulantes/farmacologia , Catéteres , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Heparina/farmacologia , Humanos , Polifenóis , Trombose/tratamento farmacológico , Trombose/prevenção & controle
2.
ACS Appl Mater Interfaces ; 13(11): 13848-13860, 2021 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-33715344

RESUMO

The anisotropic surface prepared by the top-down etching technology shows unique advantages in terms of functional superhydrophobicity. However, it still has a shackle of the smallest etching size, which largely restricts the development of better superhydrophobicity. Therefore, it is still a huge challenge to realize the stepless size adjustment of an anisotropic surface in order to achieve better functionalization. In this work, a bottom-up approach inspired via the modular segmented preparation technology has been used to successfully build an anisotropic, locally ordered functionalized unique superhydrophobic structure, whose contact and rebound time of water droplets is extremely short. Furthermore, this structure with artfully arranged "tracks", which has a relatively large contact angle value, not only lasts more than 15 consecutive bounce cycles in the same direction, where the droplets after merging still bounce, but also exhibits a significant anisotropic sliding behavior, which is presented in different sliding angles, toward droplets rolling in different directions and has lower adhesion work and better self-cleaning and anti-fouling performance. Besides, some mechanisms such as the reduction-replacement-reduction cycle and repulsion-adhesion-switching have been proposed especially in modular preparation and anisotropic sliding behavior. More importantly, this sorted bottom-up structure has great potential for achieving higher efficiency of functionalized superhydrophobicity and other related applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA