Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
J Exp Clin Cancer Res ; 43(1): 135, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38702792

RESUMO

BACKGROUND: Rhabdomyosarcoma (RMS) is a rare malignancy and the most common soft tissue sarcoma in children. Vasculogenic mimicry (VM) is a novel tumor microcirculation model different from traditional tumor angiogenesis, which does not rely on endothelial cells to provide sufficient blood supply for tumor growth. In recent years, VM has been confirmed to be closely associated with tumor progression. However, the ability of RMS to form VM has not yet been reported. METHODS: Immunohistochemistry, RT-qPCR and western blot were used to test the expression level of SNAI2 and its clinical significance. The biological function in regulating vasculogenic mimicry and malignant progression of SNAI2 was examined both in vitro and in vivo. Mass spectrometry, co-immunohistochemistry, immunofluorescence staining, and ubiquitin assays were performed to explore the regulatory mechanism of SNAI2. RESULTS: Our study indicated that SNAI2 was abnormally expressed in patients with RMS and RMS cell lines and promoted the proliferation and metastasis of RMS. Through cell tubule formation experiments, nude mice Matrigel plug experiments, and immunohistochemistry (IHC), we confirmed that RMS can form VM and that SNAI2 promotes the formation of VM. Due to SNAI2 is a transcription factor that is not easily drugged, we used Co-IP combined with mass spectrometry to screen for the SNAI2-binding protein USP7 and TRIM21. USP7 depletion inhibited RMS VM formation, proliferation and metastasis by promoting SNAI2 degradation. We further demonstrated that TRIM21 is expressed at low levels in human RMS tissues and inhibits VM in RMS cells. TRIM21 promotes SNAI2 protein degradation through ubiquitination in the RMS. The deubiquitinase USP7 and E3 ligase TRIM21 function in an antagonistic rather than competitive mode and play a key role in controlling the stability of SNAI2 to determine the VM formation and progression of RMS. CONCLUSION: Our findings reveal a previously unknown mechanism by which USP7 and TRIM21 balance the level of SNAI2 ubiquitination, determining RMS vasculogenic mimicry, proliferation, and migration. This new mechanism may provide new targeted therapies to inhibit the development of RMS by restoring TRIM21 expression or inhibiting USP7 expression in RMS patients with high SNAI2 protein levels.


Assuntos
Neovascularização Patológica , Rabdomiossarcoma , Ribonucleoproteínas , Fatores de Transcrição da Família Snail , Peptidase 7 Específica de Ubiquitina , Humanos , Fatores de Transcrição da Família Snail/metabolismo , Fatores de Transcrição da Família Snail/genética , Animais , Camundongos , Peptidase 7 Específica de Ubiquitina/metabolismo , Peptidase 7 Específica de Ubiquitina/genética , Rabdomiossarcoma/metabolismo , Rabdomiossarcoma/patologia , Rabdomiossarcoma/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , Feminino , Progressão da Doença , Proliferação de Células , Masculino , Homeostase , Linhagem Celular Tumoral , Camundongos Nus , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
2.
Free Radic Biol Med ; 220: 78-91, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697492

RESUMO

BACKGROUND & AIMS: Our previous study has demonstrated that Telomeric repeat-binding factor 2-interacting protein 1(Terf2ip), played an important role in hepatic ischemia reperfusion injury. This study is aimed to explore the function and mechanism of Terf2ip in non-alcoholic steatohepatitis (NASH). METHODS: The expression of Terf2ip was detected in liver tissue samples obtained from patients diagnosed with NASH. Mice NASH models were constructed by fed with high-fat diet (HFD) or methionine/choline deficient diet (MCD) in Terf2ip knockout and wild type (WT) mice. To further investigate the role of Terf2ip in NASH, adeno-associated viruses (AAV)-Terf2ip was administrated to mice. RESULTS: We observed a significant down-regulation of Terf2ip levels in the livers of NASH patients and mice NASH models. Terf2ip deficiency was associated with an exacerbation of hepatic steatosis in mice under HFD or MCD. Additionally, Terf2ip deficiency impaired lipophagy and fatty acid oxidation (FAO) in NASH models. Mechanically, we discovered that Terf2ip bound to the promoter region of Sirt1 to regulate Sirt1/AMPK pathway activation. As a result, Terf2ip deficiency was shown to inhibit lipophagy through the AMPK pathway, while the activation of Sirt1 alleviated steatohepatitis in the livers of mice. Finally, re-expression of Terf2ip in hepatocyes alleviated liver steatosis, inflammation, and restored lipophagy. CONCLUSIONS: These results revealed that Terf2ip played a protective role in the progression of NASH through regulating lipophagy and FAO by binding to Sirt1 promoter. Our findings provided a potential therapeutic target for the treatment of NASH.

3.
J Exp Clin Cancer Res ; 43(1): 104, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576051

RESUMO

BACKGROUND: Cholangiocarcinoma (CCA) comprises a heterogeneous group of biliary tract cancer. Our previous CCA mutation pattern study focused on genes in the post-transcription modification process, among which the alternative splicing factor RBM10 captured our attention. However, the roles of RBM10 wild type and mutations in CCA remain unclear. METHODS: RBM10 mutation spectrum in CCA was clarified using our initial data and other CCA genomic datasets from domestic and international sources. Real-time PCR and tissue microarray were used to detect RBM10 clinical association. Function assays were conducted to investigate the effects of RBM10 wild type and mutations on CCA. RNA sequencing was to investigate the changes in alternative splicing events in the mutation group compared to the wild-type group. Minigene splicing reporter and interaction assays were performed to elucidate the mechanism of mutation influence on alternative splicing events. RESULTS: RBM10 mutations were more common in Chinese CCA populations and exhibited more protein truncation variants. RBM10 exerted a tumor suppressive effect in CCA and correlated with favorable prognosis of CCA patients. The overexpression of wild-type RBM10 enhanced the ASPM exon18 exon skipping event interacting with SRSF2. The C761Y mutation in the C2H2-type zinc finger domain impaired its interaction with SRSF2, resulting in a loss-of-function mutation. Elevated ASPM203 stabilized DVL2 and enhanced ß-catenin signaling, which promoted CCA progression. CONCLUSIONS: Our results showed that RBM10C761Y-modulated ASPM203 promoted CCA progression in a Wnt/ß-catenin signaling-dependent manner. This study may enhance the understanding of the regulatory mechanisms that link mutation-altering splicing variants to CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Mutação , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Via de Sinalização Wnt , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Isoformas de Proteínas , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
4.
Int J Biol Macromol ; 264(Pt 1): 130581, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38447828

RESUMO

Neutrophilic asthma is a persistent and severe inflammatory lung disease characterized by neutrophil activation and the mechanisms of which are not completely elucidated. Ubiquitin D (UBD) is a ubiquitin-like modifier participating in infections, immune responses, and tumorigenesis, while whether UBD involves in neutrophilic asthma needs further study. In this study, we initially found that UBD expression was significantly elevated and interleukin 17 (IL-17) signaling was enriched in the endobronchial biopsies of severe asthma along with neutrophils increasing by bioinformatics analysis. We further confirmed that UBD was upregulated in the lung tissues of neutrophilic asthma mouse model. UBD overexpression promoted IL-17 signaling activation. Knockdown of UBD suppressed the activation of IL-17 signaling. UBD interacted with TRAF2 and reduced the total and the K48-linked ubiquitination of TRAF2. However, IL-17 A stimulation increased both the total and the K48-linked ubiquitination of TRAF2. Together, these findings indicated that UBD was upregulated and played a critical role in IL-17 signaling which contributed to a better understanding of the complex mechanisms in neutrophilic asthma.


Assuntos
Asma , Interleucina-17 , Animais , Camundongos , Fator 2 Associado a Receptor de TNF/metabolismo , Asma/metabolismo , Pulmão/metabolismo , Neutrófilos/metabolismo , Ubiquitinas/metabolismo , Inflamação/patologia
5.
Mol Cancer ; 23(1): 35, 2024 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-38365721

RESUMO

BACKGROUND: circular RNAs (circRNAs) have been reported to exert important effects in the progression of numerous cancers. However, the functions of circRNAs in intrahepatic cholangiocarcinoma (ICC) are still unclear. METHODS: circPCNXL2 (has_circ_0016956) were identified in paired ICC by circRNA microarray. Then, we assessed the biological functions of circPCNXL2 by CCK8, EdU, clone formation, transwell, wound healing assays, and xenograft models. RNA pull-down, mass spectrometry, and RNA immunoprecipitation (RIP) were applied to explore the interaction between cirrcPCNXL2 and serine-threonine kinase receptor-associated protein (STRAP). RNA pull-down, RIP and luciferase reporter assays were used to investigate the sponge functions of circPCNXL2. In the end, we explore the effects of circPCNXL2 and trametinib (a MEK1/2 inhibitor) in vivo. RESULTS: circPCNXL2 was upregulated in ICC tissues and cell lines, which promoted the proliferation and metastasis of ICC in vitro and in vivo. In terms of the mechanisms, circPCNXL2 could directly bind to STRAP and induce the interaction between STRAP and MEK1/2, resulting in the tumor promotion in ICC by activation of ERK/MAPK pathways. Besides, circPCNXL2 could regulate the expression of SRSF1 by sponging miR-766-3p and subsequently facilitated the growth of ICC. Finally, circPCNXL2 could partially inhibit the anti-tumor activity of trametinib in vivo. CONCLUSION: circPCNXL2 played a crucial role in the progression of ICC by interacting with STRAP to activate the ERK signaling pathway, as well as by modulating the miR-766-3p/SRSF1 axis. These findings suggest that circPCNXL2 may be a promising biomarker and therapeutic target for ICC.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , MicroRNAs , Humanos , RNA Circular/genética , Proliferação de Células/genética , Colangiocarcinoma/metabolismo , Transdução de Sinais , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Neoplasias dos Ductos Biliares/metabolismo , MicroRNAs/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Fatores de Processamento de Serina-Arginina/metabolismo
6.
Am J Pathol ; 194(6): 975-988, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423356

RESUMO

Radiation-induced enteritis, a significant concern in abdominal radiation therapy, is associated closely with gut microbiota dysbiosis. The mucus layer plays a pivotal role in preventing the translocation of commensal and pathogenic microbes. Although significant expression of REGγ in intestinal epithelial cells is well established, its role in modulating the mucus layer and gut microbiota remains unknown. The current study revealed notable changes in gut microorganisms and metabolites in irradiated mice lacking REGγ, as compared to wild-type mice. Concomitant with gut microbiota dysbiosis, REGγ deficiency facilitated the infiltration of neutrophils and macrophages, thereby exacerbating intestinal inflammation after irradiation. Furthermore, fluorescence in situ hybridization assays unveiled an augmented proximity of bacteria to intestinal epithelial cells in REGγ knockout mice after irradiation. Mechanistically, deficiency of REGγ led to diminished goblet cell populations and reduced expression of key goblet cell markers, Muc2 and Tff3, observed in both murine models, minigut organoid systems and human intestinal goblet cells, indicating the intrinsic role of REGγ within goblet cells. Interestingly, although administration of broad-spectrum antibiotics did not alter the goblet cell numbers or mucin 2 (MUC2) secretion, it effectively attenuated inflammation levels in the ileum of irradiated REGγ absent mice, bringing them down to the wild-type levels. Collectively, these findings highlight the contribution of REGγ in counteracting radiation-triggered microbial imbalances and cell-autonomous regulation of mucin secretion.


Assuntos
Enterite , Microbioma Gastrointestinal , Células Caliciformes , Homeostase , Camundongos Knockout , Animais , Enterite/microbiologia , Enterite/metabolismo , Enterite/patologia , Camundongos , Células Caliciformes/patologia , Células Caliciformes/metabolismo , Humanos , Proteínas Associadas a Pancreatite/metabolismo , Mucina-2/metabolismo , Disbiose/microbiologia , Disbiose/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Mucosa Intestinal/patologia , Fator Trefoil-3/metabolismo , Camundongos Endogâmicos C57BL , Lesões por Radiação/metabolismo , Lesões por Radiação/microbiologia , Lesões por Radiação/patologia , Lesões Experimentais por Radiação/metabolismo , Lesões Experimentais por Radiação/patologia , Lesões Experimentais por Radiação/microbiologia
7.
J Orthop Surg Res ; 19(1): 146, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38369459

RESUMO

BACKGROUND AND OBJECTIVE: The pathogenesis of coronal suture craniosynostosis is often attributed to the dysregulated cellular dynamics, particularly the excessive proliferation and abnormal osteogenic differentiation of suture cells. Despite its clinical significance, the molecular mechanims of this condition remain inadequately understood. This study is dedicated to exploring the influence of the Periostin/Bone Morphogenetic Protein 1 (BMP1) axis on the growth and osteogenic maturation of Suture Mesenchymal Stem Cells (SMSCs), which are pivotal in suture homeostasis. METHODS: Neonatal TWIST Basic Helix-Loop-Helix Transcription Factor 1 heterozygous (TWIST1+/-) mice, aged one day, were subjected to adenoviral vector-mediated Periostin upregulation. To modulate Periostin/BMP1 levels in SMSCs, we employed siRNA and pcDNA 3.1 vectors. Histological and molecular characterizations, including hematoxylin and eosin staining, Western blot, and immunohistochemistry were employed to study suture closure phenotypes and protein expression patterns. Cellular assays, encompassing colony formation, 5-ethynyl-2'deoxyuridine, and wound healing tests were conducted to analyze SMSC proliferation and migration. Osteogenic differentiation was quantified using Alkaline Phosphatase (ALP) and Alizarin Red S (ARS) staining, while protein markers of proliferation and differentiation were evaluated by Western blotting. The direct interaction between Periostin and BMP1 was validated through co-immunoprecipitation assays. RESULTS: In the TWIST1+/- model, an upregulation of Periostin coupled with a downregulation of BMP1 was observed. Augmenting Periostin expression mitigated craniosynostosis. In vitro, overexpression of Periostin or BMP1 knockdown suppressed SMSC proliferation, migration, and osteogenic differentiation. Periostin knockdown manifested an inverse biological impact. Notably, the suppressive influence of Periostin overexpression on SMSCs was effectively counteracted by upregulating BMP1. There was a direct interaction between Periostin and BMP1. CONCLUSION: These findings underscore the significance of the Periostin/BMP1 axis in regulating craniosynostosis and SMSC functions, providing new insights into the molecular mechanisms of craniosynostosis and potential targets for therapeutic intervention.


Assuntos
Craniossinostoses , Células-Tronco Mesenquimais , Camundongos , Animais , Osteogênese/genética , Periostina , Proteína Morfogenética Óssea 1/metabolismo , Craniossinostoses/genética , Craniossinostoses/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/metabolismo , Modelos Animais de Doenças , Proliferação de Células/genética , Células Cultivadas
8.
Liver Int ; 44(2): 370-388, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37950359

RESUMO

BACKGROUND AND AIMS: Increasing evidence suggested that miRNAs regulated the expression of pivotal genes involved in oncogenesis and malignant phenotype. In this project, the purpose was to make an inquiry to the effect and mechanism of miR-182-5p in the progression of cholangiocarcinoma. METHODS: By analysing TCGA and GEO databases, combined with tissue expression levels, miR-182-5p was identified as one of the most valuable miRNAs for research. The function and relationships between miR-182-5p and downstream target genes were both verified by in vitro and in vivo experiments. Methylation-specific PCR and bisulphite sequencing were used to detect the methylation level changes of downstream gene promoter. RESULTS: We found that miR-182-5p could be taken up by exosomes secreted from cholangiocarcinoma. Moreover, exosomal derived miR-182-5p promoted vascular endothelial cell proliferation and migration and induced angiogenesis by targeting ADK/SEMA5a. Subsequently, the PI3K/AKT/mTOR signalling pathway was activated and ultimately caused resistance to gemcitabine and cisplatin. CONCLUSIONS: Our findings suggested that the miR-182-5p/ADK/SEMA5a axis might serve as a potential therapeutic target for cholangiocarcinoma.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Exossomos , MicroRNAs , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Exossomos/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células/genética , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos
9.
Talanta ; 269: 125535, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38091739

RESUMO

Numerous aptamers against various targets have been identified through the technology of systematic evolution of ligands by exponential enrichment (SELEX), but the affinity of these aptamers are often insufficient due to the limitations of SELEX. Therefore, a more rational in silico screening strategy (ISS) was developed for efficient screening of high affinity aptamers, which took shape complementarity and thermodynamic stability into consideration. Neuron specific enolase (NSE), a tumor marker, was selected as the target molecule. In the screening process, three aptamer candidates with good shape complementarity, lower ΔG values, and higher ZDOCK scores were produced. The dissociation constant (Kd) of these candidates to NSE was determined to be 10.13 nM, 14.82 nM, and 2.76 nM, respectively. Each of them exhibited higher affinity to NSE than the parent aptamer (Kd = 23.83 nM). Finally, an antibody-free fluorescence aptasensor assay, based on the aptamer with the highest affinity, P-5C8G, was conducted, resulting in a limit of detection (LOD) value of 1.8 nM, which was much lower than the parental aptamer (P, LOD = 12.6 nM). The proposed ISS approach provided an efficient and universal strategy to improve the aptamer to have a high affinity and good analytical utility.


Assuntos
Aptâmeros de Nucleotídeos , Técnica de Seleção de Aptâmeros/métodos , Limite de Detecção , Biomarcadores Tumorais
10.
Liver Int ; 44(3): 691-705, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38082504

RESUMO

BACKGROUND AND AIM: Hepatotoxicity is a well-defined reaction to methotrexate (MTX), a drug commonly used for the treatment of rheumatoid arthritis and various tumours. We sought to elucidate the mechanism underlying MTX-induced hepatotoxicity and establish a potentially effective intervention strategy. METHODS: We administered MTX to liver cells and mice and assessed hepatotoxicity by cell viability assay and hepatic pathological changes. We determined ferroptosis and ferritinophagy by detecting ferroptosis-related markers and autophagic degradation of ferritin heavy chain 1 (FTH1). RESULTS: We have shown that hepatocytes treated with MTX undergo ferroptosis, and this process can be attenuated by ferroptosis inhibitors. Interestingly, NCOA4-mediated ferritinophagy was found to be involved in MTX-induced ferroptosis, which was demonstrated by the relief of ferroptosis through the inhibition of autophagy or knockdown of Ncoa4. Furthermore, MTX treatment resulted in the elevation of high-mobility group box 1 (HMGB1) expression. The depletion of Hmgb1 in hepatocytes considerably alleviated MTX-induced hepatotoxicity by limiting autophagy and the subsequent autophagy-dependent ferroptosis. It is noteworthy that glycyrrhizic acid (GA), a precise inhibitor of HMGB1, effectively suppressed autophagy, ferroptosis and hepatotoxicity caused by MTX. CONCLUSION: Our study shows the significant roles of autophagy-dependent ferroptosis and HMGB1 in MTX-induced hepatotoxicity. It emphasizes that the inhibition of ferritinophagy and HMGB1 may have potential as a therapeutic approach for preventing and treating MTX-induced liver injury.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Ferroptose , Proteína HMGB1 , Animais , Camundongos , Autofagia , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/tratamento farmacológico , Metotrexato/toxicidade , Metotrexato/uso terapêutico
11.
Artigo em Inglês | MEDLINE | ID: mdl-38082038

RESUMO

Bisphenol A (BPA) is a typical endocrine disruptor, and the use of bisphenol B (BPB) as a substitute is gradually increasing. Some studies have shown that BPB also has endocrine disrupting effects, but its effects on the early stages of fish growth and development have not been reported. In this paper, zebrafish embryos were exposed to different concentrations of BPB until the 6th day post fertilization (dpf), and the toxic effects of BPB on the early development of zebrafish and the possible molecular mechanisms were investigated. The results showed that BPB exposure at 10, 100, and 1000 µg/L induced developmental toxic effects such as early neurotoxicity and cardiovascular toxicity in zebrafish, and the toxic effects were positively correlated with the degree of oxidative damage. These adverse results were ameliorated by the classical antioxidant N-acetyl-L-cysteine (NAC), suggesting the involvement of oxidative stress in BPB-induced early developmental toxicity. The above data suggest that BPB exposure increases oxidative damage and suppresses the expression of genes critical for early neurological and cardiovascular development, ultimately leading to early developmental toxicity in juvenile zebrafish. This study contributes to broadening our understanding of the toxic effects of BPB and provides a basic theoretical basis for the next management support of bisphenol analogs.

12.
Zhonghua Yi Xue Yi Chuan Xue Za Zhi ; 40(12): 1521-1525, 2023 Dec 10.
Artigo em Chinês | MEDLINE | ID: mdl-37994135

RESUMO

OBJECTIVE: To explore the clinical characteristics and genetic variants in two children with Tuberous sclerosis complex (TSC). METHODS: Two children who had presented at the Children's Hospital Affiliated to Zhengzhou University respectively in June 2020 and July 2021 were selected as the study subjects. Clinical data of the children were collected, and potential pathogenic variants were screened by whole exome sequencing (WES). Candidate variants were verified by Sanger sequencing of their family members. RESULTS: Child 1 was a 7-month-and-29-day-old male, and child 2 was a 2-year-and-6-month-old male. Both children had shown symptoms of epileptic seizures and multiple hypomelanotic macules. Genetic testing revealed that both children had harbored de novo variants of the TSC2 gene, namely c.3239_3240insA and c.3330delC, which were unreported previously. Based on the guidelines from the American College of Medical Genetics and Genomics (ACMG), both variants were rated as pathogenic (PVS1+PS2+PM2_Supporting). CONCLUSION: This study has uncovered the genetic etiology for two children with TSC. Above findings have also enriched the phenotypic and mutational spectrum of TSC in the Chinese population.


Assuntos
Esclerose Tuberosa , Humanos , Lactente , Masculino , Família , Testes Genéticos , Genômica , Mutação , Esclerose Tuberosa/genética , Pré-Escolar , População do Leste Asiático
13.
Int J Biol Sci ; 19(14): 4571-4587, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37781039

RESUMO

Tumor-associated angiogenesis positively associates with malignant metastasis of intrahepatic cholangiocarcinoma (ICCA). Cancer cell-derived exosomes carrying microRNAs involves in tumor microenvironment (TME) regulation. We aimed to evaluate exosomal miR-30a-5p in ICCA development. Our data showed that increased miR-30a-5p level was correlated with higher microvascular density (MVD) and worse prognosis. Augmented miR-30a-5p expression was induced by hypoxia induced factor 1α (HIF-1α) in ICCA cell. Further exploration revealed that ICCA-derived miR-30a-5p could be transferred to endothelial and increased endothelial cells recruitment and proliferation, induced angiogenesis and vascular permeability in exosome dependent manner. In addition, circulating exosomal miR-30a-5p was higher in ICCA patients, and correlated with ICCA tissues-expressing miR-30a-5p. Hypoxic stress enhanced the effects of exosomal miR-30a-5p on endothelial-associated phenotypes. Rescued experiments showed that exosomal miR-30a-5p modulated endothelial-associated phenotypes in a way relied on programmed cell death 10 (PDCD10). Moreover, we revealed that the packing of miR-30a-5p into ICCA cells-derived exosomes was mediated by eukaryotic translation initiation factor 4B (EIF4B). More importantly, the combined application of targeting miR-30a-5p and apatinib could synergistically improve antiangiogenic efficacy in ICCA. Combined, ICCA-derived exosomal miR-30a-5p could be an excellent therapeutic and monitoring indicator for ICCA patients.


Assuntos
Colangiocarcinoma , Exossomos , MicroRNAs , Humanos , Proteínas Reguladoras de Apoptose/metabolismo , Permeabilidade Capilar , Linhagem Celular Tumoral , Proliferação de Células/genética , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Células Endoteliais/metabolismo , Exossomos/genética , Exossomos/metabolismo , Hipóxia/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Neovascularização Patológica/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Microambiente Tumoral/genética
14.
J Exp Clin Cancer Res ; 42(1): 265, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821935

RESUMO

BACKGROUND: Spindle and kinetochore-associated complex subunit 3 (SKA3) plays an important role in cell proliferation by regulating the separation of chromosomes and their division into daughter cells. Previous studies demonstrated that SKA3 was strongly implicated in tumor development and progression. However, the roles of SKA3 in cholangiocarcinoma (CCA) and the underlying mechanisms remain unclear. METHODS: Next-generation sequencing (NGS) was performed with paired CCA tissues and normal adjacent tissues (NATs). SKA3 was chose to be the target gene because of its remarkably upregulation and unknown function in cholangiocarcinoma in TCGA datasets, GSE107943 datasets and our sequencing results. RT-PCR and immunohistochemistry staining were used to detect the expression of SKA3 in paired CCA tissues and normal adjacent tissues. The SKA3 knockdown and overexpression cell line were constructed by small interfering RNA and lentivirus vector transfection. The effect of SKA3 on the proliferation of cholangiocarcinoma under hypoxic conditions was detected by experiments in vitro and in vivo. RNA-seq was used to find out the differentially expressed pathways in cholangiocarcinoma proliferation under hypoxia regulated by SKA3. IP/MS analysis and Western blot assays were used to explore the specific mechanism of SKA3 in regulating the expression of HIF-1a under hypoxia. RESULTS: SKA3 was up-regulated in NGS, TCGA and GSE107943 databases and was associated with poor prognosis. Functional experiments in vitro and in vivo showed that hypoxia-induced SKA3 promoted cholangiocarcinoma cell proliferation. RNA-sequencing was performed and verified that SKA3 enhanced fatty acid synthesis by up-regulating the expression of key fatty acid synthase, thus promoting cholangiocarcinoma cell proliferation under hypoxic conditions. Further studies indicated that under hypoxic conditions, SKA3 recruited PARP1 to bind to HIF-1a, thus enhancing the poly ADP-ribosylation (PARylation) of HIF-1a. This PARylation enhanced the binding between HIF-1a and USP7, which triggered the deubiquitylation of HIF-1a under hypoxic conditions. Additionally, PARP1 and HIF-1a were upregulated in CCA and promoted CCA cell proliferation. SKA3 promoted CCA cell proliferation and fatty acid synthesis via the PARP1/HIF-1a axis under hypoxic conditions. High SKA3 and HIF-1a expression levels were associated with poor prognosis after surgery. CONCLUSION: Hypoxia-induced SKA3 promoted CCA progression by enhancing fatty acid synthesis via the regulation of PARylation-dependent HIF-1a deubiquitylation. Furthermore, increased SKA3 level enhanced chemotherapy-resistance to gemcitabine-based regimen under hypoxic conditions. SKA3 and HIF-1a could be potential oncogenes and significant biomarkers for the analysis of CCA patient prognosis.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Resistencia a Medicamentos Antineoplásicos/genética , Colangiocarcinoma/patologia , Proliferação de Células/genética , Ductos Biliares Intra-Hepáticos/metabolismo , Neoplasias dos Ductos Biliares/patologia , Hipóxia/genética , Ácidos Graxos , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Peptidase 7 Específica de Ubiquitina/genética
15.
Oncogene ; 42(45): 3344-3357, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37752233

RESUMO

Spindle assembly checkpoint (SAC) plays an essential part in facilitating normal cell division. However, the clinicopathological and biological significance of mitotic arrest deficient 2 like 1 (MAD2/MAD2L1), a highly conserved member of SAC in cholangiocarcinoma (CCA) remain unclear. We aim to determine the role and mechanism of MAD2 in CCA progression. In the study, we found up-regulated MAD2 facilitated CCA progression and induced lymphatic metastasis dependent on USP44/LIMA1/PI3K/AKT pathway. MAD2 interfered the binding of USP44 to LIMA1 by sequestrating more USP44 in nuclei, causing impaired formation of USP44/LIMA1 complex and enhanced LIMA1 K48 (Lys48)-linked ubiquitination. In therapeutic perspective, the data combined eleven cases of CCA PDTX model showed that high-MAD2 inhibits tumor necrosis and diminishes the inhibition of cell viability after treated with gemcitabine-based regimens. Immunohistochemistry (IHC) analysis of tissue microarray (TMA) for CCA patients revealed that high-MAD2, low-USP44 or low-LIMA1 level are correlated with worse survival for patients. Together, MAD2 activates PI3K/AKT pathway, promotes cancer progression and induces gemcitabine chemo-resistance in CCA. These findings suggest that MAD2 might be an excellent indicator in prognosis analysis and chemotherapy guidance for CCA patients.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Colangiocarcinoma/patologia , Proteínas do Citoesqueleto , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor IGF Tipo 1 , Ubiquitina Tiolesterase/genética
16.
BMC Anesthesiol ; 23(1): 318, 2023 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-37723480

RESUMO

BACKGROUND: The reversible maneuver that mimics the fluid challenge is a widely used test for evaluating volume responsiveness. However, passive leg raising (PLR) does have certain limitations. The aim of the study is to determine whether the supine transfer test could predict fluid responsiveness in adult patients with acute circulatory failure who do not have intra-abdominal hypertension, by measuring changes in cardiac index (CI). METHODS: Single-center, prospective clinical study in a 25-bed surgery intensive care unit at the Fudan University Shanghai Cancer Center. Thirty-four patients who presented with acute circulatory failure and were scheduled for fluid therapy. Every patient underwent supine transfer test and fluid challenge with 500 mL saline for 15-30 min. There were four sequential steps in the protocol: (1) baseline-1: a semi-recumbent position with the head of the bed raised to 45°; (2) supine transfer test: patients were transferred from the 45° semi-recumbent position to the strict supine position; (3) baseline-2: return to baseline-1 position; and (4) fluid challenge: administration of 500 mL saline for 15-30 min. Hemodynamic parameters were recorded at each step with arterial pulse contour analysis (ProAQT/Pulsioflex). A fluid responder was defined as an increase in CI ≥ 15% after fluid challenge. The receiver operating characteristic curve and gray zone were defined for CI. RESULTS: Seventeen patients were fluid challenge. The r value of the linear correlations was 0.73 between the supine transfer test- and fluid challenge-induced relative CI changes. The relative changes in CI induced by supine transfer in predicting fluid responsiveness had an area under the receiver operating characteristic curve of 0.88 (95% confidence interval 0.72-0.97) and predicted a fluid responder with 76.5% (95% confidence interval 50.1-93.2) sensitivity and 88.2% (95% confidence interval 63.6-98.5) specificity, at a best threshold of 5.5%. Nineteen (55%) patients were in the gray zone (CI ranging from -3 and 8 L/min/m2). CONCLUSION: The supine transfer test can potentially assist in detecting fluid responsiveness in patients with acute circulatory failure without intra-abdominal hypertension. Nevertheless, the small threshold and the 55% gray zone were noteworthy limitation. TRIAL REGISTRATION: Predicting fluid responsiveness with supine transition test (ChiCTR2200058264). Registered 2022-04-04 and last refreshed on 2023-03-26, https://www.chictr.org.cn/showproj.html?proj=166175 .


Assuntos
Hipertensão Intra-Abdominal , Adulto , Humanos , Hipertensão Intra-Abdominal/diagnóstico , Hipertensão Intra-Abdominal/terapia , Estudos Prospectivos , China , Hidratação , Unidades de Terapia Intensiva , Solução Salina
17.
Brain Res Bull ; 202: 110755, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37678443

RESUMO

Autism spectrum disorder (ASD) is a set of heterogeneous neurodevelopmental disorders, characterized by social interaction deficit, stereotyped or repetitive behaviors. Apart from these core symptoms, a great number of individuals with ASD exhibit higher levels of anxiety and memory deficits. Previous studies demonstrate pronounced decrease of γ-aminobutyric acid B1 receptor (GABAB1R) protein level of frontal lobe in both ASD patients and animal models. The aim of the present study was to determine the role of GABAB1R in ASD-related behavioral aberrations. Herein, the protein and mRNA levels of GABAB1R in the prefrontal cortex (PFC) of sodium valproic acid (VPA)-induced mouse ASD model were determined by Western blot and qRT-PCR analysis, respectively. Moreover, the behavioral abnormalities in naive mice with GABAB1R knockdown mediated by recombinant adeno-associated virus (rAAV) were assessed in a comprehensive test battery consisted of social interaction, marble burying, self-grooming, open-field, Y-maze and novel object recognition tests. Furthermore, the action potential changes induced by GABAB1R deficiency were examined in neurons within the PFC of mouse. The results show that the mRNA and protein levels of GABAB1R in the PFC of prenatal VPA-induced mouse ASD model were decreased. Concomitantly, naive mice with GABAB1R knockdown exhibited ASD-like behaviors, such as impaired social interaction and communication, elevated stereotypes, anxiety and memory deficits. Patch-clamp recordings also revealed that GABAB1R knockdown provoked enhanced neuronal excitability by increasing action potential discharge frequencies. Overall, these findings support a notion that GABAB1R deficiency might contribute to ASD-like phenotypes, with the pathogenesis most likely resulting from enhanced neuronal excitability. SUBHEADINGS: GABAB1 Knockdown Induces Behavioral Aberrations with ASD.


Assuntos
Transtorno do Espectro Autista , Feminino , Gravidez , Humanos , Animais , Camundongos , Transtorno do Espectro Autista/induzido quimicamente , Transtorno do Espectro Autista/genética , Córtex Pré-Frontal , Modelos Animais de Doenças , Transtornos da Memória , Ácido gama-Aminobutírico
18.
J Cancer Res Clin Oncol ; 149(16): 15185-15206, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37639011

RESUMO

PURPOSE: Laryngeal squamous cell carcinomas (LSCCs) are aggressive tumors with the second-highest morbidity rate in patients with head and neck squamous cell carcinoma. Cuproptosis is a type of programmed cell death that impacts tumor malignancy and progression. The purpose of this study was to investigate the relationship between cuproptosis-related long non-coding RNAs (crlncRNAs) and the tumor immune microenvironment and chemotherapeutic drug sensitivity in LSCC, and crlncRNA impact on LSCC malignancy. MATERIALS AND METHODS: Clinical and RNA-sequencing data from patients with LSCC were retrieved from the Cancer Genome Atlas. Differentially expressed prognosis-related crlncRNAs were identified based on univariate Cox regression analysis, a crlncRNA signature for LSCC was developed and validated using LASSO Cox regression. Finally, the effect of LINC02454, the core signature crlncRNA, on LSCC malignancy progression was evaluated in vitro and in vivo. RESULTS: We identified a four-crlncRNA signature (LINC02454, AC026310.1, AC090517.2, and AC000123.1), according to which we divided the patients into high- and low-risk groups. The crlncRNA signature risk score was an independent prognostic indicator for overall and progression-free survival, and displayed high predictive accuracy. Patients with a higher abundance of infiltrating dendritic cells, M0 macrophages, and neutrophils had worse prognoses and those in the high-risk group were highly sensitive to multiple chemotherapeutic drugs. Knockdown of LINC02454 caused tumor suppression, via cuproptosis induction. CONCLUSIONS: A novel signature of four crlncRNAs was found to be highly accurate as a risk prediction model for patients with LSCC and to have potential for improving the diagnosis, prognosis, and treatment of LSCC.


Assuntos
Apoptose , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Biomarcadores , Macrófagos , Prognóstico , Microambiente Tumoral
19.
BMC Cancer ; 23(1): 444, 2023 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-37193981

RESUMO

BACKGROUND: Cholangiocarcinoma (CHOL) is the second most common primary hepatic malignant tumor, following hepatocellular carcinoma (HCC). CHOL is highly aggressive and heterogeneous resulting in poor prognosis. The diagnosis and prognosis of CHOL has not improved in the past decade. Acyl-CoA synthetase long-chain family member 4 (ACSL4) is reported to be associated with tumors, however, its role in CHOL has not been revealed. This study is mainly for exploring the prognostic values and potential function of ACSL4 in CHOL. METHODS: We investigated the expression level and prognostic value of ACSL4 in CHOL based on The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. TIMER2.0, TISIDB and CIBERSORT databases were utilized to assess the associations between ACSL4 and immune infiltration cells in CHOL. Single-cell sequencing data from GSE138709 was analyzed to study the expression of ACSL4 in different types of cells. ACSL4 co-expressed genes were analyzed by Linkedomics. Additionally, Western Blot, qPCR, EdU assay, CCK8 assay, transwell assay and wound healing assay were performed to further confirm the roles of ACSL4 in the pathogenesis of CHOL. RESULTS: We found that the level of ACSL4 was higher in CHOL and it was correlated with the diagnosis and prognosis of CHOL patients. Then, we observed that the infiltration level of immune cells was related to the level of ACSL4 in CHOL. Moreover, ACSL4 and its co-expressed genes were mainly enriched in metabolism-related pathway and ACSL4 is also a key pro-ferroptosis gene in CHOL. Finally, knockdown of ACSL4 could reverse the tumor-promoting effect of ACSL4 in CHOL. CONCLUSIONS: The current findings demonstrated ACSL4 may as a novel biomarker for CHOL patients, which might regulate immune microenvironment and metabolism resulting in poor prognosis.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Colangiocarcinoma , Neoplasias Hepáticas , Humanos , Prognóstico , Colangiocarcinoma/genética , Neoplasias dos Ductos Biliares/genética , Ductos Biliares Intra-Hepáticos , Microambiente Tumoral/genética
20.
Int J Biol Sci ; 19(5): 1336-1351, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37056930

RESUMO

Cholangiocarcinoma (CCA) is the second most common primary hepatic malignancy and associated with poor prognosis. Lack of therapeutic methods for CCA and insensitivity of targeted therapy and immunotherapy make its treatment challenging. NUF2, a component of Ndc80 kinetochore complex, is implicated in the initiation and development of multiple cancers. However, the role and mechanism of NUF2 in CCA is still unclear. In this research, we investigated the biological processes and underlying mechanisms of NUF2 in CCA. We discovered that the expression of NUF2 was upregulated in CCA and negatively correlated with prognosis. Changes in NUF2 levels had an impact on cell proliferation and migration. Moreover, NUF2 functioned as an oncogene to promote the progression of CCA through p38/MAPK signaling by inhibiting p62 binding of TFR1 and affecting its autophagic degradation. In addition, TFR1 promoted CCA progression and Kaplan-Meier analyses uncovered patients with high expression of TFR1 was associated with the poor survival. In conclusion, our study demonstrated that NUF2 promoted CCA progression by regulating TFR1 protein degradation, and the NUF2/TFR1/MAPK axis could be an excellent therapeutic target for CCA.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Humanos , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/patologia , Ductos Biliares Intra-Hepáticos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Colangiocarcinoma/metabolismo , Regulação Neoplásica da Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA