Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Exp Med ; 221(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38417019

RESUMO

Systemic lupus erythematosus (SLE) is a heterogeneous autoimmune disease with a clear genetic component. While most SLE patients carry rare gene variants in lupus risk genes, little is known about their contribution to disease pathogenesis. Amongst them, SH2B3-a negative regulator of cytokine and growth factor receptor signaling-harbors rare coding variants in over 5% of SLE patients. Here, we show that unlike the variant found exclusively in healthy controls, SH2B3 rare variants found in lupus patients are predominantly hypomorphic alleles, failing to suppress IFNGR signaling via JAK2-STAT1. The generation of two mouse lines carrying patients' variants revealed that SH2B3 is important in limiting the number of immature and transitional B cells. Furthermore, hypomorphic SH2B3 was shown to impair the negative selection of immature/transitional self-reactive B cells and accelerate autoimmunity in sensitized mice, at least in part due to increased IL-4R signaling and BAFF-R expression. This work identifies a previously unappreciated role for SH2B3 in human B cell tolerance and lupus risk.


Assuntos
Autoimunidade , Lúpus Eritematoso Sistêmico , Animais , Humanos , Camundongos , Autoimunidade/genética , Fator Ativador de Células B/metabolismo , Linfócitos B , Lúpus Eritematoso Sistêmico/genética , Células Precursoras de Linfócitos B
2.
Autophagy ; 20(1): 151-165, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37651673

RESUMO

ABBREVIATIONS: AKI: acute kidney injury; ATP: adenosine triphosphate; BUN: blood urea nitrogen; CLP: cecal ligation and puncture; eGFR: estimated glomerular filtration rate; H&E: hematoxylin and eosin staining; LCN2/NGAL: lipocalin 2; LPS: lipopolysaccharide; LTL: lotus tetragonolobus lectin; mKeima: mitochondria-targeted Keima; mtDNA: mitochondrial DNA; PAS: periodic acid - Schiff staining; RTECs: renal tubular epithelial cells; SAKI: sepsis-induced acute kidney injury; Scr: serum creatinine; SIRT3: sirtuin 3; TFAM: transcription factor A, mitochondrial; TMRE: tetramethylrhodamine.


Assuntos
Injúria Renal Aguda , Melatonina , Sepse , Sirtuína 3 , Humanos , Mitofagia , Autofagia , Lipopolissacarídeos , DNA Mitocondrial , Sepse/complicações , Rim , Proteínas de Ligação a DNA , Fatores de Transcrição , Proteínas Mitocondriais
3.
Front Pharmacol ; 14: 1069093, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36874025

RESUMO

Background: Hepatocellular carcinoma (HCC), as an aggressive cancer with a high mortality rate, needs high-efficiency and low-toxicity drug therapy. Natural products have great potential as candidate lead compounds for the development of new HCC drugs. Crebanine is an isoquinoline alkaloid derived from Stephania with various potential pharmacological effects such as anti-cancer. However, the molecular mechanism underlying crebanine-induced liver cancer cells apoptosis has not been reported. Here, we investigated the effect of crebanine on HCC and identified a potential mechanism of action. Methods: In this paper, we intend to detect the toxic effects of crebanine on hepatocellular carcinoma HepG2 cells through a series of in vitro experiments, including detecting the effects of crebanine on the proliferation of HepG2 cells using the CCK8 method and plate cloning assay, observing the growth status and morphological changes of crebanine on HepG2 cells by inverted microscopy; and using the Transwell method to determine the the effect of crebanine on the migration and invasion ability of HepG2 cells; using Hoechst 33258 assay to stain cancer cells, thus observing the effect of crebanine on the morphology of HepG2 apoptotic cells, and detecting the apoptotic state and level of HepG2 cells by flow cytometry; using ROS kit and JC-1 assay kit to detect the changes of reactive oxygen species and mitochondrial membrane potential of HepG2 The immunofluorescence assay was taken to verify whether crebanine had an effect on the expression of p-FoxO3a in cancer cells; the Wetern blot assay was also used to examine the effect of crebanine on proteins related to the mitochondrial apoptotic pathway and its effect on the regulation of the relative protein expression of AKT/FoxO3a axis; after this, NAC and AKT inhibitor LY294002 were used to cells were pretreated with NAC and AKT inhibitor LY294002, respectively, in order to further validate the inhibitory effect of crebanine. Results: It was shown that crebanine effectively inhibited the growth and capacity of HepG2 cells migration and invasion in a dose-dependent manner. Furthermore, the effect of crebanine on the morphology of HepG2 cells was observed through microscopy. Meanwhile, crebanine induced apoptosis by causing reactive oxygen species (ROS) burst and mitochondrial membrane potential (MMP) disrupt. We found that crebanine could down-regulate Bcl-2 and up-regulate Bax, cleaved-PARP, cleaved-caspase-3 and cleaved-caspase-9, but these effects were overturned by ROS inhibitor N-acetylcysteine (NAC). Crebanine also down-regulated p-AKT and p-FoxO3a, and the PI3K inhibitor LY294002 significantly enhances this effect. We also found that the expression of AKT/FoxO3a signaling pathway was ROS-dependent. As shown by Western blots, NAC could partially attenuate the inhibitory effect of crebanine on AKT and FoxO3a phosphorylation. Conclusion: Based on our results, our results suggest that crebanine, as a compound with potential anticancer activity, has significant cytotoxic effects on hepatocellular carcinoma,and it likely induces apoptosis via ROS in the mitochondrial pathway and simultaneously affects the biological function of HCC via the ROS-AKT-FoxO3a signaling axis.

4.
Front Nutr ; 10: 1120168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937361

RESUMO

Physiologically, the intestinal barrier plays a crucial role in homeostasis and nutrient absorption and prevents pathogenic entry, harmful metabolites, and endotoxin absorption. Recent advances have highlighted the association between severely damaged intestinal barriers and diabetes, obesity, fatty liver, and cardiovascular diseases. Evidence indicates that an abated intestinal barrier leads to endotoxemia associated with systemic inflammation, insulin resistance, diabetes, and lipid accumulation, accelerating obesity and fatty liver diseases. Nonetheless, the specific mechanism of intestinal barrier damage and the effective improvement of the intestinal barrier remain to be explored. Here, we discuss the crosstalk between changes in the intestinal barrier and metabolic disease. This paper also highlights how to improve the gut barrier from the perspective of natural medicine, gut microbiota remodeling, lifestyle interventions, and bariatric surgery. Finally, potential challenges and prospects for the regulation of the gut barrier-metabolic disease axis are discussed, which may provide theoretical guidance for the treatment of metabolic diseases.

5.
Arthritis Rheumatol ; 75(6): 1058-1071, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36622335

RESUMO

OBJECTIVE: Increased Toll-like receptor 7 (TLR-7) signaling leading to the production of type I interferon (IFN) is an important contributor to human systemic lupus erythematosus (SLE). Protein kinase C and casein kinase substrate in neurons 1 (PACSIN1), a molecule that regulates synaptic vesicle recycling, has been linked to TLR-7/TLR-9-mediated type I IFN production in humans and mice, but the underlying mechanism is unknown. We undertook this study to explore the pathogenicity and underlying mechanism of a de novo PACSIN1 missense variant identified in a child with SLE. METHODS: PACSIN1 Q59K de novo and null variants were introduced into a human plasmacytoid dendritic cell line and into mice using CRISPR/Cas9 editing. The effects of the variants on TLR-7/TLR-9 signaling in human and mouse cells, as well as PACSIN1 messenger RNA and IFN signature in SLE patients, were assessed using real-time polymerase chain reaction and flow cytometry. Mechanisms were investigated using luciferase reporter assays, RNA interference, coimmunoprecipitation, and immunofluorescence. RESULTS: We established that PACSIN1 forms a trimolecular complex with tumor necrosis factor receptor-associated factor 4 (TRAF4) and TRAF6 that is important for the regulation of type I IFN. The Q59K mutation in PACSIN1 augments binding to neural Wiskott-Aldrich syndrome protein while it decreases binding to TRAF4, leading to unrestrained TRAF6-mediated activation of type I IFN. Intriguingly, PACSIN1 Q59K increased TLR-7 but not TLR-9 signaling in human cells, leading to elevated expression of IFNß and IFN-inducible genes. Untreated SLE patients had high PACSIN1 expression in peripheral blood cells that correlated positively with IFN-related genes. Introduction of the Pacsin1 Q59K mutation into mice caused increased surface TLR-7 and TRAIL expression in B cells. CONCLUSION: PACSIN1 Q59K increases IFNß activity through the impairment of TRAF4-mediated inhibition of TLR-7 signaling, possibly contributing to SLE risk.


Assuntos
Interferon Tipo I , Lúpus Eritematoso Sistêmico , Criança , Humanos , Camundongos , Animais , Receptor 7 Toll-Like/genética , Receptor 7 Toll-Like/metabolismo , Interferon-alfa , Proteína Quinase C/metabolismo , Fator 4 Associado a Receptor de TNF/metabolismo , Fator 6 Associado a Receptor de TNF/genética , Fator 6 Associado a Receptor de TNF/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Interferon Tipo I/metabolismo , Neurônios/metabolismo , Receptor Toll-Like 9 , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
6.
Braz. j. med. biol. res ; 56: e12855, 2023. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1505881

RESUMO

Cell division cycle 42 (CDC42) regulates T helper (Th) cell differentiation and is related to psychological disorders. This study aimed to assess the correlation between blood CDC42 and Th cells, and their association with mental issues in stroke patients. Peripheral blood samples were obtained from 264 stroke patients and 50 controls. Then, serum CDC42 was measured by enzyme-linked immunosorbent assay, and Th1, Th2, and Th17 cells were detected by flow cytometry. Hospital Anxiety and Depression Scale (HADS) and Mini Mental State Examination (MMSE) were applied to patients. CDC42 was decreased (P<0.001), Th1 (P=0.013) and Th17 (P<0.001) cells were elevated, while Th2 cells (P=0.108) showed no difference in stroke patients compared to controls. In addition, CDC42 was negatively associated to Th1 (P=0.013) and Th17 (P<0.001) cells in stroke patients but were not associated with Th2 cells (P=0.223). Interestingly, CDC42 was negatively associated with HADS-anxiety (P<0.001) and HADS-depression scores (P=0.034) and positively associated with MMSE score (P<0.001) in stroke patients. Lower CDC42 was associated to lower occurrence of anxiety (P=0.002), depression (P=0.001), and cognitive impairment (P=0.036) in stroke patients. Furthermore, increased Th17 cells were positively correlated with HADS-anxiety and HADS-depression scores and inversely correlated with MMSE score, which were also associated with higher occurrence of anxiety, depression, and cognitive impairment in stroke patients (all P<0.05). Blood CDC42 and Th17 cells were correlated, and both of them were linked to the risk of anxiety, depression, and cognitive impairment. However, the findings need further large-scale validation, and the implicated mechanism needs more investigation.

7.
Int J Biol Sci ; 18(14): 5276-5290, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36147470

RESUMO

In diabetic cardiomyopathy (DCM), a major diabetic complication, the myocardium is structurally and functionally altered without evidence of coronary artery disease, hypertension or valvular disease. Although numerous anti-diabetic drugs have been applied clinically, specific medicines to prevent DCM progression are unavailable, so the prognosis of DCM remains poor. Mitochondrial ATP production maintains the energetic requirements of cardiomyocytes, whereas mitochondrial dysfunction can induce or aggravate DCM by promoting oxidative stress, dysregulated calcium homeostasis, metabolic reprogramming, abnormal intracellular signaling and mitochondrial apoptosis in cardiomyocytes. In response to mitochondrial dysfunction, the mitochondrial quality control (MQC) system (including mitochondrial fission, fusion, and mitophagy) is activated to repair damaged mitochondria. Physiological mitochondrial fission fragments the network to isolate damaged mitochondria. Mitophagy then allows dysfunctional mitochondria to be engulfed by autophagosomes and degraded in lysosomes. However, abnormal MQC results in excessive mitochondrial fission, impaired mitochondrial fusion and delayed mitophagy, causing fragmented mitochondria to accumulate in cardiomyocytes. In this review, we summarize the molecular mechanisms of MQC and discuss how pathological MQC contributes to DCM development. We then present promising therapeutic approaches to improve MQC and prevent DCM progression.


Assuntos
Diabetes Mellitus , Cardiomiopatias Diabéticas , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Diabetes Mellitus/metabolismo , Cardiomiopatias Diabéticas/tratamento farmacológico , Cardiomiopatias Diabéticas/metabolismo , Humanos , Mitocôndrias/metabolismo , Mitofagia
8.
Surgery ; 172(4): 1285-1290, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35953307

RESUMO

BACKGROUND: Many studies demonstrated no improved survival in patients with pulmonary artery catheter placement. However, no consistent conclusions have been drawn regarding the impact of pulmonary artery catheter in critically ill patients with heart disease. This study aimed to investigate the association of early pulmonary artery catheter use with 28-day mortality in that population. METHODS: The Multiparameter Intelligent Monitoring in Intensive Care IV (MIMIC-IV) database, a single-center critical care database, was employed to investigate this issue. This study enrolled a total of 11,887 critically ill patients with cardiac disease with or without pulmonary artery catheter insertion. The primary outcome was 28-day mortality. The multivariate regression was modeled to examine the association between pulmonary artery catheter and outcomes. Additionally, we examined the effect modification by cardiac surgeries. Propensity score matching was conducted to validate our findings. RESULTS: No improvement in 28-day mortality was observed among the pulmonary artery catheter group compared to the non-pulmonary artery catheter group (odds ratio 95% confidence interval: 1.18 [1.00-1.38], P = .049). When stratified by cardiac surgeries, the results were consistent. The patients in the pulmonary artery catheter group had fewer ventilation-free days and vasopressor-free days than those in the nonpulmonary artery catheter group after surgery stratification. In the surgical patients, pulmonary artery catheter insertion was not associated with the occurrence of acute kidney injury, and it was associated with a higher daily fluid input (mean difference 95% confidence interval: 0.13 [0.05-0.20], P = .001). In nonsurgical patients, the pulmonary artery catheter group had a higher risk of acute kidney injury occurrence (odds ratio 95% confidence interval: 1.94 [1.32-2.84], P = .001). CONCLUSION: Early pulmonary artery catheter placement is not associated with survival benefits in critically ill patients with cardiac diseases, either in surgical or nonsurgical patients.


Assuntos
Injúria Renal Aguda , Cardiopatias , Cateterismo de Swan-Ganz , Cuidados Críticos/métodos , Estado Terminal/terapia , Cardiopatias/cirurgia , Humanos
9.
Genes (Basel) ; 14(1)2022 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-36672783

RESUMO

Invertase (INV) irreversibly catalyzes the conversion of sucrose into glucose and fructose, playing important role in plant development and stress tolerance. However, the functions of INV genes in wheat have been less studied. In this study, a total of 126 TaINV genes were identified using a genome-wide search method, which could be classified into five classes (TaCWI-α, TaCWI-ß, TaCI-α, TaCI-ß, and TaVI) based on phylogenetic relationship. A total of 101 TaINVs were collinear with their ancestors in the synteny analysis, and we speculated that polyploidy events were the main force in the expansion of the TaINV gene family. Compared with TaCI, TaCWI and TaVI are more similar in gene structure and protein properties. Transcriptome sequencing analysis showed that TaINVs expressed in multiple tissues with different expression levels. Among 19 tissue-specific expressed TaINVs, 12 TaINVs showed grain-specific expression pattern and might play an important role in wheat grain development. In addition, qRT-PCR results further confirmed that TaCWI50 and TaVI27 show different expression in grain weight NILs. Our results demonstrated that the high expression of TaCWI50 and TaVI27 may be associated with a larger TGW phenotype. This work provides the foundations for understanding the grain development mechanism.


Assuntos
Triticum , beta-Frutofuranosidase , beta-Frutofuranosidase/genética , Filogenia , Perfilação da Expressão Gênica , Sintenia , Grão Comestível/genética
10.
Nat Commun ; 12(1): 6110, 2021 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-34671038

RESUMO

The SH2B family of adaptor proteins, SH2-B, APS, and LNK are key modulators of cellular signalling pathways. Whilst SH2-B and APS have been partially structurally and biochemically characterised, to date there has been no such characterisation of LNK. Here we present two crystal structures of the LNK substrate recognition domain, the SH2 domain, bound to phosphorylated motifs from JAK2 and EPOR, and biochemically define the basis for target recognition. The LNK SH2 domain adopts a canonical SH2 domain fold with an additional N-terminal helix. Targeted analysis of binding to phosphosites in signalling pathways indicated that specificity is conferred by amino acids one- and three-residues downstream of the phosphotyrosine. Several mutations in LNK showed impaired target binding in vitro and a reduced ability to inhibit signalling, allowing an understanding of the molecular basis of LNK dysfunction in variants identified in patients with myeloproliferative disease.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Motivos de Aminoácidos , Animais , Sítios de Ligação , Cristalografia por Raios X , Humanos , Janus Quinase 2/química , Janus Quinase 2/metabolismo , Janus Quinase 3/química , Janus Quinase 3/metabolismo , Camundongos , Mutação , Transtornos Mieloproliferativos/genética , Fosfotirosina , Ligação Proteica , Proteínas Proto-Oncogênicas c-kit/química , Proteínas Proto-Oncogênicas c-kit/metabolismo , Receptores da Eritropoetina/química , Receptores da Eritropoetina/metabolismo , Transdução de Sinais , Tirosina Quinase 3 Semelhante a fms/química , Tirosina Quinase 3 Semelhante a fms/metabolismo , Domínios de Homologia de src
11.
Cleft Palate Craniofac J ; 57(1): 65-72, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31296040

RESUMO

OBJECTIVE: This study examined the relationships between skeletal deformities and the pharyngeal airway of patients with nonsyndromic unilateral cleft lip and palate (UCLP). DESIGN: Retrospective study. SETTING: Orthodontics and Oral and Maxillofacial Surgery Departments in the Affiliated Hospital of Stomatology, Nanjing Medical University, China. PATIENTS, PARTICIPANTS: The sample comprised 30 nonsyndromic UCLP patients and 30 healthy controls. Each group has 23 males and 7 females. INTERVENTIONS: All cone-beam computed tomography images were obtained with the participant in the standard supine position and asked to bite with intercuspal position without swallowing or moving their heads and tongues during scanning. MAIN OUTCOME MEASURE(S): SNA, SNB, ANB, anterior cranial base, Wits appraisal, maxillary length (PTM-ANS || FH), maxillary position (S-PTM || FH), mandibular length (Go-Pog || MP), FMA, posterior face height, anterior face height, Posterior-Anterior face height, lower face height, pharyngeal airway volumes, and areas were evaluated by Dolphin imaging software. RESULTS: The UCLP group showed significantly decreased SNA, SNB, ANB, PTM-ANS || FH, S-PTM || FH, P-A Face Height compared with the controls. However, the airway volumes and areas showed no significant difference between 2 groups. The total airway volume and minimum cross-sectional area in UCLP patients were related to the Go-Pog || MP and FMA. CONCLUSIONS: Patients with UCLP have both the maxillary and mandibular deficiencies in the sagittal dimension. Both the sagittal and vertical relationships of the jaw might affect the airway volume and area. However, no significant difference was detected in airway volume and area in UCLP patients when compared with the controls.


Assuntos
Fenda Labial , Fissura Palatina , Cefalometria , China , Tomografia Computadorizada de Feixe Cônico , Feminino , Humanos , Masculino , Estudos Retrospectivos
12.
Food Chem ; 300: 125162, 2019 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31325745

RESUMO

Moringa oleifera is a worldwide cultivated edible and medicinal plant. Its seeds are rich in oil, proteins, and glucosinolates. A practical method was developed to simultaneously extract and separate the three groups of substances from M. oleifera seeds. Smashed seed material was loaded into columns with petroleum ether: ethanol 8:2 (PE-ethanol) and eluted sequentially with 4.8-fold PE-ethanol to extract oil, and 10.8-fold water to extract proteins and glucosinolates. More than 95% of oil, proteins, and glucosinolates were extracted. The extracts were separated automatically into ether (oil) phase and ethanol aqueous phase. The latter was further separated into proteins and glucosinolates by 70% ethanol precipitation. The main glucosinolate was identified by LC-MS as GLC (4-α-rhamnopyranosyloxy-benzyl glucosinolate). After purification, 22.3 g refined oil, 33.0 g proteins, and 5.5 g purified GLC from 100 g M. oleifera seeds were obtained. This study provides a simple and high-efficient method to utilize M. oleifera seeds.


Assuntos
Cromatografia Líquida/métodos , Glucosinolatos/isolamento & purificação , Espectrometria de Massas/métodos , Moringa oleifera/química , Óleos de Plantas/isolamento & purificação , Proteínas de Plantas/isolamento & purificação , Extratos Vegetais/química , Sementes/química
13.
Oxid Med Cell Longev ; 2017: 4082102, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29209448

RESUMO

Sepsis is a threatening health problem and characterized by microvascular dysfunction. In this study, we verified that LPS caused the downregulation of Sirt1 and the hyperpermeability of endothelial cells. Inhibition of Sirt1 with ex527 or Sirt1 siRNA displayed a higher permeability, while activation of Sirt1 with SRT1720 reversed the LPS-induced hyperpermeability, formation of fiber stress, and disruption of VE-cadherin distribution. In pulmonary microvascular vein endothelial cells isolated from wild-type mice, Sirt1 was attenuated upon LPS, while Sirt1 was preserved in a receptor of advanced glycation end product-knockout mice. The RAGE antibody could also diminish the downregulation and ubiquitination of Sirt1 in LPS-exposed human umbilical vein endothelial cells. An LPS-induced decrease in Sirt1 activity was attenuated by the RAGE antibody and TLR4 inhibitor. In vivo study also demonstrated the attenuating role of Sirt1 and RAGE knockout in LPS-induced increases in dextran leakage of mesenteric venules. Furthermore, activation of Sirt1 prevented LPS-induced decreases in the activity and expression of superoxide dismutase 2, as well as the increases in NADPH oxidase 4 and reactive oxygen species, while inhibition of Sirt1 aggravated the SOD2 decline. It also demonstrated that Sirt1-deacetylated p53 is required for p53 inactivation, which reversed the downregulation of ß-catenin caused by LPS.


Assuntos
Regulação para Baixo/efeitos dos fármacos , Lipopolissacarídeos/toxicidade , Permeabilidade/efeitos dos fármacos , Sirtuína 1/metabolismo , Animais , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidase 4/metabolismo , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Receptor para Produtos Finais de Glicação Avançada/deficiência , Receptor para Produtos Finais de Glicação Avançada/genética , Receptor para Produtos Finais de Glicação Avançada/imunologia , Sirtuína 1/antagonistas & inibidores , Sirtuína 1/genética , Superóxido Dismutase/metabolismo , Receptor 4 Toll-Like/antagonistas & inibidores , Receptor 4 Toll-Like/metabolismo , Proteína Supressora de Tumor p53/metabolismo , beta Catenina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA