Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Am J Phys Med Rehabil ; 103(10): 918-924, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38630557

RESUMO

OBJECTIVE: TNFAIP8 and TIPE2 belong to TNFa-induced protein 8 (TNFAIP8/TIPE) family. They control apoptosis and direct leukocyte migration. Nucleus pulposus cell loss is a hallmark of intervertebral disc degeneration in response to injury, and inflammation may cause pain. Here, we examined the effects of TNFAIP8/TIPE2 deficiency on the intervertebral discs in mice with these genes deleted. DESIGN: Tail intervertebral discs in Tnfaip8 or Tipe2 single and double knockout mice ( Tnfaip8 -/- , Tipe2 -/- , and Tnfaip8/Tipe2 dko) , and wild-type controls were injured. The spine motion segments were stained with safranin O to reveal proteoglycans. Macrophages were identified by immunostaining, and selected inflammatory marker and collagen gene expression was examined by Real Time PCR. RESULTS: The injured tail intervertebral discs of Tnfaip -/- , Tipe2 -/- , and Tnfaip8/Tipe2 dko mice all displayed higher levels of proteoglycans than wild-type controls. Fewer macrophages were found in the injured intervertebral discs of Tipe2 -/- and Tnfaip8/Tipe2 dko mice than wild type. Il6 , Adam8 , and Col1 gene expression was downregulated in the injured intervertebral discs of Tnfip8/Tipe2 dko mice. CONCLUSIONS: TNFAIP8 and TIPE2 loss of function ameliorated proteoglycan loss and inflammation in the injured intervertebral discs. They may serve as molecular targets to preserve disc structure and reduce inflammation.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular , Camundongos Knockout , Proteoglicanas , Animais , Camundongos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteoglicanas/metabolismo , Proteoglicanas/genética , Deleção de Genes , Disco Intervertebral/metabolismo , Disco Intervertebral/patologia , Inflamação , Degeneração do Disco Intervertebral/genética , Degeneração do Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/patologia , Macrófagos/metabolismo , Modelos Animais de Doenças , Proteínas Reguladoras de Apoptose
2.
J Bone Miner Res ; 39(2): 161-176, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38477740

RESUMO

Osteoarthritis (OA) affects multiple tissues in the knee joint, including the synovium and intra-articular adipose tissue (IAAT) that are attached to each other. However, whether these two tissues share the same progenitor cells and hence function as a single unit in joint homeostasis and diseases is largely unknown. Single-cell transcriptomic profiling of synovium and infrapatellar fat pad (IFP), the largest IAAT, from control and OA mice revealed five mesenchymal clusters and predicted mesenchymal progenitor cells (MPCs) as the common progenitors for other cells: synovial lining fibroblasts (SLFs), myofibroblasts (MFs), and preadipocytes 1 and 2. Histologic examination of joints in reporter mice having Dpp4-CreER and Prg4-CreER that label MPCs and SLFs, respectively, demonstrated that Dpp4+ MPCs reside in the synovial sublining layer and give rise to Prg4+ SLFs and Perilipin+ adipocytes during growth and OA progression. After OA injury, both MPCs and SLFs gave rise to MFs, which remained in the thickened synovium at later stages of OA. In culture, Dpp4+ MPCs possessed mesenchymal progenitor properties, such as proliferation and multilineage differentiation. In contrast, Prg4+ SLFs did not contribute to adipocytes in IFP and Prg4+ cells barely grew in vitro. Taken together, we demonstrate that the synovium and joint fat pad are one integrated functional tissue sharing common mesenchymal progenitors and undergoing coordinated changes during OA progression.


Both synovium and intra-articular adipose tissue (IAAT) in knee joint play a critical role in joint health and osteoarthritis (OA) progression. Recent single-cell RNA-sequencing studies have been performed on the mouse and human synovium. However, IAATs residing in close proximity to the synovium have not been studied yet. Our study reveals mesenchymal cell heterogeneity of synovium/infrapatellar fat pad (Syn/IFP) tissue and their OA responses. We identify Dpp4+ multipotent progenitors as a source that give rise to Prg4+ lining layer fibroblasts in the synovium, adipocytes in the IFP, and myofibroblasts in the OA Syn/IFP tissue. Our work demonstrates that Syn/IFP is a functionally connected tissue that shares common mesenchymal progenitors and undergoes coordinated OA changes. This novel insight advances our knowledge of previously understudied joint tissues and provides new directions for drug discovery to treat joint disorders.


Assuntos
Tecido Adiposo , Células-Tronco Mesenquimais , Membrana Sinovial , Animais , Membrana Sinovial/patologia , Membrana Sinovial/metabolismo , Células-Tronco Mesenquimais/metabolismo , Células-Tronco Mesenquimais/patologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Camundongos , Osteoartrite/patologia , Osteoartrite/metabolismo , Patela/patologia , Patela/metabolismo
3.
Anat Rec (Hoboken) ; 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37747411

RESUMO

Achondroplasia, the most common chondrodysplasia in humans, is caused by one of two gain of function mutations localized in the transmembrane domain of fibroblast growth factor receptor 3 (FGFR3) leading to constitutive activation of FGFR3 and subsequent growth plate cartilage and bone defects. Phenotypic features of achondroplasia include macrocephaly with frontal bossing, midface hypoplasia, disproportionate shortening of the extremities, brachydactyly with trident configuration of the hand, and bowed legs. The condition is defined primarily on postnatal effects on bone and cartilage, and embryonic development of tissues in affected individuals is not well studied. Using the Fgfr3Y367C/+ mouse model of achondroplasia, we investigated the developing chondrocranium and Meckel's cartilage (MC) at embryonic days (E)14.5 and E16.5. Sparse hand annotations of chondrocranial and MC cartilages visualized in phosphotungstic acid enhanced three-dimensional (3D) micro-computed tomography (microCT) images were used to train our automatic deep learning-based 3D segmentation model and produce 3D isosurfaces of the chondrocranium and MC. Using 3D coordinates of landmarks measured on the 3D isosurfaces, we quantified differences in the chondrocranium and MC of Fgfr3Y367C/+ mice relative to those of their unaffected littermates. Statistically significant differences in morphology and growth of the chondrocranium and MC were found, indicating direct effects of this Fgfr3 mutation on embryonic cranial and pharyngeal cartilages, which in turn can secondarily affect cranial dermal bone development. Our results support the suggestion that early therapeutic intervention during cartilage formation may lessen the effects of this condition.

4.
Food Funct ; 14(9): 4129-4142, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37042256

RESUMO

Lactiplantibacillus plantarum is a lactic acid bacterium widely used in food production. Coxsackievirus B3 (CVB3) is an important human pathogen associated with acute pancreatitis development, and no antiviral therapeutics or vaccines are approved to treat or prevent its infection. However, whether L. plantarum could inhibit CVB3 infection remains unclear. Here, L. plantarum FLPL05 showed antiviral activity against CVB3 infection in vivo and in vitro. Pretreatment with L. plantarum FLPL05 reduced serum amylase levels, CVB3 viral load in the pancreas, serum pro-inflammatory cytokine levels, and macrophage infiltration in CVB3-infected mice. In mice, L. plantarum FLPL05 inhibited CVB3-induced pancreas apoptosis via the B cell leukemia/lymphoma 2 (BCL2)/BCL2-associated X protein (BAX)/caspase-3 (CASP3) signaling pathway. Furthermore, L. plantarum FLPL05 reduced CVB3 replication, protected cells from the cytopathic effect of CVB3 infection, and inhibited cell apoptosis. Moreover, L. plantarum FLPL05's exopolysaccharide (EPS) had activity against CVB3 in vitro, reducing the CVB3 titer and improving cell activity. Therefore, L. plantarum FLPL05 pretreatment improved CVB3-induced pancreatitis by partially reversing pancreatitis, which might be associated with EPS. Consequently, L. plantarum FLPL05 could be a potential probiotic with antiviral activity against CVB3.


Assuntos
Infecções por Coxsackievirus , Pancreatite , Humanos , Camundongos , Animais , Caspase 3/metabolismo , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Enterovirus Humano B/metabolismo , Doença Aguda , Pancreatite/tratamento farmacológico , Transdução de Sinais , Infecções por Coxsackievirus/tratamento farmacológico , Antivirais/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
5.
Cureus ; 14(11): e31267, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36505156

RESUMO

A middle-aged female patient who presented with back pain was found incidentally to have a renal mass by magnetic resonance imaging (MRI). Further imaging, including computerized tomography (CT) with contrast, suggested a high likelihood of malignancy. Following surgical resection, the tumor was found to be a rare benign lesion on subsequent pathological examination. The patient had conservative treatment for her presenting spine issues and is doing very well. Prompt work-up and treatment of incidental findings by the team of primary care, physical medicine and rehabilitation physicians, radiologists, pathologists, and surgeons helped to ensure a good outcome. Residents had a learning opportunity about the disease and on timely management of incidental findings.

6.
Cancers (Basel) ; 14(24)2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36551691

RESUMO

Colon cancer is the second leading cause of cancer-related death, and there are few effective therapies for colon cancer. This study explored the use of coxsackievirus group B3 (CVB3) as an oncolytic virus for the treatment of colon cancer. In this study, we verified that CVB3 induces death of colon cancer cell lines by directly observing cell morphology and Western blot results, and observed the oncolytic effects of CVB3 by constructing an immunodeficient nude mice model. Our data show that CVB3 induces pyroptosis in colon cancer cell lines. Mechanistically, we demonstrated that CVB3 causes cleavage of gasdermin E (GSDME), but not gasdermin D (GSDMD), by activating caspase-3. This leads to production of GSDME N-termini and the development of pores in the plasma membrane, inducing pyroptosis of colon cancer cell lines. We also demonstrate that CVB3-induced pyroptosis is promoted by reactive oxygen species (ROS). Finally, in vivo studies using immunodeficient nude mice revealed that intratumoral injection of CVB3 led to significant tumor regression. Our findings indicate that CVB3 has oncolytic activity in colon cancer cell lines via GSDME-mediated pyroptosis.

7.
Appl Microbiol Biotechnol ; 106(22): 7377-7386, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36216901

RESUMO

Ferroptosis is a recently discovered modulated cell death mechanism caused by the accumulation of iron-dependent lipid peroxides to toxic levels and plays an important role in tumor immunology and neurology. Recent studies have shown that ferroptosis may play a crucial role in bacterial infection pathogenesis, which may be useful in anti-infection therapies. However, how bacteria enter cells to induce ferroptosis after invading the host immune system remains largely unknown. In addition, the current studies only focus on the relationship between a single bacterial species or genus and host cell ferroptosis, and there is no systematic summary of its regulatory mechanism. Therefore, our review firstly sums up the role of ferroptosis in bacterial infection and its regulatory mechanism, and innovatively speculates on the function and potential mechanism of extracellular vesicles (EVs) in bacterial-induced ferroptosis, in order to provide possible novel directions and ideas for future anti-infection research. KEY POINTS: • Ferroptosis presents a novel mechanism for bacterial host interaction • EVs provide the potential mechanism for bacterial-induced ferroptosis • The relationship of EVs with ferroptosis provides possible directions for future treatment of bacterial infection.


Assuntos
Vesículas Extracelulares , Ferroptose , Vesículas Extracelulares/metabolismo , Morte Celular , Ferro/metabolismo , Bactérias/metabolismo
8.
Am J Phys Med Rehabil ; 101(10): 983-987, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34954738

RESUMO

ABSTRACT: Patients with back pain comprise a large proportion of the outpatient practice among physiatrists. Diagnostic tools are limited to clinical history, physical examinations, and imaging. Nonsurgical treatments are largely empirical, encompassing medications, physical therapy, manual treatments, and interventional spinal procedures. A body of literature is emerging confirming elevated levels of biomarkers including inflammatory cytokines in patients with back pain and/or radiculopathy, largely because the protein assay sensitivity has increased. These biomarkers may serve as tools to assist diagnosis and assess outcomes.The presence of inflammatory mediators in the intervertebral disc tissues and blood helped to confirm the inflammatory underpinnings of back pain related to intervertebral disc degeneration. Literature reviewed here suggests that biomarkers could assist clinical diagnosis and monitor physiological outcomes during and after treatments for spine-related pain. Biomarkers must be measured in a large and diverse asymptomatic population, in the context of age and comorbidities to prevent false-positive tests. These levels can then be rationally compared with those in patients with back disorders including discogenic back pain, radiculopathy, and spinal stenosis. While studies reviewed here used "candidate marker" approaches, future nonbiased approaches in clearly defined patient populations could uncover novel biomarkers in clinical management of patients.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Radiculopatia , Estenose Espinal , Dor nas Costas , Biomarcadores , Humanos , Degeneração do Disco Intervertebral/cirurgia , Estenose Espinal/tratamento farmacológico
9.
Elife ; 102021 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-34085927

RESUMO

Meniscal tears are associated with a high risk of osteoarthritis but currently have no disease-modifying therapies. Using a Gli1 reporter line, we found that Gli1+ cells contribute to the development of meniscus horns from 2 weeks of age. In adult mice, Gli1+ cells resided at the superficial layer of meniscus and expressed known mesenchymal progenitor markers. In culture, meniscal Gli1+ cells possessed high progenitor activities under the control of Hh signal. Meniscus injury at the anterior horn induced a quick expansion of Gli1-lineage cells. Normally, meniscal tissue healed slowly, leading to cartilage degeneration. Ablation of Gli1+ cells further hindered this repair process. Strikingly, intra-articular injection of Gli1+ meniscal cells or an Hh agonist right after injury accelerated the bridging of the interrupted ends and attenuated signs of osteoarthritis. Taken together, our work identified a novel progenitor population in meniscus and proposes a new treatment for repairing injured meniscus and preventing osteoarthritis.


Assuntos
Proteínas Hedgehog/metabolismo , Meniscos Tibiais/cirurgia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/metabolismo , Osteoartrite do Joelho/prevenção & controle , Lesões do Menisco Tibial/cirurgia , Cicatrização , Proteína GLI1 em Dedos de Zinco/metabolismo , Animais , Linhagem da Célula , Proliferação de Células , Modelos Animais de Doenças , Proteínas Hedgehog/genética , Humanos , Masculino , Meniscos Tibiais/metabolismo , Meniscos Tibiais/patologia , Camundongos Knockout , Osteoartrite do Joelho/genética , Osteoartrite do Joelho/metabolismo , Osteoartrite do Joelho/patologia , Transdução de Sinais , Suínos , Porco Miniatura , Lesões do Menisco Tibial/genética , Lesões do Menisco Tibial/metabolismo , Lesões do Menisco Tibial/patologia , Fatores de Tempo , Proteína GLI1 em Dedos de Zinco/genética
10.
Elife ; 92020 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-32286228

RESUMO

Bone marrow mesenchymal lineage cells are a heterogeneous cell population involved in bone homeostasis and diseases such as osteoporosis. While it is long postulated that they originate from mesenchymal stem cells, the true identity of progenitors and their in vivo bifurcated differentiation routes into osteoblasts and adipocytes remain poorly understood. Here, by employing large scale single cell transcriptome analysis, we computationally defined mesenchymal progenitors at different stages and delineated their bi-lineage differentiation paths in young, adult and aging mice. One identified subpopulation is a unique cell type that expresses adipocyte markers but contains no lipid droplets. As non-proliferative precursors for adipocytes, they exist abundantly as pericytes and stromal cells that form a ubiquitous 3D network inside the marrow cavity. Functionally they play critical roles in maintaining marrow vasculature and suppressing bone formation. Therefore, we name them marrow adipogenic lineage precursors (MALPs) and conclude that they are a newly identified component of marrow adipose tissue.


Assuntos
Células da Medula Óssea/citologia , Diferenciação Celular/fisiologia , Linhagem da Célula , Células-Tronco Mesenquimais/citologia , Animais , Genômica/métodos , Camundongos , Transcriptoma
11.
J Bone Miner Res ; 34(3): 520-532, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30602062

RESUMO

Atrophic nonunion represents an extremely challenging clinical dilemma for both physicians and fracture patients alike, but its underlying mechanisms are still largely unknown. Here, we established a mouse model that recapitulates clinical atrophic nonunion through the administration of focal radiation to the long bone midshaft 2 weeks before a closed, semistabilized, transverse fracture. Strikingly, fractures in previously irradiated bone showed no bony bridging with a 100% nonunion rate. Radiation triggered distinct repair responses, separated by the fracture line: a less robust callus formation at the proximal side (close to the knee) and bony atrophy at the distal side (close to the ankle) characterized by sustained fibrotic cells and type I collagen-rich matrix. These fibrotic cells, similar to human nonunion samples, lacked osteogenic and chondrogenic differentiation and exhibited impaired blood vessel infiltration. Mechanistically, focal radiation reduced the numbers of periosteal mesenchymal progenitors and blood vessels and blunted injury-induced proliferation of mesenchymal progenitors shortly after fracture, with greater damage particularly at the distal side. In culture, radiation drastically suppressed proliferation of periosteal mesenchymal progenitors. Radiation did not affect hypoxia-induced periosteal cell chondrogenesis but greatly reduced osteogenic differentiation. Lineage tracing using multiple reporter mouse models revealed that mesenchymal progenitors within the bone marrow or along the periosteal bone surface did not contribute to nonunion fibrosis. Therefore, we conclude that atrophic nonunion fractures are caused by severe damage to the periosteal mesenchymal progenitors and are accompanied by an extraskeletal, fibro-cellular response. In addition, we present this radiation-induced periosteal damage model as a new, clinically relevant tool to study the biologic basis of therapies for atrophic nonunion. © 2018 American Society for Bone and Mineral Research.


Assuntos
Calo Ósseo/metabolismo , Fraturas Ósseas/metabolismo , Fraturas não Consolidadas/metabolismo , Células-Tronco Mesenquimais/metabolismo , Periósteo/metabolismo , Animais , Calo Ósseo/patologia , Condrogênese/genética , Fibrose , Fraturas Ósseas/genética , Fraturas Ósseas/patologia , Fraturas não Consolidadas/genética , Fraturas não Consolidadas/patologia , Masculino , Células-Tronco Mesenquimais/patologia , Camundongos , Camundongos Transgênicos , Periósteo/patologia
12.
FASEB J ; 32(1): 52-62, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28860152

RESUMO

Bone atrophy and its related fragility fractures are frequent, late side effects of radiotherapy in cancer survivors and have a detrimental impact on their quality of life. In another study, we showed that parathyroid hormone 1-34 and anti-sclerostin antibody attenuates radiation-induced bone damage by accelerating DNA repair in osteoblasts. DNA damage responses are partially regulated by the ubiquitin proteasome pathway. In the current study, we examined whether proteasome inhibitors have similar bone-protective effects against radiation damage. MG132 treatment greatly reduced radiation-induced apoptosis in cultured osteoblastic cells. This survival effect was owing to accelerated DNA repair as revealed by γH2AX foci and comet assays and to the up-regulation of Ku70 and DNA-dependent protein kinase, catalytic subunit, essential DNA repair proteins in the nonhomologous end-joining pathway. Administration of bortezomib (Bzb) reversed the loss of trabecular bone structure and strength in mice at 4 wk after focal radiation. Histomorphometry revealed that Bzb significantly increased the number of osteoblasts and activity in the irradiated area and suppressed the number and activity of osteoclasts, regardless of irradiation. Two weeks of Bzb treatment accelerated DNA repair in bone-lining osteoblasts and thus promoted their survival. Meanwhile, it also inhibited bone marrow adiposity. Taken together, we demonstrate a novel role of proteasome inhibitors in treating radiation-induced osteoporosis.-Chandra, A., Wang, L., Young, T., Zhong, L., Tseng, W.-J., Levine, M. A., Cengel, K., Liu, X. S., Zhang, Y., Pignolo, R. J., Qin, L. Proteasome inhibitor bortezomib is a novel therapeutic agent for focal radiation-induced osteoporosis.


Assuntos
Bortezomib/farmacologia , Osteoporose/tratamento farmacológico , Inibidores de Proteassoma/farmacologia , Lesões por Radiação/tratamento farmacológico , Protetores contra Radiação/farmacologia , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Remodelação Óssea/efeitos dos fármacos , Remodelação Óssea/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Osteoblastos/efeitos dos fármacos , Osteoblastos/patologia , Osteoblastos/efeitos da radiação , Osteoporose/metabolismo , Osteoporose/patologia , Lesões por Radiação/metabolismo , Lesões por Radiação/patologia , Microtomografia por Raio-X
13.
Am J Phys Med Rehabil ; 97(3): 170-177, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28863006

RESUMO

OBJECTIVES: Intervertebral disc (IVD) degenerates progressively with age and after injuries. In this study, we aimed to characterize early molecular events underlying disc degeneration using a mouse tail IVD injury model. DESIGN: We have established a transcutaneous minimally invasive approach to induce mouse tail IVD injury under fluoroscopic guidance. Morphological and molecular changes in the injured IVDs are compared with the baseline features of adjacent intact levels. RESULTS: After needle puncture, tail IVDs exhibited time-dependent histological changes. The aggrecan neoepitope VDIPEN was evident from 2 days to 4 wks after injury. A disintegrin and metalloproteinase domain-containing protein 8 (adam8) is a surface protease known to cleave fibronectin in the IVD. Gene expression of adam8 was elevated at all time points after injury, whereas the increase of C-X-C motif chemokine ligand (cxcl)-1 gene expression was statistically significant at 2 days and 2 wks after injury. Type 1 collagen gene expression decreased initially at day 2 but increased at 2 wks after injury, whereas no significant change in type 2 collagen gene expression was observed. The extracellular matrix gene expression pattern is consistent with fibrocartilage formation after injury. CONCLUSIONS: Mouse tail IVDs degenerate after needle puncture, as demonstrated by histological changes and aggrecan degradation. The minimally invasive tail IVD injury model should prove useful to investigators studying mechanisms of IVD degeneration and repair.


Assuntos
Proteínas ADAM/metabolismo , Quimiocina CXCL1/metabolismo , Degeneração do Disco Intervertebral/etiologia , Degeneração do Disco Intervertebral/patologia , Proteínas ADAM/genética , Animais , Quimiocina CXCL1/genética , Modelos Animais de Doenças , Feminino , Degeneração do Disco Intervertebral/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/metabolismo
14.
Mol Ther ; 26(1): 199-207, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-28988712

RESUMO

Repair and regeneration of inflammation-induced bone loss remains a clinical challenge. LL37, an antimicrobial peptide, plays critical roles in cell migration, cytokine production, apoptosis, and angiogenesis. Migration of stem cells to the affected site and promotion of vascularization are essential for tissue engineering therapy, including bone regeneration. However, it is largely unknown whether LL37 affects mesenchymal stem cell (MSC) behavior and bone morphogenetic protein 2 (BMP2)-mediated bone repair during the bone pathologic remodeling process. By performing in vitro and in vivo studies with MSCs and a lipopolysaccharide (LPS)-induced mouse calvarial osteolytic bone defect model, we found that LL37 significantly promotes cell differentiation, migration, and proliferation in both unmodified MSCs and BMP2 gene-modified MSCs. Additionally, LL37 inhibited LPS-induced osteoclast formation and bacterial activity in vitro. Furthermore, the combination of LL37 and BMP2 markedly promoted MSC-mediated angiogenesis and bone repair and regeneration in LPS-induced osteolytic defects in mouse calvaria. These findings demonstrate for the first time that LL37 can be a potential candidate drug for promoting osteogenesis and for inhibiting bacterial growth and osteoclastogenesis, and that the combination of BMP2 and LL37 is ideal for MSC-mediated bone regeneration, especially for inflammation-induced bone loss.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteína Morfogenética Óssea 2/metabolismo , Regeneração Óssea , Células-Tronco Mesenquimais/metabolismo , Crânio/fisiologia , Animais , Biomarcadores , Proteína Morfogenética Óssea 2/farmacologia , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Lipopolissacarídeos , Camundongos , Osteoclastos/metabolismo , Osteogênese , Osteólise
15.
J Bone Miner Res ; 32(2): 360-372, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27635523

RESUMO

Focal radiotherapy is frequently associated with skeletal damage within the radiation field. Our previous in vitro study showed that activation of Wnt/ß-catenin pathway can overcome radiation-induced DNA damage and apoptosis of osteoblastic cells. Neutralization of circulating sclerostin with a monoclonal antibody (Scl-Ab) is an innovative approach for treating osteoporosis by enhancing Wnt/ß-catenin signaling in bone. Together with the fact that focal radiation increases sclerostin amount in bone, we sought to determine whether weekly treatment with Scl-Ab would prevent focal radiotherapy-induced osteoporosis in mice. Micro-CT and histomorphometric analyses demonstrated that Scl-Ab blocked trabecular bone structural deterioration after radiation by partially preserving osteoblast number and activity. Consistently, trabecular bone in sclerostin null mice was resistant to radiation via the same mechanism. Scl-Ab accelerated DNA repair in osteoblasts after radiation by reducing the number of γ-H2AX foci, a DNA double-strand break marker, and increasing the amount of Ku70, a DNA repair protein, thus protecting osteoblasts from radiation-induced apoptosis. In osteocytes, apart from using similar DNA repair mechanism to rescue osteocyte apoptosis, Scl-Ab restored the osteocyte canaliculi structure that was otherwise damaged by radiation. Using a lineage tracing approach that labels all mesenchymal lineage cells in the endosteal bone marrow, we demonstrated that radiation damage to mesenchymal progenitors mainly involves shifting their fate to adipocytes and arresting their proliferation ability but not inducing apoptosis, which are different mechanisms from radiation damage to mature bone forming cells. Scl-Ab treatment partially blocked the lineage shift but had no effect on the loss of proliferation potential. Taken together, our studies provide proof-of-principle evidence for a novel use of Scl-Ab as a therapeutic treatment for radiation-induced osteoporosis and establish molecular and cellular mechanisms that support such treatment. © 2016 American Society for Bone and Mineral Research.


Assuntos
Reabsorção Óssea/etiologia , Reabsorção Óssea/metabolismo , Glicoproteínas/metabolismo , Osteoblastos/metabolismo , Lesões por Radiação/complicações , Lesões por Radiação/metabolismo , Células-Tronco/metabolismo , Proteínas Adaptadoras de Transdução de Sinal , Animais , Anticorpos/farmacologia , Anticorpos/uso terapêutico , Apoptose/efeitos dos fármacos , Medula Óssea/patologia , Osso Esponjoso/patologia , Linhagem da Célula/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intercelular , Masculino , Mesoderma/patologia , Camundongos Endogâmicos C57BL , Osteoblastos/efeitos dos fármacos , Osteócitos/efeitos dos fármacos , Osteócitos/patologia , Osteogênese/efeitos dos fármacos , Células-Tronco/efeitos dos fármacos
16.
Transl Res ; 181: 49-58, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27986604

RESUMO

Spinal conditions related to intervertebral disc (IVD) degeneration cost billions of dollars in the US annually. Despite the prevalence and soaring cost, there is no specific treatment that restores the physiological function of the diseased IVD. Thus, it is vital to develop new treatment strategies to repair the degenerating IVD. Persons with IVD degeneration without back pain or radicular leg pain often do not require any intervention. Only patients with severe back pain related to the IVD degeneration or biomechanical instability are likely candidates for cell therapy. The IVD progressively degenerates with age in humans, and strategies to repair the IVD depend on the stage of degeneration. Cell therapy and cell-based gene therapy aim to address moderate disc degeneration; advanced stage disease may require surgery. Studies involving autologous, allogeneic, and xenogeneic cells have all shown good survival of these cells in the IVD, confirming that the disc niche is an immunologically privileged site, permitting long-term survival of transplanted cells. All of the animal studies reviewed here reported some improvement in disc structure, and 2 studies showed attenuation of local inflammation. Among the 50 studies reviewed, 25 used some type of scaffold, and cell leakage is a consistently noted problem, though some studies showed reduced cell leakage. Hydrogel scaffolds may prevent cell leakage and provide biomechanical support until cells can become established matrix producers. However, these gels need to be optimized to prevent this leakage. Many animal models have been leveraged in this research space. Rabbit is the most frequently used model (28 of 50), followed by rat, pig, and dog. Sheep and goat IVDs resemble those of humans in size and in the absence of notochordal cells. Despite this advantage, there were only 2 sheep and 1 goat studies of 50 studies in this cohort. It is also unclear if a study in large animals is needed before clinical trials since some of the clinical trials proceeded without a study in large animals. No animal studies or clinical trials completely restored IVD structure. However, results suggest cause for optimism. In light of the fact that patients primarily seek medical care for back pain, attenuating local inflammation should be a priority in benchmarks for success. Clinicians generally agree that short-term back pain should be treated conservatively. When interventions are considered, the ideal therapy should also be minimally invasive and concurrent with other procedures such as discography or discectomy. Restoration of tissue structure and preservation of spinal motion are desirable.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Degeneração do Disco Intervertebral/terapia , Animais , Dor nas Costas/complicações , Modelos Animais de Doenças , Humanos , Seleção de Pacientes , Alicerces Teciduais/química
17.
PLoS One ; 11(6): e0156783, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27280771

RESUMO

Osteoarthritis (OA) is one of most common skeletal disorders and can affect synovial joints such as knee and ankle joints. α5 integrin, a major fibronectin receptor, is expressed in articular cartilage and has been demonstrated to play roles in synovial joint development and in the regulation of chondrocyte survival and matrix degradation in articular cartilage. We hypothesized that α5 integrin signaling is involved in pathogenesis of OA. To test this, we generated compound mice that conditionally ablate α5 integrin in the synovial joints using the Gdf5Cre system. The compound mice were born normally and had an overall appearance similar to the control mice. However, when the mutant mice received the OA surgery, they showed stronger resistance to osteoarthritic changes than the control. Specifically the mutant knee joints presented lower levels of cartilage matrix and structure loss and synovial changes and showed stronger biomechanical properties than the control knee joints. These findings indicate that α5 integrin may not be essential for synovial joint development but play a causative role in induction of osteoarthritic changes.


Assuntos
Cartilagem Articular/patologia , Integrina alfa5/fisiologia , Articulação do Joelho/fisiopatologia , Osteoartrite do Joelho/fisiopatologia , Líquido Sinovial/metabolismo , Animais , Cartilagem Articular/metabolismo , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
18.
Am J Phys Med Rehabil ; 95(6): 407-15, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-26495812

RESUMO

OBJECTIVE: To examine the link between cytokines in intervertebral disc (IVD) tissues and axial back pain. DESIGN: In vitro study with human IVD cells cultured from cadaveric donors and annulus fibrosus (AF) tissues from patients. RESULTS: Cultured nucleus pulposus (NP) and AF cells were stimulated with interleukin (IL)-1ß. IL-8 and IL-7 gene expression was analyzed using real-time polymerase chain reaction. IL-8 protein was quantified by enzyme-linked immunosorbent assay. After IL-1ß stimulation, IL-8 gene expression increased 26,541 fold in NP cells and 22,429 fold in AF cells, whereas protein released by the NP and AF cells increased 2,389- and 1,784-fold, respectively. IL-7 gene expression increased 3.3-fold in NP cells (P < 0.05).Cytokine profiles in AF tissues collected from patients undergoing surgery for back pain (painful group) or scoliosis (controls) were compared by cytokine array. IL-8 protein in the AF tissues from patients with back pain was 1.81-fold of that in controls. IL-7 and IL-10 in AF tissues from the painful group were 6.87 and 4.63 times greater than the corresponding values in controls, respectively (P < 0.05). CONCLUSION: Inflammatory mediators found in AF tissues from patients with discogenic back pain are likely produced by IVD cells and may play a key role in back pain.


Assuntos
Anel Fibroso/metabolismo , Dor nas Costas/metabolismo , Interleucinas/metabolismo , Disco Intervertebral/citologia , Núcleo Pulposo/metabolismo , Adulto , Idoso , Ensaio de Imunoadsorção Enzimática , Feminino , Expressão Gênica , Humanos , Interleucina-10/metabolismo , Interleucina-7/metabolismo , Interleucina-8/metabolismo , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
19.
Bone Res ; 3: 15028, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528401

RESUMO

Spinal cord injury (SCI)-induced bone loss represents the most severe osteoporosis with no effective treatment. Past animal studies have focused primarily on long bones at the acute stage using adolescent rodents. To mimic chronic SCI in human patients, we performed a comprehensive analysis of long-term structural and mechanical changes in axial and appendicular bones in adult rats after SCI. In this experiment, 4-month-old Fischer 344 male rats received a clinically relevant T13 contusion injury. Sixteen weeks later, sublesional femurs, tibiae, and L4 vertebrae, supralesional humeri, and blood were collected from these rats and additional non-surgery rats for micro-computed tomography (µCT), micro-finite element, histology, and serum biochemical analyses. At trabecular sites, extreme losses of bone structure and mechanical competence were detected in the metaphysis of sublesional long bones after SCI, while the subchondral part of the same bones showed much milder damage. Marked reductions in bone mass and strength were also observed in sublesional L4 vertebrae but not in supralesional humeri. At cortical sites, SCI induced structural and strength damage in both sub- and supralesional long bones. These changes were accompanied by diminished osteoblast number and activity and increased osteoclast number and activity. Taken together, our study revealed site-specific effects of SCI on bone and demonstrated sustained inhibition of bone formation and elevation of bone resorption at the chronic stage of SCI.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA