Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
J Orthop Surg Res ; 19(1): 359, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38880901

RESUMO

OBJECTIVE: A novel Proximal Femoral Bionic Nail (PFBN) has been developed by a research team for the treatment of femoral neck fractures. This study aims to compare the biomechanical properties of the innovative PFBN with those of the conventional Inverted Triangular Cannulated Screw (ITCS) fixation method through biomechanical testing. METHODS: Sixteen male femoral specimens preserved in formalin were selected, with the donors' age at death averaging 56.1 ± 6.3 years (range 47-64 years), and a mean age of 51.4 years. The femurs showed no visible damage and were examined by X-rays to exclude diseases affecting bone quality such as tumors, severe osteoporosis, and deformities. The 16 femoral specimens were randomly divided into an experimental group (n = 8) and a control group (n = 8). All femurs were prepared with Pauwels type III femoral neck fractures, fixed with PFBN in the experimental group and ITCS in the control group. Displacement and stress limits of each specimen were measured through cyclic compression tests and failure experiments, and vertical displacement and strain values under a 600 N vertical load were measured in all specimens through vertical compression tests. RESULTS: In the vertical compression test, the average displacement at the anterior head region of the femur was 0.362 mm for the PFBN group, significantly less than the 0.480 mm for the ITCS group (p < 0.001). At the fracture line area, the average displacement for the PFBN group was also lower than that of the ITCS group (0.196 mm vs. 0.324 mm, p < 0.001). The difference in displacement in the shaft area was smaller, but the average displacement for the PFBN group (0.049 mm) was still significantly less than that for the ITCS group (0.062 mm, p = 0.016). The situation was similar on the posterior side of the femur. The average displacements in the head area, fracture line area, and shaft area for the PFBN group were 0.300 mm, 0.168 mm, and 0.081 mm, respectively, while those for the ITCS group were 0.558 mm, 0.274 mm, and 0.041 mm, with significant differences in all areas (p < 0.001). The average strain in the anterior head area for the PFBN group was 4947 µm/m, significantly less than the 1540 µm/m for the ITCS group (p < 0.001). Likewise, in the fracture line and shaft areas, the average strains for the PFBN group were significantly less than those for the ITCS group (p < 0.05). In the posterior head area, the average strain for the PFBN group was 4861 µm/m, significantly less than the 1442 µm/m for the ITCS group (p < 0.001). The strain conditions in the fracture line and shaft areas also showed the PFBN group was superior to the ITCS group (p < 0.001). In cyclic loading experiments, the PFBN fixation showed smaller maximum displacement (1.269 mm vs. 1.808 mm, p < 0.001), indicating better stability. In the failure experiments, the maximum failure load that the PFBN-fixated fracture block could withstand was significantly higher than that for the ITCS fixation (1817 N vs. 1116 N, p < 0.001). CONCLUSION: The PFBN can meet the biomechanical requirements for internal fixation of femoral neck fractures. PFBN is superior in biomechanical stability compared to ITCS, particularly showing less displacement and higher failure resistance in cyclic load and failure experiments. While there are differences in strain performance in different regions between the two fixation methods, overall, PFBN provides superior stability.


Assuntos
Pinos Ortopédicos , Parafusos Ósseos , Fraturas do Colo Femoral , Fixação Intramedular de Fraturas , Humanos , Fraturas do Colo Femoral/cirurgia , Fraturas do Colo Femoral/diagnóstico por imagem , Pessoa de Meia-Idade , Masculino , Fenômenos Biomecânicos , Fixação Intramedular de Fraturas/métodos , Fixação Intramedular de Fraturas/instrumentação , Biônica/métodos
2.
Adv Biol (Weinh) ; 8(5): e2300673, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38456367

RESUMO

This research utilized single-cell RNA sequencing to map the immune cell landscape in sepsis, revealing 28 distinct cell clusters and categorizing them into nine major types. Delving into the monocyte/macrophage subclusters, 12 unique subclusters are identified and pathway enrichment analyses are conducted using KEGG and GO, discovering enriched pathways such as oxidative phosphorylation and antigen processing. Further GSVA and AUCell assessments show varied activation of interferon pathways, especially in subclusters 4 and 11. The clinical correlation analysis reveals genes significantly linked to survival outcomes. Additionally, cellular differentiation in these subclusters is explored. Building on these insights, the differential gene expression within these subclusters is specifically scrutinized, which reveal MYOF as a key gene with elevated expression levels in the survivor group. This finding is further supported by in-depth pathway enrichment analysis and the examination of cellular differentiation trajectories, where MYOF's role became evident in the context of immune response regulation and sepsis progression. Validating the role of the MYOF gene in sepsis, a dose-dependent response to LPS in THP-1 cells and C57 mice is observed. Finally, inter-cellular communications are analyzed, particularly focusing on the MYOF+Mono/Macro subcluster, which indicates a pivotal role in immune regulation and potential therapeutic targeting.


Assuntos
Macrófagos , Monócitos , Sepse , Análise de Célula Única , Humanos , Sepse/imunologia , Sepse/genética , Sepse/metabolismo , Monócitos/imunologia , Monócitos/metabolismo , Camundongos , Análise de Célula Única/métodos , Macrófagos/imunologia , Macrófagos/metabolismo , Animais , Prognóstico , Camundongos Endogâmicos C57BL , Masculino , Células THP-1 , Feminino
3.
Oncogenesis ; 13(1): 10, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38424455

RESUMO

Endocrine receptors play an essential role in tumor metabolic reprogramming and represent a promising therapeutic avenue in pancreatic ductal adenocarcinoma (PDAC). PDAC is characterized by a nutrient-deprived microenvironment. To meet their ascendant energy demands, cancer cells can internalize extracellular proteins via macropinocytosis. However, the roles of endocrine receptors in macropinocytosis are not clear. In this study, we found that progesterone receptor (PGR), a steroid-responsive nuclear receptor, is highly expressed in PDAC tissues obtained from both patients and transgenic LSL-KrasG12D/+; LSL-Trp53R172H/+; PDX1-cre (KPC) mice. Moreover, PGR knockdown restrained PDAC cell survival and tumor growth both in vitro and in vivo. Genetic and pharmacological PGR inhibition resulted in a marked attenuation of macropinocytosis in PDAC cells and subcutaneous tumor models, indicating the involvement of this receptor in macropinocytosis regulation. Mechanistically, PGR upregulated CDC42, a critical regulator in macropinocytosis, through PGR-mediated transcriptional activation. These data deepen the understanding of how the endocrine system influences tumor progression via a non-classical pathway and provide a novel therapeutic option for patients with PDAC.

4.
Comput Struct Biotechnol J ; 23: 396-405, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38235358

RESUMO

The exposure of ethanol increases the risk of head and neck inflammation and tumor progression. However, limited studies have investigated the composition and functionality of laryngeal microbiota under ethanol exposure. We established an ethanol-exposed mouse model to investigate the changes in composition and function of laryngeal microbiota using Metagenomic shotgun sequencing. In the middle and late stages of the experiment, the laryngeal microbiota of mice exposed to ethanol exhibited obvious distinguished from that of the control group on principal-coordinate analysis (PCoA) plots. Among the highly abundant species, Salmonella enterica and Mycobacterium marinum were likely to be most impacted. Our findings indicated that the exposure to ethanol significantly increased their abundance in larynxes in mice of the same age, which has been confirmed through FISH experiments. Among the species-related functions and genes, metabolism is most severely affected by ethanol. The difference was most obvious in the second month of the experiment, which may be alleviated later because the animal established tolerance. Notable enrichments concerning energy, amino acid, and carbohydrate metabolic pathways occurred during the second month under ethanol exposure. Finally, based on the correlation between species and functional variations, a network was established to investigate relationships among microbiota, functional pathways, and related genes affected by ethanol. Our data first demonstrated the continuous changes of abundance, function and their interrelationship of laryngeal microbiota under ethanol exposure by Metagenomic shotgun sequencing. Importance: Ethanol may participate in the inflammation and tumor progression by affecting the composition of the laryngeal microbiota. Here, we applied the metagenomic shotgun sequencing instead of 16 S rRNA sequencing method to identify the laryngeal microbiota under ethanol exposure. Salmonella enterica and Mycobacterium marinum are two dominant species that may play a role in the reconstruction of the laryngeal microenvironment, as their local abundance increases following exposure to ethanol. The metabolic function is most evidently impacted, and several potential metabolic pathways could be associated with alterations in microbiota composition. These findings could help us better understand the impact of prolonged ethanol exposure on the microbial composition and functionality in the larynx.

5.
Radiother Oncol ; 190: 110023, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37995850

RESUMO

OBJECTIVES: Examine the significance of contouring the brachial plexus (BP) for toxicity estimation and select metrics for predicting radiation-induced brachial plexopathy (RIBP) after stereotactic body radiotherapy. MATERIALS AND METHODS: Patients with planning target volume (PTV) ≤ 2 cm from the BP were eligible. The BP was contoured primarily according to the RTOG 1106 atlas, while subclavian-axillary veins (SAV) were contoured according to RTOG 0236. Apical PTVs were classified as anterior (PTV-A) or posterior (PTV-B) PTVs. Variables predicting grade 2 or higher RIBP (RIBP2) were selected through least absolute shrinkage and selection operator regression and logistic regression. RESULTS: Among 137 patients with 140 BPs (median follow-up, 32.1 months), 11 experienced RIBP2. For patients with RIBP2, the maximum physical dose to the BP (BP-Dmax) was 46.5 Gy (median; range, 35.7 to 60.7 Gy). Of these patients, 54.5 % (6/11) satisfied the RTOG limits when using SAV delineation; among them, 83.3 % (5/6) had PTV-B. For patients with PTV-B, the maximum physical dose to SAV (SAV-Dmax) was 11.2 Gy (median) lower than BP-Dmax. Maximum and 0.3 cc biologically effective doses to the BP based on the linear-quadratic-linear model (BP-BEDmax LQL and BP-BED0.3cc LQL, α/ß = 3) were selected as predictive variables with thresholds of 118 and 73 Gy, respectively. CONCLUSION: Contouring SAV may significantly underestimate the RIBP2 risk in dosimetry, especially for patients with PTV-B. BP contouring indicated BP-BED0.3cc LQL and BP-BEDmax LQL as potential predictors of RIBP2.


Assuntos
Neuropatias do Plexo Braquial , Lesões por Radiação , Radiocirurgia , Humanos , Radiocirurgia/efeitos adversos , Dosagem Radioterapêutica , Órgãos em Risco , Neuropatias do Plexo Braquial/etiologia , Planejamento da Radioterapia Assistida por Computador
6.
Aging (Albany NY) ; 15(23): 13799-13821, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38054820

RESUMO

Colorectal cancer (CRC) is a malignancy that is both highly lethal and heterogeneous. Although the correlation between intra-tumoral genetic and functional heterogeneity and cancer clinical prognosis is well-established, the underlying mechanism in CRC remains inadequately understood. Utilizing scRNA-seq data from GEO database, we re-isolated distinct subsets of cells, constructed a CRC tumor-related cell differentiation trajectory, and conducted cell-cell communication analysis to investigate potential interactions across cell clusters. A prognostic model was built by integrating scRNA-seq results with TCGA bulk RNA-seq data through univariate, LASSO, and multivariate Cox regression analyses. Eleven distinct cell types were identified, with Epithelial cells, Fibroblasts, and Mast cells exhibiting significant differences between CRC and healthy controls. T cells were observed to engage in extensive interactions with other cell types. Utilizing the 741 signature genes, prognostic risk score model was constructed. Patients with high-risk scores exhibited a significant correlation with unfavorable survival outcomes, high-stage tumors, metastasis, and low responsiveness to chemotherapy. The model demonstrated a strong predictive performance across five validation cohorts. Our investigation involved an analysis of the cellular composition and interactions of infiltrates within the microenvironment, and we developed a prognostic model. This model provides valuable insights into the prognosis and therapeutic evaluation of CRC.


Assuntos
Neoplasias Colorretais , Análise da Expressão Gênica de Célula Única , Humanos , RNA-Seq , Microambiente Tumoral/genética , Comunicação Celular , Neoplasias Colorretais/genética , Prognóstico
7.
Sci Rep ; 13(1): 18498, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-37898687

RESUMO

Laryngeal squamous cell carcinoma (LSCC) is a common tumor type. High recurrence rates remain an important factor affecting the survival and quality of life of advanced LSCC patients. We aimed to build a new nomogram and a random survival forest model using machine learning to predict the risk of LSCC progress. The study included 671 patients with AJCC stages III-IV LSCC. To develop a prognostic model, Cox regression analyses were used to assess the relationship between clinic-pathologic factors and disease-free survival (DFS). RSF analysis was also used to predict the DFS of LSCC patients. The ROC curve revealed that the Cox model exhibited good sensitivity and specificity in predicting DFS in the training and validation cohorts (1 year, validation AUC = 0.679, training AUC = 0.693; 3 years, validation AUC = 0.716, training AUC = 0.655; 5 years, validation AUC = 0.717, training AUC = 0.659). Random survival forest analysis showed that N stage, clinical stage, and postoperative chemoradiotherapy were prognostically significant variables associated with survival. The random forest model exhibited better prediction ability than the Cox regression model in the training cohort; however, the two models showed similar prediction ability in the validation cohort.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Modelos de Riscos Proporcionais , Carcinoma de Células Escamosas/patologia , Qualidade de Vida , Prognóstico , Aprendizado de Máquina
8.
Front Bioeng Biotechnol ; 11: 1210637, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600300

RESUMO

In the past 4 decades, many articles have reported on the effects of the piezoelectric effect on bone formation and the research progress of piezoelectric biomaterials in orthopedics. The purpose of this study is to comprehensively evaluate all existing research and latest developments in the field of bone piezoelectricity, and to explore potential research directions in this area. To assess the overall trend in this field over the past 40 years, this study comprehensively collected literature reviews in this field using a literature retrieval program, applied bibliometric methods and visual analysis using CiteSpace and R language, and identified and investigated publications based on publication year (1984-2022), type of literature, language, country, institution, author, journal, keywords, and citation counts. The results show that the most productive countries in this field are China, the United States, and Italy. The journal with the most publications in the field of bone piezoelectricity is the International Journal of Oral & Maxillofacial Implants, followed by Implant Dentistry. The most productive authors are Lanceros-Méndez S, followed by Sohn D.S. Further research on the results obtained leads to the conclusion that the research direction of this field mainly includes piezoelectric surgery, piezoelectric bone tissue engineering scaffold, manufacturing artificial cochleae for hearing loss patients, among which the piezoelectric bone tissue engineering scaffold is the main research direction in this field. The piezoelectric materials involved in this direction mainly include polyhydroxybutyrate valerate, PVDF, and BaTiO3.

9.
Heliyon ; 9(7): e17711, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37455999

RESUMO

Despite the fact that metastasis is the leading cause of death in patients with head and neck squamous cell carcinoma, fundamental questions about the mechanisms that enable or inhibit metastasis remain unanswered. Tetraspanin CD63 has been linked to tumor progression and metastasis. However, few studies have examined the role of CD63 in HNSCC. In this study, we discovered that CD63 levels were abnormally altered in HNSCC tissue compared to adjacent tissue (n = 69 pairs), and that this was linked to prognosis. Through functional in vitro and in vivo experiments, the roles of CD63 in HNSCC were confirmed. Overexpression of CD63 inhibited the progression and metastasis of HNSCC cells. Using mass spectrometry and co-immunoprecipitation assays, we discovered that KRT1 could be a direct interacting partner of CD63. Furthermore, both CD63 and KRT1 expression was significantly decreased in metastatic tissue compared with primary tumor tissue (n = 13 pairs), suggesting that CD63 and KRT1 play a role in reducing the metastasis of HNSCC. In summary, we reveal a previously unrecognized role of CD63 in regulating KRT1-mediated cell cycle arrest in HNSCC cells, and our findings contribute to defining an important mechanism of HNSCC progression and metastasis.

10.
Curr Med Sci ; 43(4): 794-802, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37498408

RESUMO

OBJECTIVE: Histone modification has a significant effect on gene expression. Enhancer of zeste homolog 2 (EZH2) contributes to the epigenetic silencing of target chromatin through its roles as a histone-lysine N-methyltransferase enzyme. The development of anoikis resistance in tumor cells is considered to be a critical step in the metastatic process of primary malignant tumors. The purpose of this study was to investigate the effect and mechanism of anoikis resistance in ovarian adenocarcinoma peritoneal metastasis. METHODS: In addition to examining EZH2 protein expression in ovarian cancer omental metastatic tissues, we established a model of ovarian cancer cell anoikis and a xenograft tumor model in nude mice. Anoikis resistance and ovarian cancer progression were tested after EZH2 and N6-methyladenosine (m6A) levels were modified. RESULTS: EZH2 expression was significantly higher in ovarian cancer omental metastatic tissues than in normal ovarian tissues. Reducing the level of EZH2 decreased the level of m6A and ovarian cancer cell anoikis resistance in vitro and inhibited ovarian cancer progression in vivo. M6a regulation altered the effect of EZH2 on anoikis resistance. CONCLUSION: Our results indicate that EZH2 contributes to anoikis resistance and promotes ovarian adenocarcinoma abdominal metastasis by m6A modification. Our findings imply the potential of the clinical application of m6A and EZH2 for patients with ovarian cancer.


Assuntos
Adenocarcinoma , Neoplasias Ovarianas , Neoplasias Peritoneais , Animais , Feminino , Humanos , Camundongos , Adenocarcinoma/patologia , Anoikis/genética , Carcinoma Epitelial do Ovário/genética , Linhagem Celular Tumoral , Proteína Potenciadora do Homólogo 2 de Zeste/genética , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Camundongos Nus , Neoplasias Ovarianas/patologia , Neoplasias Peritoneais/genética , Neoplasias Peritoneais/secundário
11.
Bioorg Chem ; 139: 106684, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37356337

RESUMO

The microtubule system plays an important role in the mitosis and growth of eukaryotic cells, and it is considered as an appealing and highly successful molecular target for cancer treatment. In fact, microtubule targeting agents, such as paclitaxel and vinblastine, have been approved by FDA for tumor therapy, which have achieved significant therapeutic effects and sales performance. At present, microtubule targeting agents mainly include microtubule-destabilizing agents, microtubule-stabilizing agents, and a few tubulin degradation agents. Although there are few reports about tubulin degradation agents at present, tubulin degradation agents show great potential in overcoming multidrug resistance and reducing neurotoxicity. In addition, some natural drugs could specifically degrade tubulin in tumor cells, but have no effect in normal cells, thus showing a good biosafety profile. Therefore, tubulin degradation agents might exhibit a better application. Currently, some small molecules have been designed to promote tubulin degradation with potent antiproliferative activities, showing the potential for cancer treatment. In this work, we reviewed the reports on tubulin degradation, and focused on the degradation mechanism and important functional groups of chemically synthesized compounds, hoping to provide help for the degradation design of tubulin.


Assuntos
Antineoplásicos , Tubulina (Proteína) , Tubulina (Proteína)/metabolismo , Microtúbulos , Antineoplásicos/química , Vimblastina/metabolismo , Vimblastina/farmacologia , Paclitaxel/metabolismo , Moduladores de Tubulina/química
13.
Org Lett ; 25(19): 3578-3584, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37158608

RESUMO

Herein, we describe a nickel-catalyzed hydrotrifluoroalkylation of terminal alkyne for the synthesis of a manifold allylic trifluoromethyl terminal alkene. The combination of nitrogen and phosphine ligands, especially electron-rich ones, plays an indispensable role in the course of the reaction, promoting the reactivity to a remarkable level, demonstrating high efficiency, broad substrate scope, and favorable functional group compatibility. The strategy provides a facile method for the synthesis of diversified allylic CF3-containing drugs and bioactive molecules.

14.
Wideochir Inne Tech Maloinwazyjne ; 18(1): 173-179, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37064565

RESUMO

Introduction: Some studies have shown that laparoscopic-assisted surgery may have a good effect on gastrointestinal function in patients with congenital intestinal malrotation. Aim: To investigate the short-term curative effect on patients with congenital malrotation of the bowel after laparoscopic-assisted surgery and the impact on gastrointestinal function. Material and methods: We selected 100 patients with congenital intestinal malrotation who underwent surgery between June 2019 and June 2021. Among them, the control group underwent traditional laparotomy, and the observation group underwent the laparoscopic-assisted Ladd procedure. We observed and compared the differences in surgical indicators, immune function, short-term curative effect and gastrointestinal function of the two groups of patients. Results: There was no significant difference in immune function between the two groups of patients before surgery (p > 0.05), while the comparison of CD8+ and B cells after 1 week of surgery was significantly different, and the observation group was better than the control group, which was statistically significant (p < 0.05). There was no statistically significant difference in NK cells after 1 week of surgery (p > 0.05). The clinical treatment efficiency of the observation group was 94.00% significantly higher than that of the control group, 78.00%, and the difference was statistically significant (p < 0.05). Conclusions: A comparative study of congenital malrotation of the bowel was performed. The effect of the Ladd procedure is significantly better than that of traditional open surgery, effectively improving the gastrointestinal function of patients after surgery, and the postoperative abdominal incision is hidden, providing a certain reference for clinical surgery of congenital malrotation.

15.
Acta Pharmacol Sin ; 44(9): 1815-1825, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37055531

RESUMO

Damage to peritubular capillaries is a key process that contributes to acute kidney injury (AKI) progression. Vascular endothelial growth factor A (VEGFA) plays a critical role in maintaining the renal microvasculature. However, the physiological role of VEGFA in various AKI durations remains unclear. A severe unilateral ischemia‒reperfusion injury model was established to provide an overview of VEGFA expression and the peritubular microvascular density from acute to chronic injury in mouse kidneys. Therapeutic strategies involving early VEGFA supplementation protecting against acute injury and late anti-VEGFA treatment for fibrosis alleviation were analyzed. A proteomic analysis was conducted to determine the potential mechanism of renal fibrosis alleviation by anti-VEGFA. The results showed that two peaks of extraglomerular VEGFA expression were observed during AKI progression: one occurred at the early phase of AKI, and the other occurred during the transition to chronic kidney disease (CKD). Capillary rarefaction progressed despite the high expression of VEGFA at the CKD stage, and VEGFA was associated with interstitial fibrosis. Early VEGFA supplementation protected against renal injury by preserving microvessel structures and counteracting secondary tubular hypoxic insults, whereas late anti-VEGFA treatment attenuated renal fibrosis progression. The proteomic analysis highlighted an array of biological processes related to fibrosis alleviation by anti-VEGFA, which included regulation of supramolecular fiber organization, cell-matrix adhesion, fibroblast migration, and vasculogenesis. These findings establish the landscape of VEGFA expression and its dual roles during AKI progression, which provides the possibility for the orderly regulation of VEGFA to alleviate early acute injury and late fibrosis.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular , Proteômica , Injúria Renal Aguda/tratamento farmacológico , Injúria Renal Aguda/metabolismo , Fibrose
16.
Phytomedicine ; 114: 154813, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37062137

RESUMO

BACKGROUND: Tripterygium glycoside tablets (TGT) is the most common preparation from Tripterygium wilfordii Hook F, which is widely used in clinical for treating rheumatoid arthritis (RA) and other autoimmune diseases. However, its serious reproductive toxicity limits its application. PURPOSE: This study aimed to elucidate the toxic effects of TGT on the reproductive system of male RA rats and its potential toxic components and mechanism. METHODS: Collagen-induced arthritis (CIA) rat model was established, and TGT suspension was given at low, medium, and high doses. Gonadal index, pathological changes, and the number of spermatogenic cells were used to evaluate the toxic effects of TGT on the reproductive system. Non-targeted metabolomics of testicular tissue was conducted by UHPLC-QTOF/MS. Combined with network toxicology, the key targets of TGT-induced reproductive toxicity were screened and RT-qPCR was used to validation. In vitro toxicity of 19 components of TGT was evaluated using TM3 and TM4 cell lines. Molecular docking was used to predict the interaction between toxic components and key targets. RESULTS: TGT reduced testicular and epididymis weight. Pathology analysis showed a lot of deformed and atrophic spermatogenic tubules. The number of spermatogenic cells decreased significantly (P<0.0001). A total of 58 different metabolites including platelet-activating factor (PAF), lysophosphatidylcholine (Lyso PC), phosphatidylinositol (PI), glutathione (GSH), and adenosine monophosphate (AMP) were identified by testicular metabolomics. Glycerophospholipid metabolism, ether lipid metabolism, and glutathione metabolism were key pathways responsible for the reproductive toxicity of TGT. Ten key reproductive toxicity targets were screened by network toxicology. The cytotoxicity test showed that triptolide, triptonide, celastrol, and demethylzeylasteral could significantly reduce the viability of TM3 and TM4 cells. Alkaloids had no apparent toxic effects. Molecular docking showed that the four toxic components had a good affinity with 10 key targets. All binding energies were less than -7 kcal/mol. The RT-qPCR results showed the Cyp19a1 level was significantly up-regulated. Pik3ca and Pik3cg levels were significantly down-regulated. CONCLUSION: Through testicular metabolomics, we found that TGT may cause reproductive toxicity through CYP19A1, PIK3CA, and PIK3CG three target, which was preliminarily revealed. This study laid the foundation for elucidating the toxicity mechanism of TGT and evaluating its safety and quality.


Assuntos
Artrite Reumatoide , Glicosídeos Cardíacos , Medicamentos de Ervas Chinesas , Ratos , Masculino , Animais , Glicosídeos/uso terapêutico , Tripterygium/química , Simulação de Acoplamento Molecular , Medicamentos de Ervas Chinesas/farmacologia , Glicosídeos Cardíacos/uso terapêutico , Testículo , Artrite Reumatoide/tratamento farmacológico , Comprimidos , Citocromo P-450 CYP1A1
17.
Cancer Gene Ther ; 30(8): 1084-1093, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37069338

RESUMO

Lycium barbarum polysaccharide (LBP) is a substance with various biological activities extracted from Lycium barbarum. LbGPs are peptidoglycans with a short peptide backbone and a complex, branched glycan moiety, which is further extracted and isolated from LBPs. Previous studies have shown that LbGP can inhibit cancer cell growth, but its specific mechanism is not completely clear. In this study, we found that LbGP could inhibit the proliferation of glioma cells and promote the expression of period 2 (PER2) through the PKA-CREB pathway. In addition, LbGP could inhibit the de novo synthesis of lipids by downregulating SREBP1c and its target genes, which depended on the expression of PER2. Moreover, PER2 negatively regulated the expression of SREBP1c via suppressing PI3K/AKT/mTOR pathway. In summary, LbGP may upregulate the expression of PER2 to reduce the expression of SREBP1c, inhibit lipid synthesis in glioblastoma, and inhibit glioblastoma cell proliferation. This study provides an alternative drug for the treatment of glioma and elucidates its potential mechanism.


Assuntos
Glioblastoma , Lycium , Humanos , Lycium/química , Lycium/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Glicopeptídeos/metabolismo , Lipogênese , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Circadianas Period/metabolismo
18.
Eur J Med Chem ; 251: 115228, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36881982

RESUMO

As an important epigenetic regulator, histone lysine specific demethylase 1 (LSD1) has become an attractive target for the discovery of anticancer agents. In this work, a series of tranylcypromine-based derivatives were designed and synthesized. Among them, compound 12u exhibited the most potent inhibitory potency on LSD1 (IC50 = 25.3 nM), and also displayed good antiproliferative effects on MGC-803, KYSE450 and HCT-116 cells with IC50 values of 14.3, 22.8 and 16.3 µM, respectively. Further studies revealed that compound 12u could directly act on LSD1 and inhibit LSD1 in MGC-803 cells, thereby significantly increasing the expression levels of mono-/bi-methylation of H3K4 and H3K9. In addition, compound 12u could induce apoptosis and differentiation, inhibit migration and cell stemness in MGC-803 cells. All these findings suggested that compound 12u was an active tranylcypromine-based derivative as a LSD1 inhibitor that inhibited gastric cancer.


Assuntos
Antineoplásicos , Neoplasias Gástricas , Humanos , Tranilcipromina/farmacologia , Neoplasias Gástricas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Antineoplásicos/farmacologia , Histona Desmetilases/metabolismo , Relação Estrutura-Atividade , Proliferação de Células
19.
FASEB J ; 37(4): e22893, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36961387

RESUMO

Serotonin (5-HT), a neurotransmitter, is essential for normal and pathological pigmentation processing, and its receptors may be therapeutical targets. The effect and behavior of the 5-HT7 receptor (5-HT7R) in melanogenesis in high vertebrates remain unknown. Herein, we examine the role and molecular mechanism of 5-HT7R in the pigmentation of human skin cells, human tissue, mice, and zebrafish models. Firstly, 5-HT7R protein expression decreased significantly in stress-induced depigmentation skin and vitiligo epidermis. Stressed mice received transdermal serotonin 5-HT7R selective agonists (LP-12, 0.01%) for 12 or 60 days. Mice might recover from persistent stress-induced depigmentation. The downregulation of tyrosinase (Tyr), microphthalmia-associated transcription factor (Mitf) expression, and 5-HT7R was consistently restored in stressed skin. High-throughput RNA sequencing showed that structural organization (dendrite growth and migration) and associated pathways were activated in the dorsal skin of LP-12-treated animals. 5-HT7R selective agonist, LP-12, had been demonstrated to enhance melanin production, dendrite growth, and chemotactic motility in B16F10 cells, normal human melanocytes (NHMCs), and zebrafish. Mechanistically, the melanogenic, dendritic, and migratory functions of 5-HT7R were dependent on the downstream signaling of cAMP-PKA-ERK1/2, JNK MAPK, RhoA/Rab27a, and PI3K/AKT pathway activation. Importantly, pharmacological inhibition and genetic siRNA of 5-HT7R by antagonist SB269970 partially/completely abolished these functional properties and the related activated pathways in both NHMCs and B16F10 cells. Consistently, htr7a/7b genetic knockdown in zebrafish could blockade melanogenic effects and abrogate 5-HT-induced melanin accumulation. Collectively, we have first identified that 5-HT7R regulates melanogenesis, which may be a targeted therapy for pigmentation disorders, especially those worsened by stress.


Assuntos
Transtornos da Pigmentação , Serotonina , Camundongos , Animais , Humanos , Serotonina/farmacologia , Serotonina/metabolismo , Melaninas , Transtornos da Pigmentação/metabolismo , Peixe-Zebra/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Melanócitos/metabolismo , Transdução de Sinais , Pigmentação , Linhagem Celular Tumoral , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo , Proteínas rab27 de Ligação ao GTP/metabolismo
20.
Cell Biosci ; 13(1): 63, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36949517

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) metastasis and recurrence lead to therapy failure, which are closely associated with the proteome. However, the role of post-translational modification (PTM) in HCC, especially for the recently discovered lysine crotonylation (Kcr), is elusive. RESULTS: We investigated the correlation between crotonylation and HCC in 100 tumor tissues and performed stable isotope labeling by amino acids and liquid chromatography tandem mass spectrometry in HCC cells, and we found that crotonylation was positively correlated with HCC metastasis, and higher crotonylation in HCC cells facilitated cell invasiveness. Through bioinformatic analysis, we found that the crotonylated protein SEPT2 was significantly hypercrotonylated in highly invasive cells, while the decrotonylated mutation of SEPT2-K74 impaired SEPT2 GTPase activity and inhibited HCC metastasis in vitro and in vivo. Mechanistically, SIRT2 decrotonylated SEPT2, and P85α was found to be the downstream effector of SEPT2. Moreover, we identified that SEPT2-K74cr was correlated with poor prognosis and recurrence in HCC patients, thus indicating its clinical potential as an independent prognostic factor. CONCLUSIONS: We revealed the role of nonhistone protein crotonylation in regulating HCC metastasis and invasion. Crotonylation facilitated cell invasion through the crotonylated SEPT2-K74-P85α-AKT pathway. High SEPT2-K74 crotonylation predicted poor prognosis and a high recurrence rate in HCC patients. Our study revealed a novel role of crotonylation in promoting HCC metastasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA