Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
Front Immunol ; 15: 1385696, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38770013

RESUMO

Background: Recent studies have demonstrated a strong association between acute kidney injury (AKI) and chronic kidney disease (CKD), while the unresolved inflammation is believed to be a driving force for this chronic transition process. As a transmembrane pattern recognition receptor, Mincle (macrophage-inducible C-type lectin, Clec4e) was identified to participate in the early immune response after AKI. However, the impact of Mincle on the chronic transition of AKI remains largely unclear. Methods: We performed single-cell RNA sequencing (scRNA-seq) with the unilateral ischemia-reperfusion (UIR) murine model of AKI at days 1, 3, 14 and 28 after injury. Potential effects and mechanism of Mincle on renal inflammation and fibrosis were further validated in vivo utilizing Mincle knockout mice. Results: The dynamic expression of Mincle in macrophages and neutrophils throughout the transition from AKI to CKD was observed. For both cell types, Mincle expression was significantly up-regulated on day 1 following AKI, with a second rise observed on day 14. Notably, we identified distinct subclusters of Minclehigh neutrophils and Minclehigh macrophages that exhibited time-dependent influx with dual peaks characterized with remarkable pro-inflammatory and pro-fibrotic functions. Moreover, we identified that Minclehigh neutrophils represented an "aged" mature neutrophil subset derived from the "fresh" mature neutrophil cluster in kidney. Additionally, we observed a synergistic mechanism whereby Mincle-expressing macrophages and neutrophils sustained renal inflammation by tumor necrosis factor (TNF) production. Mincle-deficient mice exhibited reduced renal injury and fibrosis following AKI. Conclusion: The present findings have unveiled combined persistence of Minclehigh neutrophils and macrophages during AKI-to-CKD transition, contributing to unresolved inflammation followed by fibrosis via TNF-α as a central pro-inflammatory cytokine. Targeting Mincle may offer a novel therapeutic strategy for preventing the transition from AKI to CKD.


Assuntos
Injúria Renal Aguda , Modelos Animais de Doenças , Lectinas Tipo C , Macrófagos , Proteínas de Membrana , Camundongos Knockout , Neutrófilos , Insuficiência Renal Crônica , Animais , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/imunologia , Injúria Renal Aguda/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo , Neutrófilos/imunologia , Neutrófilos/metabolismo , Camundongos , Insuficiência Renal Crônica/imunologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/patologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Masculino , Inflamação/imunologia , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/imunologia , Traumatismo por Reperfusão/metabolismo , Fibrose , Progressão da Doença
2.
Biochem Biophys Res Commun ; 711: 149911, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38603832

RESUMO

Macrophages play a crucial role in host response and wound healing, with M2 polarization contributing to the reduction of foreign-body reactions induced by the implantation of biomaterials and promoting tissue regeneration. Electrical stimulation (ES) and micropatterned substrates have a significant impact on the macrophage polarization. However, there is currently a lack of well-established cell culture platforms for studying the synergistic effects of these two factors. In this study, we prepared a graphene free-standing substrate with 20 µm microgrooves using capillary forces induced by water evaporation. Subsequently, we established an ES cell culture platform for macrophage cultivation by integrating a self-designed multi-well chamber cell culture device. We observed that graphene microgrooves, in combination with ES, significantly reduce cell spreading area and circularity. Results from immunofluorescence, ELISA, and flow cytometry demonstrate that the synergistic effect of graphene microgrooves and ES effectively promotes macrophage M2 phenotypic polarization. Finally, RNA sequencing results reveal that the synergistic effects of ES and graphene microgrooves inhibit the macrophage actin polymerization and the downstream PI3K signaling pathway, thereby influencing the phenotypic transition. Our results demonstrate the potential of graphene-based microgrooves and ES to synergistically modulate macrophage polarization, offering promising applications in regenerative medicine.


Assuntos
Estimulação Elétrica , Grafite , Macrófagos , Grafite/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Animais , Camundongos , Células RAW 264.7 , Polaridade Celular/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Transdução de Sinais
3.
Endocr Connect ; 13(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614124

RESUMO

Background: Filamin A (FLNA) is a member of the filamin family and has been found to be critical for the progression of several cancers. However, its biological function in papillary thyroid cancer (PTC) remains largely unexplored. Methods: Data from The Cancer Genome Atlas (TCGA) databases were utilized to analyze the FLNA expression level and its influence on the clinical implications of patients with PTC. Gene Expression Omnibus (GEO) and qRT-PCR was used to verify the expression levels of FLNA in PTC. Kaplan-Meier survival analysis was conducted to evaluate the prognostic value of FLNA in PTC. Transwell assays and wound healing were performed to examine the biological function of FLNA knockdown in PTC cells. Gene set enrichment analysis (GSEA) and Western blotting were conducted to investigate the potential mechanisms underlying the role of FLNA in PTC progression. In addition, the relationship between FLNA expression and the tumor immune microenvironment (TME) in PTC was explored. Results: FLNA was significantly upregulated in PTC tissues. High expression levels of FLNA was correlated with advanced TNM stage, T stage, and N stage, as well as poor disease-free interval (DFI) and progression-free interval (PFI) time in PTC patients. Moreover, we found that FLNA knockdown inhibited the migration and invasion of PTC cells. Mechanistically, FLNA knockdown inhibited epithelial-mesenchymal transition (EMT) in PTC and affected the activation of the FAK/AKT signaling pathway. In addition, FLNA expression was associated with TME in PTC. Conclusion: FLNA may be regarded as a new therapeutic target for PTC patients.

4.
Signal Transduct Target Ther ; 9(1): 74, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38528022

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection disrupts the epithelial barrier and triggers airway inflammation. The envelope (E) protein, a core virulence structural component of coronaviruses, may play a role in this process. Pathogens could interfere with transepithelial Cl- transport via impairment of the cystic fibrosis transmembrane conductance regulator (CFTR), which modulates nuclear factor κB (NF-κB) signaling. However, the pathological effects of SARS-CoV-2 E protein on airway epithelial barrier function, Cl- transport and the robust inflammatory response remain to be elucidated. Here, we have demonstrated that E protein down-regulated the expression of tight junctional proteins, leading to the disruption of the airway epithelial barrier. In addition, E protein triggered the activation of Toll-like receptor (TLR) 2/4 and downstream c-Jun N-terminal kinase (JNK) signaling, resulting in an increased intracellular Cl- concentration ([Cl-]i) via up-regulating phosphodiesterase 4D (PDE4D) expression in airway epithelial cells. This elevated [Cl-]i contributed to the heightened airway inflammation through promoting the phosphorylation of serum/glucocorticoid regulated kinase 1 (SGK1). Moreover, blockade of SGK1 or PDE4 alleviated the robust inflammatory response induced by E protein. Overall, these findings provide novel insights into the pathogenic role of SARS-CoV-2 E protein in airway epithelial damage and the ongoing airway inflammation during SARS-CoV-2 infection.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/genética , COVID-19/metabolismo , Inflamação/genética , Inflamação/metabolismo , Transdução de Sinais , Células Epiteliais/metabolismo , Glucocorticoides
5.
Sci Rep ; 14(1): 6574, 2024 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-38503865

RESUMO

Cell cycle-dependent protein kinase 12 (CDK12) plays a key role in a variety of carcinogenesis processes and represents a promising therapeutic target for cancer treatment. However, to date, there have been no systematic studies addressing its diagnostic, prognostic and immunological value across cancers. Here, we found that CDK12 was significantly upregulated in various types of cancers, and it expression increased with progression in ten cancer types, including breast cancer, cholangiocarcinoma and colon adenocarcinoma. Moreover, the ROC curves indicated that CDK12 showed diagnostic value in eight cancer types. High CDK12 expression was associated with poor prognosis in eight types of cancer, including low-grade glioma, mesothelioma, melanoma and pancreatic cancer. Furthermore, we conducted immunoassays to explore the exact mechanisms underlying CDK12-induced carcinogenesis, which revealed that increased expression of CDK12 allowed tumours to evade immune surveillance and upregulate immune checkpoint genes. Additionally, mutational studies have shown that amplification and missense mutations are the predominant mutational events affecting CDK12 across cancers. These findings establish CDK12 as a significant biological indicator of cancer diagnosis, prognosis, and immunotherapeutic targeting. Early surveillance and employment of CDK12 inhibitors, along with concomitant immunotherapy interventions, may enhance the clinical outcomes of cancer patients.


Assuntos
Adenocarcinoma , Neoplasias do Colo , Humanos , Proteínas Quinases , Quinases Ciclina-Dependentes/metabolismo , Prognóstico , Carcinogênese , Biomarcadores Tumorais/metabolismo , Imunomodulação/genética
6.
Chin Med J (Engl) ; 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445356

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is associated with common pathophysiological processes, such as inflammation and fibrosis, in both the heart and the kidney. However, the underlying molecular mechanisms that drive these processes are not yet fully understood. Therefore, this study focused on the molecular mechanism of heart and kidney injury in CKD. METHODS: We generated a microRNA (miR)-26a knockout (KO) mouse model to investigate the role of miR-26a in angiotensin (Ang)-II-induced cardiac and renal injury. We performed Ang-II modeling in wild type (WT) mice and miR-26a KO mice, with six mice in each group. In addition, Ang-II-treated AC16 cells and HK2 cells were used as in vitro models of cardiac and renal injury in the context of CKD. Histological staining, immunohistochemistry, quantitative real-time polymerase chain reaction (PCR), and Western blotting were applied to study the regulation of miR-26a on Ang-II-induced cardiac and renal injury. Immunofluorescence reporter assays were used to detect downstream genes of miR-26a, and immunoprecipitation was employed to identify the interacting protein of LIM and senescent cell antigen-like domain 1 (LIMS1). We also used an adeno-associated virus (AAV) to supplement LIMS1 and explored the specific regulatory mechanism of miR-26a on Ang-II-induced cardiac and renal injury. Dunnett's multiple comparison and t-test were used to analyze the data. RESULTS: Compared with the control mice, miR-26a expression was significantly downregulated in both the kidney and the heart after Ang-II infusion. Our study identified LIMS1 as a novel target gene of miR-26a in both heart and kidney tissues. Downregulation of miR-26a activated the LIMS1/integrin-linked kinase (ILK) signaling pathway in the heart and kidney, which represents a common molecular mechanism underlying inflammation and fibrosis in heart and kidney tissues during CKD. Furthermore, knockout of miR-26a worsened inflammation and fibrosis in the heart and kidney by inhibiting the LIMS1/ILK signaling pathway; on the contrary, supplementation with exogenous miR-26a reversed all these changes. CONCLUSIONS: Our findings suggest that miR-26a could be a promising therapeutic target for the treatment of cardiorenal injury in CKD. This is attributed to its ability to regulate the LIMS1/ILK signaling pathway, which represents a common molecular mechanism in both heart and kidney tissues.

7.
Int J Biol Sci ; 20(5): 1669-1687, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481813

RESUMO

Direct tubular injury caused by several medications, especially chemotherapeutic drugs, is a common cause of AKI. Inhibition or loss of cyclin-dependent kinase 12 (CDK12) triggers a transcriptional elongation defect that results in deficiencies in DNA damage repair, producing genomic instability in a variety of cancers. Notably, 10-25% of individuals developed AKI after treatment with a CDK12 inhibitor, and the potential mechanism is not well understood. Here, we found that CDK12 was downregulated in the renal tubular epithelial cells in both patients with AKI and murine AKI models. Moreover, tubular cell-specific knockdown of CDK12 in mice enhanced cisplatin-induced AKI through promotion of genome instability, apoptosis, and proliferative inhibition, whereas CDK12 overexpression protected against AKI. Using the single molecule real-time (SMRT) platform on the kidneys of CDK12RTEC+/- mice, we found that CDK12 knockdown targeted Fgf1 and Cast through transcriptional elongation defects, thereby enhancing genome instability and apoptosis. Overall, these data demonstrated that CDK12 knockdown could potentiate the development of AKI by altering the transcriptional elongation defect of the Fgf1 and Cast genes, and more attention should be given to patients treated with CDK12 inhibitors to prevent AKI.


Assuntos
Injúria Renal Aguda , Fator 1 de Crescimento de Fibroblastos , Humanos , Camundongos , Animais , Fator 1 de Crescimento de Fibroblastos/genética , Quinases Ciclina-Dependentes/genética , Rim , Injúria Renal Aguda/induzido quimicamente , Instabilidade Genômica
8.
Endocrine ; 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38191984

RESUMO

PURPOSE: The four and a half LIM domain protein 1 (FHL1) has been found to act as a tumor suppressor in several cancers. However, the clinical and functional significance, as well as underlying molecular mechanisms of FHL1 in papillary thyroid cancer (PTC) are largely unknown. METHODS: Bioinformatics analyses, qRT-PCR and Western blotting were used to investigate the expression of FHL1 in PTC. Cell proliferation was measured using CCK8, Edu, colony formation, and flow cytometry assays. Cell migration and invasion were examined by wound healing and Transwell assays. qRT-PCR, Western blot, immunofluorescence and Top/Fop reporter assays were performed to assess the underlying mechanisms. RESULTS: FHL1 expression was significantly downregulated in PTC. FHL1 downregulation negatively correlated with stage, T classification, and N classification of the patients. The downregulation of FHL1 is associated with poor prognosis. Overexpression of FHL1 inhibited PTC cells' proliferation, invasion, migration and Wnt/ß-catenin pathway activity. LiCl partially restored the inhibitory effects of FHL1 on aggressive phenotypes and Wnt/ß-catenin pathway activity of PTC cells. CONCLUSION: FHL1 is downregulated in PTC and its expression is associated with better clinical outcomes for patients with the disease. FHL1 acts as a tumor suppressor via, at least partially, suppressing Wnt/ß-catenin pathway.

9.
Medicine (Baltimore) ; 103(3): e36728, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241589

RESUMO

RATIONALE: Imatinib is a standard treatment for Philadelphia (Ph) chromosome-positive chronic myeloid leukemia (CML), but its efficacy in rare BCR::ABL variants is underexplored. PATIENT CONCERNS: A 67-year-old woman was admitted to the Second Affiliated Hospital of Xi'an Jiaotong University in March 2022 due to elevated white blood cells. DIAGNOSIS: Karyotype analysis revealed clonal abnormalities involving the variant t(9;22) and positive results for atypical BCR::ABL variants (e14a3 and e13a3). The clinical diagnosis was CML, chronic phase, Ph+, with rare BCR::ABL-e13a3- and BCR::ABL-e14a3-positive findings. INTERVENTION: The patient was administered daily imatinib mesylate (400 mg). OUTCOMES: After 4 weeks, a swift molecular response was observed: BCR::ABL-e13a3 transcript level at 2.82 × 10-1 (28.24%), and BCR::ABL-e14a3 transcript level at 4.68 × 10-1 (46.76%). Within 3 months, a complete cytogenetic response was achieved, with a Ph chromosome ratio of 0. Early molecular response was evident as BCR::ABL-e13a3 transcript level reached 5.11 × 10-3 (0.51%), and BCR::ABL-e14a3 transcript level at 6.26 × 10-3 (0.63%). The imatinib mesylate treatment continued without significant toxicity. LESSONS: This case emphasizes the potential effectiveness of imatinib mesylate in managing rare BCR::ABL fusion gene variants of CML. Screening for these atypical variants is advised for suspected CML patients who test negative for common BCR::ABL fusion gene variants. The presented case underscores the positive outcomes achieved with imatinib treatment for a patient with rare BCR::ABL variants, contributing valuable insights for the management of similar cases. Screening for unusual fusion gene variants should be a consideration in CML diagnosis for comprehensive treatment strategies.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Feminino , Humanos , Idoso , Mesilato de Imatinib/uso terapêutico , Proteínas de Fusão bcr-abl/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Cromossomo Filadélfia , Cariotipagem
10.
Endocrine ; 83(1): 127-141, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37541962

RESUMO

PURPOSE: StAR Related Lipid Transfer Domain Containing 13 (STARD13) serves as a tumor suppressor and has been characterized in several types of malignancies. However, the role and the molecular mechanism of STARD13 in regulating the progression of papillary thyroid carcinoma (PTC) remain underexplored. METHODS: The gene expression and clinical information of thyroid cancer were downloaded using "TCGAbiolinks" R package. Quantitative PCR and immunohistochemical staining were conducted to detect the expression of STARD13 in clinical tumor and adjacent non-tumor samples. Wound-healing assay, Transwell assay and 3D spheroid invasion assay were performed to evaluate the migratory and invasive capacities of PTC cells. Cell proliferation ability was determined by CCK-8 assay, colony formation assay and 5-ethynyl-2'-deoxyuridine (EdU) incorporation assay. The alterations of indicated proteins were detected by Western blotting. RESULTS: In the present study, we found that STARD13 was significantly underexpressed in PTC, which was correlated with poor prognosis. Downregulation of STARD13 might be due to methylation of promoter region. Loss-and gain-of-function experiments demonstrated that STARD13 impeded migratory and invasive capacities of PTC cells in vitro and in vivo. In addition, we found that STARD13 regulated the morphology of PTC cells and inhibited epithelial-mesenchymal transition (EMT). CONCLUSION: Our results suggest that STARD13 acts as a metastasis suppressor and might be a potential therapeutic target in PTC.


Assuntos
MicroRNAs , Neoplasias da Glândula Tireoide , Humanos , Câncer Papilífero da Tireoide/patologia , Linhagem Celular Tumoral , Neoplasias da Glândula Tireoide/patologia , Proliferação de Células/genética , Prognóstico , Movimento Celular/genética , MicroRNAs/genética , Regulação Neoplásica da Expressão Gênica , Proteínas Ativadoras de GTPase/genética , Proteínas Ativadoras de GTPase/metabolismo , Proteínas Supressoras de Tumor/genética
11.
J Sch Health ; 94(1): 23-36, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37697677

RESUMO

BACKGROUND: Since 2002, the Chinese Ministry of Education has conducted reform in the physical education (PE) curriculums of schools in China, with a focus on shifting from sports skills to regular participation in physical activity (PA) and promoting health. The aim of the study, therefore, is to examine the effects of school PE on the exercise habits of children and adolescents in China over time. METHODS: Data based on 5941 observations of 3708 individuals aged 6 to 17 were collected from the China Health and Nutrition Survey (CHNS) for the period 2004 to 2015. The data were analyzed using the fixed-effect Logit model and the random-effect Tobit model. RESULTS: The likelihood of exercising outside of school is 20.2% higher for students who have school PE than those who do not. Our study found that increasing the duration of PE at school by 100%, increases the duration of out-of-school PA by 22.3%. The variety of the types of sports schools offer encourages students to participate in out-of-school physical activity. The likelihood of students exercising outside of school increases by 5.6% when 1 more exercise type is provided in school PE. In addition, soccer, basketball, badminton, and volleyball education increases students' participation in after-school exercises. Soccer and basketball education, in particular, improves the duration of after-school PA. CONCLUSIONS: To form exercise habits in children and adolescents, we encourage the promotion of a variety of physical activities in schools, especially team sports such as soccer and basketball.


Assuntos
Exercício Físico , Educação Física e Treinamento , Criança , Humanos , Adolescente , Instituições Acadêmicas , Inquéritos Nutricionais , Hábitos
12.
Animals (Basel) ; 13(23)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38066992

RESUMO

Interleukin-15 (IL15) is a proinflammatory cytokine that could induce the production of inflammatory cytokines. In this study, the α chain of the IL15 receptor of Epinephelus coioides (Ec-IL15Rα), a natural regulator of IL15, was identified, and immune response functions of fish were determined and characterized. Ec-IL15Rα contains a 720 bp open reading frame that encodes 239 amino acids, including four typical conserved cysteine residues with a highly conserved sushi domain. Ec-IL15Rα is closely related to Epinephelus lanceolatus and is the most clustered with teleost. Subcellular localization studies showed that Ec-IL15Rα was situated in the cytoplasm and cell membrane. Ec-IL15Rα was detected in 11 tissues, with the highest expression in the liver and blood. Meanwhile, the Ec-IL15Rα transcriptional levels substantially increased in nine tissues after Vibrio harveyi infection. Ec-IL15Rα was significantly up-regulated in HKLs by ConA, PHA, LPS and poly I:C stimulation. In vitro analysis, the recombinant protein of rEc-IL15Rα stimulates HKL proliferation and IL1R, IL6R, IL10, and IL16 expression. Challenge experiments revealed that IL15Rα protein showed an increase of 6.67-10% survival protection rate after V. harveyi infection. This study provides a better understanding of the immune protection of IL15Rα in vertebrate fish.

13.
BMC Pulm Med ; 23(1): 376, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37803281

RESUMO

BACKGROUND: Dietary intake has been shown to have a causal relationship with various lung diseases, such as lung cancer and asthma. However, the causal relationship between dietary intake and idiopathic pulmonary fibrosis (IPF) remains unclear. We conducted a two-sample Mendelian Randomization (MR) study to investigate the causal relationship between dietary intake and IPF. METHODS: The exposure datasets included meat, fruit, vegetable, and beverage intake from the UK Biobank. IPF data came from the EBI database of 451,025 individuals. All data in this study were obtained from the IEU Open GWAS Project. The inverse variance weighted (IVW), MR-Egger, and weighted median methods were used as the primary methods. Sensitivity analyses were performed to ensure the validity of the results. RESULTS: Oily fish intake [odds ratio (OR):0.995; 95% confidence interval (CI): 0.993-0.998; p = 6.458E-05] and Dried fruit intake (OR:0.995;95%CI:0.991-0.998; p = 0.001) were discovered as protective factors. There was also a suggestive correlation between Beef intake (OR:1.006;95%Cl:1.001-1.012; p = 0.023) and IPF. Sensitivity analysis did not reveal any contradictory results. No causal relationship was found between IPF and the rest of the dietary exposures. CONCLUSIONS: Our study found that Oily fish and Dried fruit intake were associated with the risk of IPF, while Beef intake was suggestively associated with the risk of IPF. Other studies are still needed to confirm the results in the future.


Assuntos
Asma , Fibrose Pulmonar Idiopática , Bovinos , Animais , Incidência , Análise da Randomização Mendeliana , Bases de Dados Factuais , Fibrose Pulmonar Idiopática/epidemiologia , Fibrose Pulmonar Idiopática/genética , Estudo de Associação Genômica Ampla
14.
Molecules ; 28(17)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37687209

RESUMO

The culinary medicinal mushroom Hericium erinaceus holds significant global esteem and has garnered heightened interest within increasingly ageing societies due to its pronounced neuroprotective and anti-neuroinflammatory properties. Within this study, two novel diterpenes, 16-carboxy-13-epi-neoverrucosane (1) and Erinacine L (2); three known xylosyl cyathane diterpenoids, Erinacine A (3), Erinacine C (4), and Erinacine F (5); and four lanostane-type triterpenoids, and three cyclic dipeptides (10-12), in addition to orcinol (13), were isolated from the rice-based cultivation medium of H. erinaceus. Their structures were determined by NMR, HR-ESI-MS, ECD, and calculated NMR. Compound 1 marks a pioneering discovery as the first verrucosane diterpene originating from basidiomycetes, amplifying the scope of fungal natural product chemistry, and the intricate stereochemistry of Compound 5 has been comprehensively assessed for the first time. Compounds 2-5 not only showed encouraging neurotrophic activity in rat adrenal pheochromocytoma PC-12 cells, but also significantly inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO) production in BV2 microglia cell cultures with IC50 values as low as 5.82 ± 0.18 µM. To elucidate the mechanistic underpinnings of these bioactivities, molecular docking simulation was used to analyze and support the interaction of 1 and 2 with inducible NO synthase (iNOS), respectively. In particular, compound 2, a cyathane-xyloside containing an unconventional hemiacetal moiety, is a compelling candidate for the prevention of neurodegenerative diseases. In summation, this investigation contributes substantively to the panorama of fungal diterpene structural diversity, concurrently furnishing additional empirical substantiation for the role of cyathane diterpenes in the amelioration of neurodegenerative afflictions.


Assuntos
Agaricales , Diterpenos , Animais , Ratos , Simulação de Acoplamento Molecular , Diterpenos/farmacologia
15.
Molecules ; 28(14)2023 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-37513273

RESUMO

The organic dyes used in printing and dyeing wastewater have complex components, diverse structures and strong chemical stability, which make them not suitable for treatment and difficult to degrade in the environment. Porphyrins are macromolecules with 18 π electrons formed by four pyrrole molecules connected with a methylene bridge that has a stable structure. Porphyrin combines with iron to form an active intermediate with a structure similar to the cytochrome P450 enzyme, so they are widely used in the biomimetic field. In the current study, 5,10,15,20-tetra (4-carboxyphenyl) porphine ferric chloride (III) (Fe(III)TCPP) was used as a catalyst and iodosobenzene was used as an oxidant to explore the catalytic degradation of triphenylmethane dyes, such as rhodamine B (RhB) and malachite green (MG). The results of UV-Vis spectral analysis have shown that the conversion rate of the rhodamine B was over 90% when the amount of Fe(III)TCPP was 0.027 mM and the amount of iodosobenzene was eight equivalents. When the catalyst was 0.00681 mM and the amount of the oxidant was five equivalents, the conversion rate of the malachite green reached over 95%. This work provides a feasible method for the degradation of triphenylmethane dyes.


Assuntos
Ferro , Porfirinas , Ferro/química , Porfirinas/química , Sistema Enzimático do Citocromo P-450/química , Corantes , Oxidantes
16.
J Obstet Gynaecol Res ; 49(10): 2475-2486, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37497824

RESUMO

BACKGROUND: Worldwide, cervical cancer (CC) remains the most prevalent malignancy of the female reproductive system, posing a threat to women's life and health, and increasing the medical and economic burden on society. Therefore, the search for tumor biomarkers for CC remains an important research direction. Immunotherapy has significantly improved patient outcomes, and genes related to tumor immune infiltration have been clinically relevant and highly reproducible biomarkers that affect the prognosis and response to treatment of CC. 2,4-dienoyl-CoA reductase 1 (DECR1) was considered to be an oncogene in a previous study, but relationship between DECR1 and immune infiltration was not mentioned. Our study aimed to reveal the clinical value of DECR1 in CC and to investigate its relationship with immune infiltration. METHODS: Human Protein Atlas was used to identify the localization of DECR1. The Ualcan database, TCGA, and IHC were used to assess the prognostic value of DECR1. GSEA was used to assess the possible signaling pathways of DECR1 in CC. The TIMER database was applied to reveal the relevance between DECR1 and immune infiltration. GEPIA was conducted to detect the co-relationship among DECR1, immune markers, and typical molecules of apoptosis. RESULTS: DECR1 was mainly distributed in the cytoplasm and overlapped with the endoplasmic reticulum. DECR1 was downregulated in CC compared to adjacent tissue. Survival analysis showed that patients with lower expression of DECR1 have a worse prognosis in CC. GSEA suggested that DECR1 was closely related to apoptosis signaling. TIMER showed that DECR1 was positively correlated with CD8+ T cell and CD4+ T cell but not with B cell in CC. CONCLUSION: DECR1 may be a potential cancer suppressor in CC and may be involved in apoptotic pathways and associated with immune infiltration.


Assuntos
Neoplasias do Colo do Útero , Feminino , Humanos , Biomarcadores Tumorais , Apoptose , Linfócitos T CD4-Positivos , Prognóstico
17.
BMC Oral Health ; 23(1): 476, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37438702

RESUMO

OBJECTIVE: This study aimed to investigate the clinical effects of recombinant human interleukin-11 (rhIL-11) gargle on preventing and treating oral mucositis (OM) after chemotherapy for acute leukemia. METHODS: This single-site, prospective, observer-blinded, nonrandomized controlled trial was conducted on 74 patients with acute leukemia, who were divided into the experimental and control groups. The patients in the experimental group were treated with IL-11 gargle, and those in the control group were treated with sodium bicarbonate gargle. We examined the time and severity of oral mucositis, severity and duration of associated pain, healing time of mucositis, effects of OM on eating, and levels of T-cell subset indicators before and after treatment to evaluate the effects of IL-11 treatment. RESULTS: The proportion of patients with severe OM was significantly lower in the experimental group than in the control group. Mucositis occurred later in the experimental group compared with the control group. The degree and duration of pain, ulcer healing time, and effects on eating were lower in the experimental group compared with the control group. Following treatment, the levels of all T-cell subset indicators improved in each of the two groups. However, the rate of improvement was significantly higher in the experimental group than in the control group. These differences were statistically significant (P < 0.05). CONCLUSIONS: IL-11 gargle reduced the severity of OM after chemotherapy for acute leukemia. Treatment with IL-11 relieved pain, promoted healing, and improved the curative effect of the condition, making it worthy of clinical promotion.


Assuntos
Leucemia , Mucosite , Estomatite , Humanos , Interleucina-11/uso terapêutico , Mucosite/induzido quimicamente , Mucosite/tratamento farmacológico , Mucosite/prevenção & controle , Estudos Prospectivos , Leucemia/tratamento farmacológico , Estomatite/induzido quimicamente , Estomatite/tratamento farmacológico , Estomatite/prevenção & controle , Antissépticos Bucais , Dor
18.
J Cancer Res Clin Oncol ; 149(13): 11351-11368, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37378675

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD) seriously threatens people's health worldwide. Programmed cell death (PCD) plays a critical role in regulating LUAD growth and metastasis as well as in therapeutic response. However, currently, there is a lack of integrative analysis of PCD-related signatures of LUAD for accurate prediction of prognosis and therapeutic response. METHODS: The bulk transcriptome and clinical information of LUAD were obtained from TCGA and GEO databases. A total of 1382 genes involved in regulating 13 various PCD patterns (apoptosis, necroptosis, pyroptosis, ferroptosis, cuproptosis, netotic cell death, entotic cell death, lysosome-dependent cell death, parthanatos, autophagy-dependent cell death, oxeiptosis, alkaliptosis and disulfidptosis) were included in the study. Weighted gene co-expression network analysis (WGCNA) and differential expression analysis were performed to identify PCD-associated differential expression genes (DEGs). An unsupervised consensus clustering algorithm was used to explore the potential subtypes of LUAD based on the expression profiles of PCD-associated DEGs. Univariate Cox regression analysis, Least Absolute Shrinkage and Selection Operator (LASSO) regression, Random Forest (RF) analysis and stepwise multivariate Cox analysis were performed to construct a prognostic gene signature. The "oncoPredict" algorithm was utilized for drug-sensitive analysis. GSVA and GSEA were utilized to perform function enrichment analysis. MCPcounter, quanTIseq, Xcell and ssGSEA algorithms were used for tumor immune microenvironment analysis. A nomogram incorporating PCDI and clinicopathological characteristics was established to predict the prognosis of LUAD patients. RESULTS: Forty PCD-associated DEGs related to LUAD were obtained by WGCNA analysis and differential expression analysis, followed by unsupervised clustering to identify two LUAD molecular subtypes. A programmed cell death index (PCDI) with a five-gene signature was established by machine learning algorithms. LUAD patients were then divided into a high PCDI group and a low PCDI group using the median PCDI as a cutoff. Survival and therapeutic analysis revealed that the high PCDI group had a poor prognosis and was more sensitive to targeted drugs but less sensitive to immunotherapy compared to the low PCDI group. Further enrichment analysis showed that B cell-related pathways were significantly downregulated in the high PCDI group. Accordingly, the decreased tumor immune cell infiltration and the lower tumor tertiary lymphoid structure (TLS) scores were also found in the high PCDI group. Finally, a nomogram with reliable predictive performance PCDI was constructed by incorporating PCDI and clinicopathological characteristics, and a user-friendly online website was established for clinical reference ( https://nomogramiv.shinyapps.io/NomogramPCDI/ ). CONCLUSION: We performed the first comprehensive analysis of the clinical relevance of genes regulating 13 PCD patterns in LUAD and identified two LUAD molecular subtypes with distinct PCD-related gene signature which indicated differential prognosis and treatment sensitivity. Our study provided a new index to predict the efficacy of therapeutic interventions and the prognosis of LUAD patients for guiding personalized treatments.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Apoptose , Prognóstico , Adenocarcinoma de Pulmão/genética , Morte Celular , Neoplasias Pulmonares/genética , Microambiente Tumoral
19.
Am J Phys Med Rehabil ; 102(12): 1055-1062, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37204936

RESUMO

OBJECTIVE: This study aimed to explore the efficacy of different exercise therapies in reducing fatigue in patients with breast cancer. DESIGN: PubMed, Embase, Web of Science, Cochrane Library, Cumulative Index to Nursing and Allied Health Literature, China Biology Medicine, China National Knowledge Infrastructure, Database of Chinese Sci-tech Periodicals, and Wanfang databases were searched from their inception to March 2022. The authors independently screened all randomized controlled trials of exercise therapy in patients with breast cancer. A network meta-analysis was performed using Stata 16.0 software. RESULTS: Seventy-eight studies were analyzed, with 167 comparisons and 6235 patients. The network results showed that stretching (standardized mean difference = -0.74, confidence interval = -1.43 to -0.06), yoga (standardized mean difference = -0.49, confidence interval = -0.75 to -0.22), combined exercise (standardized mean difference = -0.47, confidence interval = -0.70 to -0.24), aerobic exercise (standardized mean difference = -0.46, confidence interval = -0.66 to -0.26), and resistance exercise (standardized mean difference = -0.42, confidence interval = -0.77 to -0.08) significantly reduced fatigue. Pairwise comparisons confirmed that yoga, combined exercise, aerobic exercise, and resistance exercise were positively associated with fatigue relief. However, no significant association was identified between reduced fatigue and traditional Chinese exercises or stretching. CONCLUSIONS: The most effective exercise therapy to relieve cancer-related fatigue in patients with breast cancer was yoga, followed by combined aerobic and resistance exercises. It is expected that more randomized controlled trials will be conducted to further explore the efficacy and mechanisms of exercise.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/complicações , Neoplasias da Mama/terapia , Metanálise em Rede , Terapia por Exercício/métodos , Exercício Físico , Fadiga/etiologia , Fadiga/terapia , Qualidade de Vida
20.
Inflamm Res ; 72(5): 1051-1067, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37039838

RESUMO

BACKGROUND: Tubulointerstitial inflammation (TII) is a critical pathological feature of kidney disease leading to renal fibrosis, and its treatment remains a major clinical challenge. We sought to explore the role of quercetin, a potential exosomes inhibitor, in exosomes release and TII. METHODS: The effects of quercetin on exosomes release and TII were examined by two TII mouse models: the unilateral ureteral obstruction (UUO) models and the LPS-induced mouse models. In vitro, exosomes-mediated crosstalk between tubular epithelial cells (TECs) and macrophages was performed to investigate the mechanisms by which quercetin inhibited exosomes and TII. RESULTS: In this study, we found that exosomes-mediated crosstalk between TECs and macrophages contributed to the development of TII. In vitro, exosomes released from LPS-stimulated TECs induced increased expression of inflammatory cytokines and fibrotic markers in Raw264·7 cells and vice versa. Interestingly, heat shock protein 70 (Hsp70) or Hsp90 proteins could control exosomes release from TECs and macrophages both in vivo and in vitro. Importantly, quercetin, a previously recognized heat shock protein inhibitor, could significantly reduce exosomes release in TII models by down-regulating Hsp70 or Hsp90. Quercetin abrogated exosomes-mediated intercellular communication, which attenuated TII and renal fibrosis accordingly. CONCLUSION: Quercetin could serve as a novel strategy for treatment of tubulointerstitial inflammation by inhibiting the exosomes-mediated crosstalk between tubules and macrophages.


Assuntos
Exossomos , Quercetina , Camundongos , Animais , Quercetina/farmacologia , Quercetina/uso terapêutico , Exossomos/metabolismo , Lipopolissacarídeos/farmacologia , Inflamação/metabolismo , Macrófagos/metabolismo , Fibrose , Células Epiteliais/metabolismo , Túbulos Renais/metabolismo , Túbulos Renais/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA