Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Mater Chem B ; 11(16): 3484-3510, 2023 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-36988384

RESUMO

Messenger RNA (mRNA) has become a key focus in the development of therapeutic agents, showing significant potential in preventing and treating a wide range of diseases. The COVID-19 pandemic in 2020 has accelerated the development of mRNA nucleic therapeutics and attracted significant investment from global biopharmaceutical companies. These therapeutics deliver genetic information into cells without altering the host genome, making them a promising treatment option. However, their clinical applications have been limited by issues such as instability, inefficient in vivo delivery, and low translational efficiency. Recent advances in molecular design and nanotechnology have helped overcome these challenges, and several mRNA formulations have demonstrated promising results in both animal and human testing against infectious diseases and cancer. This review provides an overview of the latest research progress in structural optimization strategies and delivery systems, and discusses key considerations for their future clinical use.


Assuntos
COVID-19 , Pandemias , Animais , Humanos , RNA Mensageiro/genética , RNA Mensageiro/uso terapêutico , Nanotecnologia/métodos , Sistemas de Liberação de Medicamentos/métodos
2.
Biosens Bioelectron ; 215: 114568, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-35850041

RESUMO

Accurate and non-invasive monitoring of allograft posttransplant is essential for early detection of acute cellular rejection and determines the long-term survival of the graft. Clinically, tissue biopsy is the most effective approach for diagnosing transplant rejection. Nonetheless, the procedure is invasive and potentially triggers organ failure. This work aims to design and apply GzmB-responsive nanosensors (GBRNs) that can readily size-change in graft tissues. Subsequently, we investigate the activity of serine protease granzyme B by generating a direct colorimetric urinary readout for non-invasive detection of transplant rejection in under 1 h. In preclinical heart graft mice models of transplant rejection, GBRNs were cleaved by GzmB and excreted by the kidneys via accurate nanometre-size glomerular filtration. By exploiting the catalytic activity of ultrasmall gold nanoclusters, GBRNs urinalysis promotes ultrasensitive surveillance of rejection episodes with a receiver operator characteristic curve area under the curve of 0.896 as well as a 95% confidence interval of about 0.7701-1.000. Besides, the catalytic activity of gold nanoclusters in urine can be detected at point-of-care testing to predict the immunity responses in mice with insufficient immunosuppressive therapy. Therefore, this non-invasive, sensitive, and quantitative method is a robust and informative approach for rapid and routine monitoring of transplant allografts without invasive biopsy.


Assuntos
Técnicas Biossensoriais , Transplante de Rim , Animais , Biomarcadores/urina , Ouro , Rejeição de Enxerto/diagnóstico , Rejeição de Enxerto/urina , Transplante de Rim/efeitos adversos , Camundongos , Sistemas Automatizados de Assistência Junto ao Leito
3.
Nanoscale ; 7(6): 2805-11, 2015 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-25584654

RESUMO

Chemosensitizers can improve the therapeutic index of chemotherapy and overcome treatment resistance. Successful translation of chemosensitizers depends on the development of strategies that can preferentially deliver chemosensitizers to tumors while avoiding normal tissue. We hypothesized that nanoparticle (NP) formulation of chemosensitizers can improve their delivery to tumors which can in turn improve their therapeutic index. To demonstrate the proof of principle of this approach, we engineered NP formulations of two chemosensitizers, the PI3-kindase inhibitor wortmanin (Wtmn) and the PARP inhibitor olaparib. NP Wtmn and NP olaparib were evaluated as chemosensitizers using lung cancer cells and breast cancer cells respectively. We found Wtmn to be an efficient chemosensitizer in all tested lung-cancer cell lines reducing tumor cell growth between 20 and 60% compared to drug alone. NP formulation did not decrease its efficacy in vitro. Olaparib showed less consistent chemosensitization as a free drug or in NP formulation. NP Wtmn was further evaluated as a chemosensitizer using mouse models of lung cancer. We found that NP Wtmn is an effective chemosensitizer and more effective than free Wtmn showing a 32% reduction in tumor growth compared to free Wtmn when given with etoposide. Importantly, NP Wtmn was able to sensitize the multi-drug resistant H69AR cells to etoposide. Additionally, the combination of NP Wtmn and etoposide chemotherapy did not significantly increase toxicity. The present study demonstrates the proof of principle of using NP formulation of chemosensitizing drugs to improve the therapeutic index of chemotherapy.


Assuntos
Antineoplásicos/administração & dosagem , Nanomedicina/métodos , Nanopartículas/química , Neoplasias/tratamento farmacológico , Androstadienos/administração & dosagem , Animais , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Reparo do DNA , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Masculino , Camundongos , Camundongos Nus , Microscopia Eletrônica de Transmissão , Transplante de Neoplasias , Inibidores de Fosfoinositídeo-3 Quinase , Ftalazinas/administração & dosagem , Piperazinas/administração & dosagem , Inibidores de Poli(ADP-Ribose) Polimerases/administração & dosagem , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA