Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Elife ; 132024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757931

RESUMO

Erythropoiesis and megakaryopoiesis are stringently regulated by signaling pathways. However, the precise molecular mechanisms through which signaling pathways regulate key transcription factors controlling erythropoiesis and megakaryopoiesis remain partially understood. Herein, we identified heat shock cognate B (HSCB), which is well known for its iron-sulfur cluster delivery function, as an indispensable protein for friend of GATA 1 (FOG1) nuclear translocation during erythropoiesis of K562 human erythroleukemia cells and cord-blood-derived human CD34+CD90+hematopoietic stem cells (HSCs), as well as during megakaryopoiesis of the CD34+CD90+HSCs. Mechanistically, HSCB could be phosphorylated by phosphoinositol-3-kinase (PI3K) to bind with and mediate the proteasomal degradation of transforming acidic coiled-coil containing protein 3 (TACC3), which otherwise detained FOG1 in the cytoplasm, thereby facilitating FOG1 nuclear translocation. Given that PI3K is activated during both erythropoiesis and megakaryopoiesis, and that FOG1 is a key transcription factor for these processes, our findings elucidate an important, previously unrecognized iron-sulfur cluster delivery independent function of HSCB in erythropoiesis and megakaryopoiesis.


Assuntos
Eritropoese , Fosfatidilinositol 3-Quinases , Fatores de Transcrição , Humanos , Transporte Ativo do Núcleo Celular , Núcleo Celular/metabolismo , Eritropoese/fisiologia , Células-Tronco Hematopoéticas/metabolismo , Proteínas de Choque Térmico HSC70/metabolismo , Células K562 , Proteínas Nucleares/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Transporte Proteico , Transdução de Sinais , Trombopoese/fisiologia , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética
2.
Lung Cancer ; 183: 107315, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37517117

RESUMO

BACKGROUND: Although the treatment of ERBB2-altered non-small cell lung cancer (NSCLC) has been studied for many years, there are no comprehensive studies to evaluate the benefits of various therapies as first-line treatment. Through the development of immunotherapy, more and more different combination treatments were applicated in clinical practice, therefore, we conducted a multicenter retrospective study to evaluate the efficacy of different treatments. METHODS: We enrolled patients with ERBB2-altered NSCLC who had undergone at least one-line systemic anticancer treatment to evaluate the efficacy of first-line chemotherapy alone (Chemo), anti-ERBB2 tyrosine kinase inhibitor (TKI), chemotherapy plus immunotherapy (Chemo + Immuno), chemotherapy plus anti-angiogenesis therapy (Chemo + Antiangio) and chemotherapy combined with immunotherapy and anti-angiogenesis therapy (Chemo + Immuno + Antiangio). The clinical outcomes included objective response rate (ORR), disease control rate (DCR), median progression-free survival (mPFS), one-year and three-year survival rate. RESULTS: We enroll 36 patients harboring ERBB2 mutation and 29 with ERBB2 amplification. The overall ORR was 30.8%, DCR was 69.2% and mPFS was 5.7 months. Chemo + Immuno and Chemo + Antiangio both achieved longer mPFS than TKI (7.8 vs 3.6 months, HR: 0.24, 95 %CI: 0.09-0.64, P = 0.002; 5.9 vs 3.6 months, HR: 0.36, 95 %CI: 0.15-0.88, P = 0.019; respectively), while there was no significant difference in mPFS between Chemo + Immuno or Chemo + Antiangio and Chemo (both P > 0.05), the mPFS of the first two was longer. For ERBB2-mutant patients, the mPFS was 5.9 months, and Chemo + Immuno and Chemo + Antiangio both achieved longer mPFS than TKI (12.9 vs 2.9 months, HR: 0.15, 95 %CI: 0.03-0.68, P = 0.005; 7.1 vs 2.9 months, HR: 0.50, 95 %CI: 0.29-0.88, P = 0.009, respectively). In the same therapies, patients with ERBB2 mutation or ERBB2 amplification showed no statistical significance in PFS (both P > 0.05). CONCLUSIONS: In the first-line treatment of ERBB2-altered NSCLC, chemotherapy combined with immunotherapy or anti-angiogenesis therapy may have greater survival benefits than ERBB2-target therapy, but the efficacy may not be better than that of chemotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Estudos Retrospectivos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Inibidores de Proteínas Quinases/efeitos adversos , Mutação
3.
Exp Ther Med ; 25(5): 225, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37123205

RESUMO

Sarcoidosis is a multisystem inflammatory disease characterized by the development of Th1/Th17/regulatory T cells (Tregs)-related non-caseating granulomas. Phosphoinositide-3 kinases δ/γ (PI3Kδ/γ) play an important role in the maintenance of effective immunity, especially for Tregs homeostasis and stability. In the present study, superoxide dismutase A (SodA) stimulation was used to establish the sarcoidosis mouse model. The second immune stimulus was accompanied by CAL-101 (PI3Kδ inhibitor) or AS-605240 (PI3Kδ/γ inhibitor) treatment. To detect the effect of the PI3Kδ/γ inhibitor on the morphology of pulmonary granuloma and the activation of the PI3K signaling pathway, hematoxylin and eosin staining and immunofluorescence and western blotting was used, respectively. Fluorescence-activated cell sorting analysis and reverse transcription-quantitative PCR were adopted to detect the effect of the PI3Kδ/γ inhibitor on the SodA-induced sarcoidosis mouse model in respect to immune cell disorder and the function of Treg cells, with CD4+CD25- T cells and CD4+CD25+ T cells sorted by magnetic cell sorting. The results demonstrated that the inhibition of PI3Kδ/γ by transtracheal CAL-101/AS-605240 administration facilitated pulmonary granuloma formation. These therapeutic effects were associated with certain mechanisms, including suppressing the aberrantly activated PI3K/Akt signaling in both pulmonary granuloma and Tregs, particularly rescuing the suppressive function of Tregs. Notably, CAL-101 was more effective in immune modulation compared with AS-605240 and could overcome the aberrantly activated Akt in the lung and Tregs. These results suggest that PI3K/Akt signaling, especially the PI3Kδ subunit, can play a key role in optimal Tregs-mediated protection against pulmonary sarcoidosis. Therefore, transtracheal usage of PI3Kδ/γ inhibitors is an attractive therapy that may be developed into a new immune-therapeutic principle for sarcoidosis in the future.

4.
Transl Lung Cancer Res ; 12(4): 895-908, 2023 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-37197619

RESUMO

Background and Objective: Lung cancer is the most fatal malignant tumor in the world. Since the discovery of driver genes, targeted therapy has been demonstrated to be superior to traditional chemotherapy and has revolutionized the therapeutic landscape of non-small cell lung cancer (NSCLC). The remarkable success of tyrosine kinase inhibitors (TKIs) in patients with epidermal growth factor receptor (EGFR) mutations and anaplastic lymphoma kinase (ALK) fusions has shifted the treatment from platinum-based combination chemotherapy to targeted therapy. Although the incidence rate of gene fusion is low in NSCLC, it is of great significance in advanced refractory patients. However, the clinical characteristics and the latest treatment progress of patients with gene fusions in lung cancer have not been thoroughly explored. The objective of this narrative review was to summarize the latest research progress of targeted therapy for gene fusion variants in NSCLC to improve understanding for clinicians. Methods: We conducted a search of PubMed database and American Society of Clinical Oncology (ASCO), the European Society for Medical Oncology (ESMO), and World Conference on Lung Cancer (WCLC) abstracts meeting proceedings from 1 January 2005 to 31 August 2022 with the following keywords "non-small cell lung cancer", "fusion", "rearrangement", "targeted therapy" and "tyrosine kinase inhibitor". Key Content and Findings: We comprehensively listed the targeted therapy of various gene fusions in NSCLC. Fusions of ALK, ROS proto-oncogene 1 (ROS1), and rearranged during transfection proto-oncogene (RET) are relatively more common than others (NTRK fusions, NRG1 fusions, FGFR fusions, etc.). Among ALK-rearranged NSCLC patients treated with crizotinib, alectinib, brigatinib, or ensartinib, the Asian population exhibited a slightly better effect than the non-Asian population in first-line therapy. It was revealed that ceritinib may have a slightly better effect in the non-Asian ALK-rearranged population as first-line therapy. The effect of crizotinib might be similar in Asians and non-Asians with ROS1-fusion-positive NSCLC in first-line therapy. The non-Asian population were shown to be more likely to be treated with selpercatinib and pralsetinib for RET-rearranged NSCLC than the Asian population. Conclusions: The present report summarizes the current state of fusion gene research and the associated therapeutic methods to improve understanding for clinicians, but how to better overcome drug resistance remains a problem that needs to be explored.

5.
Clin Interv Aging ; 17: 317-330, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35386749

RESUMO

Objective: There has been a worldwide increment in acute kidney injury (AKI) incidence among elderly orthopedic operative patients. The AKI prediction model provides patients' early detection a possibility at risk of AKI; most of the AKI prediction models derive, however, from the cardiothoracic operation. The purpose of this study is to predict the risk of AKI in elderly patients after orthopedic surgery based on machine learning algorithm models. Methods: We organized a retrospective study being comprised of 1000 patients with postoperative AKI undergoing orthopedic surgery from September 2016, to June, 2021. They were divided into training (80%;n=799) and test (20%;n=201) sets.We utilized nine machine learning (ML) algorithms and used intraoperative information and preoperative clinical features to acquire models to predict AKI. The performance of the model was evaluated according to the area under the receiver operating characteristic (AUC), sensitivity, specificity and accuracy. Select the optimal model and establish the nomogram to make the prediction model visualization. The concordance statistic (C-statistic) and calibration curve were used to discriminate and calibrate the nomogram respectively. Results: In predicting AKI, nine ML algorithms posted AUC of 0.656-1.000 in the training cohort, with the randomforest standing out and AUC of 0.674-0.821 in the test cohort, with the logistic regression model standing out. Thus, we applied the logistic regression model to establish nomogram. The nomogram was comprised of ten variables: age, body mass index, American Society of Anesthesiologists, hypoproteinemia, hypertension, diabetes, anemia, duration of low mean arterial pressure, mean arterial pressure, transfusion.The calibration curves showed good agreement between prediction and observation in both the training and test sets. Conclusion: By including intraoperative and preoperative risk factors, ML algorithm can predict AKI and logistic regression model performing the best. Our prediction model and nomogram that are based on this ML algorithm can help lead decision-making for strategies to inhibit AKI over the perioperative duration.


Assuntos
Injúria Renal Aguda , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Idoso , Algoritmos , Humanos , Aprendizado de Máquina , Nomogramas , Estudos Retrospectivos , Fatores de Risco
6.
Ann Transl Med ; 9(22): 1642, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34988151

RESUMO

BACKGROUND: Type 1 diabetes (T1D) is a multiple factor autoimmune disease characterized by T cell-mediated immune destruction of islet ß cells. Autologous hematopoietic stem cell transplantation (AHSCT) has been a novel strategy for patients with new-onset T1D, but not for those with a later diagnosis. Disturbance of regulatory T cells (Tregs) likely contributes to poor response after transplantation in later-stage T1D. Inhibition of phosphoinositide 3-kinases (PI3K)/Akt signaling maintains Tregs' homeostasis. METHODS: We built a later-stage streptozotocin (STZ)-induced T1D mouse model. Syngeneic bone marrow transplantation (syn-BMT) was performed 20 days after the onset of diabetes in combination with BKM120 (a PI3K inhibitor). Meanwhile, another group of STZ-diabetic mice were transplanted with bone marrow cells cocultured with BKM120 in vitro for 24 h. Fasting glucose and glucose tolerance were recorded during the entire experimental observation after syn-BMT. Samples were collected 126 days after syn-BMT. Hematoxylin and eosin (H&E) staining was used to detect the effect of PI3K inhibitor combined with syn-BMT on morphology of the T1D pancreas. CD4+CD25- T cells and CD4+CD25+ T cells were sorted by magnetic cell sorting (MACS), then fluorescence activated cell sorting (FACS) and quantitative real-time PCR (qPCR) were used to detect the effect of PI3K inhibitor on modulating immune disorder and restoring the function of Treg cells. RESULTS: Our investigation showed syn-BMT in combination with BKM120 effectively maintained normoglycemia in later-stage T1D. The disease remission effects may be induced by the rebalance of Th17/Tregs dysregulation and restoration of Tregs' immunosuppressive function by BKM120 after syn-BMT. CONCLUSIONS: These results may reveal important connections for PI3K/Akt inhibition and Tregs' homeostasis in T1D after transplantation. AHSCT combining immunoregulatory strategies such as PI3K inhibition may be a promising therapeutic approach in later-stage T1D.

7.
J Mater Chem B ; 5(9): 1846-1855, 2017 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-32263924

RESUMO

A nanotheranostic agent has been fabricated by direct deposition of Bi2Se3 nanoparticles on graphene oxide (GO) in the presence of polyvinylpyrrolidone (PVP) using a one-pot solvothermal method. The resulting GO/Bi2Se3/PVP nanocomposites show low in vitro cytotoxicity, negligible hemolytic activity and little in vivo toxicity. GO/Bi2Se3/PVP nanocomposites could serve as an efficient bimodal contrast agent to simultaneously enhance X-ray computed tomography imaging and photoacoustic imaging in vivo. In addition, the nanocomposites exhibit significant photothermal cytotoxicity to cancer cells under 808 nm laser irradiation. After intratumoral or intravenous injection of the nanocomposites, irreversible photothermal ablation of tumors in the mouse model is successfully achieved by using 808 nm laser irradiation. All of the positive results highlight that the GO/Bi2Se3/PVP nanocomposites can be developed as a promising nanoplatform for efficient tumor theranostic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA