Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Adv Sci (Weinh) ; : e2309992, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38774946

RESUMO

Radiotherapy demonstrates a synergistic effect with immunotherapy by inducing a transformation of "immune cold" tumors into "immune hot" tumors in triple negative breast cancer (TNBC). Nevertheless, the effectiveness of immunotherapy is constrained by low expression of tumor-exposed antigens, inadequate inflammation, and insufficient tumor infiltrating lymphocyte (TILs). To address this predicament, novel lutecium-based rare earth nanoparticles (RENPs) are synthesized with the aim of amplifying radiation effect and tumor immune response. The nanoprobe is characterized by neodymium-based down-conversion fluorescence, demonstrating robust photostability, biocompatibility, and targetability. The conjugation of RENPs with a CXCR4 targeted drug enables precise delineation of breast tumors using a near-infrared imaging system and improves radiation efficacy via lutetium-based radio-sensitizer in vivo. Furthermore, the study shows a notable enhancement of immune response through the induction of immunogenic cell death and recruitment of TILs, resulting in the inhibition of tumor progression both in vitro and in vivo models following the administration of nanoparticles. Hence, the novel multifunctional nanoprobes incorporating various lanthanide elements offer the potential for imaging-guided tumor delineation, radio-sensitization, and immune activation post-radiation, thus presenting an efficient radio-immunotherapeutic approach for TNBC.

2.
MedComm (2020) ; 4(6): e403, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37881785

RESUMO

Estrogen receptor α (ERα) serves as an essential therapeutic predictor for breast cancer (BC) patients and is regulated by epigenetic modification. Abnormal methylation of cytosine phosphoric acid guanine islands in the estrogen receptor 1 (ESR1) gene promoter could silence or decrease ERα expression. In ERα-negative BC, we previously found snail family transcriptional repressor 2 (SNAI2), a zinc-finger transcriptional factor, recruited lysine-specific demethylase 1 to the promoter to transcriptionally suppress ERα expression by demethylating histone H3 lysine 4 dimethylation (H3K4me2). However, the role of SNAI2 in ERα-positive BC remains elusive. In this study, we observed a positive correlation between SNAI2 and ESR1 methylation, and SNAI2 promoted ESR1 methylation by recruiting DNA methyltransferase 3 beta (DNMT3B) rather than DNA methyltransferase 1 (DNMT1) in ERα-positive BC cells. Subsequent enrichment analysis illustrated that ESR1 methylation is strongly correlated with cell adhesion and junction. Knocking down DNMT3B could partially reverse SNAI2 overexpression-induced cell proliferation, migration, and invasion. Moreover, high DNMT3B expression predicted poor relapse-free survival and overall survival in ERα-positive BC patients. In conclusion, this study demonstrated the novel mechanisms of the ESR1 methylation mediated with the SNAI2/DNMT3B complex and enhanced awareness of ESR1 methylation's role in promoting epithelial-mesenchymal transition in BC.

3.
Int J Nanomedicine ; 18: 5141-5157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37705867

RESUMO

Background: Durable responses to immune-checkpoint blocking therapy (ICT) targeting programmed cell death protein-1/ligand-1 (PD-1/PD-L1) have improved outcomes for patients with triple negative breast cancer (TNBC). Unfortunately, only 19-23% of patients benefit from ICT. Hence, non-invasive strategies evaluating responses to therapy and selecting patients who will benefit from ICT are critical issues for TNBC immunotherapy. Methods: We developed a novel nanoparticle-Atezolizumab (NPs-Ate) consisting of indocyanine green (ICG), gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA), human serum albumin (HSA), and Atezolizumab. The efficiency of Gd-DTPA linking was verified using mass spectrometry, and the size of NPs-Ate was characterized using Nano-flow cytometry. The synthesized NPs-Ate were evaluated for fluorescence stability, penetration depth, and target specificity. TNBC cell lines and tumor-bearing mice models were used to identify the feasibility of this dual-modal second near-infrared/magnetic resonance imaging (NIR-II/MRI) system. Additionally, ICT combination with chemotherapy or radiotherapy in TNBC tumor-bearing mice models were used to assess dynamic changes of PD-L1 and predicted therapeutic responses with NPs-Ate. Results: Atezolizumab, a monoclonal antibody, was successfully labeled with ICG and Gd-DTPA to generate NPs-Ate. This demonstrated strong fluorescence signals in our NIR-II imaging system, and relaxivity (γ1) of 9.77 mM-1 s-1. In tumor-bearing mice, the NIR-II imaging signal background ratio (SBR) reached its peak of 11.51 at 36 hours, while the MRI imaging SBR reached its highest as 1.95 after 12 hours of tracer injection. NPs-Ate specifically targets cells and tumors expressing PD-L1, enabling monitoring of PD-L1 status during immunotherapy. Combining therapies led to inhibited tumor growth, prolonged survival, and increased PD-L1 expression, effectively monitored using the non-invasive NPs-Ate imaging system. Conclusion: The NIR-II/MRI NPs-Ate effectively reflected PD-L1 status during immunotherapy. Real-time and non-invasive immunotherapy and response/prognosis monitoring under NIR-II/MRI imaging guidance in TNBC is a promising and innovative technology with potential for extensive clinical applications in the future.


Assuntos
Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Neoplasias de Mama Triplo Negativas/diagnóstico por imagem , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Antígeno B7-H1 , Gadolínio DTPA , Imunoterapia , Imageamento por Ressonância Magnética , Verde de Indocianina
4.
Cancer Res ; 83(20): 3428-3441, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37540231

RESUMO

Sentinel lymph node (SLN) biopsy plays a critical role in axillary staging of breast cancer. However, traditional SLN mapping does not accurately discern the presence or absence of metastatic disease. Detection of SLN metastasis largely hinges on examination of frozen sections or paraffin-embedded tissues post-SLN biopsy. To improve detection of SLN metastasis, we developed a second near-infrared (NIR-II) in vivo fluorescence imaging system, pairing erbium-based rare-earth nanoparticles (ErNP) with bright down-conversion fluorescence at 1,556 nm. To visualize SLNs bearing breast cancer, ErNPs were modified by balixafortide (ErNPs@POL6326), a peptide antagonist of the chemokine receptor CXCR4. The ErNPs@POL6326 probes readily drained into SLNs when delivered subcutaneously, entering metastatic breast tumor cells specifically via CXCR4-mediated endocytosis. NIR fluorescence signals increased significantly in tumor-positive versus tumor-negative SLNs, enabling accurate determination of SLN breast cancer metastasis. In a syngeneic mouse mammary tumor model and a human breast cancer xenograft model, sensitivity for SLN metastasis detection was 92.86% and 93.33%, respectively, and specificity was 96.15% and 96.08%, respectively. Of note, the probes accurately detected both macrometastases and micrometastases in SLNs. These results overall underscore the potential of ErNPs@POL6326 for real-time visualization of SLNs and in vivo screening for SLN metastasis. SIGNIFICANCE: NIR-IIb imaging of a rare-earth nanoprobe that is specifically taken up by breast cancer cells can accurately detect breast cancer macrometastases and micrometastases in sentinel lymph nodes.


Assuntos
Neoplasias da Mama , Linfonodo Sentinela , Animais , Camundongos , Humanos , Feminino , Metástase Linfática/diagnóstico por imagem , Metástase Linfática/patologia , Linfonodo Sentinela/diagnóstico por imagem , Linfonodo Sentinela/patologia , Neoplasias da Mama/patologia , Linfonodos/diagnóstico por imagem , Linfonodos/patologia , Micrometástase de Neoplasia/patologia , Biópsia de Linfonodo Sentinela/métodos , Estadiamento de Neoplasias , Axila/patologia
5.
Adv Sci (Weinh) ; 10(10): e2205294, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36721054

RESUMO

Breast-conserving surgery (BCS) is the predominant treatment approach for initial breast cancer. However, due to a lack of effective methods evaluating BCS margins, local recurrence caused by positive margins remains an issue. Accordingly, radiation therapy (RT) is a common modality in patients with advanced breast cancer. However, while RT also protects normal tissue and enhances tumor bed doses to improve therapeutic effects, current radiosensitizers cannot meet these urgent clinical needs. To address this, a novel self-assembled multifunctional nanoprobe (NP) gadolinium (Gd)-diethylenetriaminepentaacetic acid-human serum albumin (HSA)@indocyanine green-Bevacizumab (NPs-Bev) is synthesized to improve the efficacy of fluorescence-image-guided BCS and RT. Fluorescence image guidance of the second near infrared NP improves complete resection in tumor-bearing mice and accurately discriminates between benign and malignant mammary tissue in transgenic mice. Moreover, targeting tumors with NPs induces more reactive oxygen species under X-ray radiation therapy, which not only increases RT sensitivity, but also reduces tumor progression in mice. Interestingly, self-assembled NPs-Bev using HSA, the magnetic resonance contrast agent and Bevacizumab-targeting vascular growth factor A, which are clinically safe reagents, are safe in vitro and in vivo. Therefore, the novel self-assembled NPs provide a solid precision therapy platform to treat breast cancer.


Assuntos
Neoplasias da Mama , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Bevacizumab/uso terapêutico , Verde de Indocianina/uso terapêutico , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética
6.
Crit Rev Oncol Hematol ; 176: 103746, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35752425

RESUMO

Recently, immune checkpoint therapy (ICT) represented by programmed cell death1 (PD-1) and its major ligands, programmed death ligand 1 (PD-L1), has achieved significant success. Detection of PD-L1 by immunohistochemistry (IHC) is a classic method to guide the treatment of ICT patients. However, PD-L1 expression in the tumor microenvironment is highly complex. Thus, PD-L1 IHC is inadequate to fully understand the relevance of PD-L1 levels in the whole body and their dynamics to improve therapeutic outcomes. Intriguingly, numerous studies have revealed that molecular imaging technologies could potentially meet this need. Therefore, the purpose of this narrative review is to summarize the preclinical and clinical application of ICT guided by molecular imaging technology, and to explore the future opportunities and practical difficulties of these innovations.


Assuntos
Antígeno B7-H1 , Microambiente Tumoral , Humanos , Imuno-Histoquímica , Imagem Molecular , Prognóstico
7.
Front Genet ; 13: 798170, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35368696

RESUMO

Background: In the latest rankings, breast cancer ranks first in incidence and fifth in mortality among female malignancies worldwide. Early diagnosis and treatment can improve the prognosis and prolong the survival of breast cancer (BC) patients. The NIMA-related kinase (NEK), a group of serine/threonine kinase, is a large and conserved gene family that includes NEK1-NEK11. The NEK plays a pivotal role in the cell cycle and microtubule formation. However, an integrative analysis of the effect and prognosis value of NEK family members on BC patients is still lacking. Methods: In this study, the expression profiles of NEK family members in BC and its subgroups were analyzed using UALCAN, GEPIA2, and Human Protein Atlas datasets. The prognostic values of NEK family members in BC were evaluated using the Kaplan-Meier plotter. Co-expression profiles and genetic alterations of NEK family members were analyzed using the cBioPortal database. The function and pathway enrichment analysis of the NEK family were performed using the WebGestalt database. The correlation analysis of the NEK family and immune cell infiltration in BC was conducted using the TIMER 2.0 database. Results: In this study, we compared and analyzed the prognosis values of the NEKs. We found that NEK9 was highly expressed in normal breast tissues than BC, and NEK2, NEK6, and NEK11 were significantly highly expressed in BC than adjacent normal tissues. Interestingly, the expression levels of NEK2, NEK6, and NEK10 were not only remarkably correlated with the tumor stage but also with the molecular subtype. Through multilevel research, we found that high expression levels of NEK1, NEK3, NEK8, NEK9, NEK10, and NEK11 suggested a better prognosis value in BC, while high expression levels of NEK2 and NEK6 suggested a poor prognosis value in BC. Conclusion: Our studies show the prognosis values of the NEKs in BC. Thus, we suggest that NEKs may be regarded as novel biomarkers for predicting potential prognosis values and potential therapeutic targets of BC patients.

8.
Int J Nanomedicine ; 17: 1343-1360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35345784

RESUMO

Purpose: Tumor-free surgical margin is crucial but challenging in breast-conserving surgery (BCS). Fluorescence imaging is a promising strategy for surgical navigation that can reliably assist the surgeon with visualization Of the tumor in real-time. Notably, finding an optimized fluorescent probe has been a challenging research topic. Herein, we developed a novel near-infrared (NIR) fluorescent probe based on tailored Hepatitis B Core virus-like protein (HBc VLP) and presented the preclinical imaging-guided surgery. Methods: The RGD-HBc160 VLP was synthesized by genetic engineering followed encapsulation of ICG via disassembly-reassembly. The applicability of the probe was tested for cell and tissue binding capacities through cell-based plate assays, xenograft mice model, and MMTV-PyVT mammary tumor transgenic mice. Subsequently, the efficacy of RGD-HBc160/ICG-guided surgery was evaluated in an infiltrative tumor-bearing mouse model. The protein-induced body's immune response was further assessed. Results: The prepared RGD-HBc160/ICG showed outstanding integrin αvß3 targeting ability in vitro and in vivo. After intravenous administration of probe, the fluorescence guidance facilitated more complete tumor resection and improved overall survival Of the infiltrative tumor-bearing mice. The probe also showed the excellent capability to differentiate between benign and malignant breast tissues in the mammary tumor transgenic mice. Interestingly, the ingenious tailoring of HBc VLP could not only endow its tumor-targeting ability towards integrin αvß3 but also significantly reduce the humoral and cellular immune response. Conclusion: The RGD-HBc160/ICG holds promise as an effective tool to delineate tumor margin. These results have translational potential to achieve margin-negative resection and improve the stratification of patients for a potentially curative.


Assuntos
Neoplasias da Mama , Antígenos do Núcleo do Vírus da Hepatite B , Cirurgia Assistida por Computador , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/patologia , Neoplasias da Mama/cirurgia , Feminino , Fluorescência , Humanos , Integrina alfaVbeta3/metabolismo , Camundongos
9.
Adv Sci (Weinh) ; 9(12): e2104728, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35170876

RESUMO

Positive resection margin frequently exists in breast-conserving treatment (BCT) of early-stage breast cancer, and insufficient therapeutic efficacy is common during radiotherapy (RT) in advanced breast cancer patients. Moreover, a multimodal nanotherapy platform is urgently required for precision cancer medicine. Therefore, a biodegradable cyclic RGD pentapeptide/hollow virus-like gadolinium (Gd)-based indocyanine green (R&HV-Gd@ICG) nanoprobe is developed to improve fluorescence image-guided surgery and breast cancer RT efficacy. R&HV-Gd exhibits remarkably improved aqueous stability, tumor retention, and target specificity of ICG, and achieves outstanding magnetic resonance/second near-infrared (NIR-II) window multimodal imaging in vivo. The nanoprobe-based NIR-II fluorescence image guidance facilitates complete tumor resection, improves the overall mouse survival rate, and effectively discriminates between benign and malignant breast tissues in spontaneous breast cancer transgenic mice (area under the curve = 0.978; 95% confidence interval: 0.952, 1.0). Moreover, introducing the nanoprobe to tumors generated more reactive oxygen species under X-ray irradiation, improved RT sensitivity, and reduced mouse tumor progression. Notably, the nanoprobe is biodegradable in vivo and exhibits accelerated bodily clearance, which is expected to reduce the potential long-term inorganic nanoparticle toxicity. Overall, the nanoprobe provides a basis for developing precision breast cancer treatment strategies.


Assuntos
Neoplasias da Mama , Nanopartículas , Cirurgia Assistida por Computador , Animais , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Neoplasias da Mama/cirurgia , Feminino , Gadolínio , Humanos , Verde de Indocianina , Margens de Excisão , Camundongos , Cirurgia Assistida por Computador/métodos
10.
Small Methods ; 5(3): e2001066, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-34927825

RESUMO

Near-infrared (NIR) fluorescence imaging is an emerging noninvasive imaging modality, with unique advantages in guiding tumor resection surgery, thanks to its high sensitivity and instantaneity. In the past decade, studies on the conventional NIR window (NIR-I, 750-900 nm) have gradually focused on the second NIR window (NIR-II, 1000-1700 nm). With its reduced light scattering, photon absorption, and auto-fluorescence qualities, NIR-II fluorescence imaging significantly improves penetration depths and signal-to-noise ratios in bio-imaging. Recently, several studies have applied NIR-II imaging to navigating cancer surgery, including localizing cancers, assessing surgical margins, tracing lymph nodes, and mapping important anatomical structures. These studies have exemplified the significant prospects of this new approach. In this review, several NIR-II fluorescence agents and some of the complex applications for guiding cancer surgeries are summarized. Future prospects and the challenges of clinical translation are also discussed.


Assuntos
Neoplasias , Cirurgia Assistida por Computador , Corantes Fluorescentes/química , Humanos , Neoplasias/diagnóstico por imagem , Imagem Óptica/métodos , Fótons , Cirurgia Assistida por Computador/métodos
12.
Front Oncol ; 11: 628814, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34249678

RESUMO

PURPOSE: The basic helix-loop-helix transcription factor (bHLH) transcription factor Twist1 plays a key role in embryonic development and tumorigenesis. p53 is a frequently mutated tumor suppressor in cancer. Both proteins play a key and significant role in breast cancer tumorigenesis. However, the regulatory mechanism and clinical significance of their co-expression in this disease remain unclear. The purpose of this study was to analyze the expression patterns of p53 and Twist1 and determine their association with patient prognosis in breast cancer. We also investigated whether their co-expression could be a potential marker for predicting patient prognosis in this disease. METHODS: Twist1 and mutant p53 expression in 408 breast cancer patient samples were evaluated by immunohistochemistry. Kaplan-Meier Plotter was used to analyze the correlation between co-expression of Twist1 and wild-type or mutant p53 and prognosis for recurrence-free survival (RFS) and overall survival (OS). Univariate analysis, multivariate analysis, and nomograms were used to explore the independent prognostic factors in disease-free survival (DFS) and OS in this cohort. RESULTS: Of the 408 patients enrolled, 237 (58%) had high mutant p53 expression. Two-hundred twenty patients (53.9%) stained positive for Twist1, and 188 cases were Twist1-negative. Furthermore, patients that co-expressed Twist1 and mutant p53 (T+P+) had significantly advanced-stage breast cancer [stage III, 61/89 T+P+ (68.5%) vs. 28/89 T-P- (31.5%); stage II, 63/104 T+P+ (60.6%)vs. 41/104 T-P- (39.4%)]. Co-expression was negatively related to early clinical stage (i.e., stages 0 and I; P = 0.039). T+P+ breast cancer patients also had worse DFS (95% CI = 1.217-7.499, P = 0.017) and OS (95% CI = 1.009-9.272, P = 0.048). Elevated Twist1 and mutant p53 expression predicted shorter RFS in basal-like patients. Univariate and multivariate analysis identified three variables (i.e., lymph node involvement, larger tumor, and T+P+) as independent prognostic factors for DFS. Lymph node involvement and T+P+ were also independent factors for OS in this cohort. The total risk scores and nomograms were reliable for predicting DFS and OS in breast cancer patients. CONCLUSIONS: Our results revealed that co-expression of mutant p53 and Twist1 was associated with advanced clinical stage, triple negative breast cancer (TNBC) subtype, distant metastasis, and shorter DFS and OS in breast cancer patients. Furthermore, lymph nodes status and co-expression of Twist1 and mutant p53 were classified as independent factors for DFS and OS in this cohort. Co-evaluation of mutant p53 and Twist1 might be an appropriate tool for predicting breast cancer patient outcome.

13.
Cell Death Dis ; 12(6): 502, 2021 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006834

RESUMO

Notch receptors (Notch1-4) play critical roles in tumorigenesis and metastasis of malignant tumors, including breast cancer. Although abnormal Notch activation is related to various tumors, the importance of single receptors and their mechanism of activation in distinct breast cancer subtypes are still unclear. Previous studies by our group demonstrated that Notch3 may inhibit the emergence and progression of breast cancer. PTEN is a potent tumor suppressor, and its loss of function is sufficient to promote the occurrence and progression of tumors. Intriguingly, numerous studies have revealed that Notch1 is involved in the regulation of PTEN through its binding to CBF-1, a Notch transcription factor, and the PTEN promoter. In this study, we found that Notch3 and PTEN levels correlated with the luminal phenotype in breast cancer cell lines. Furthermore, we demonstrated that Notch3 transactivated PTEN by binding CSL-binding elements in the PTEN promoter and, at least in part, inhibiting the PTEN downstream AKT-mTOR pathway. Notably, Notch3 knockdown downregulated PTEN and promoted cell proliferation and tumorigenesis. In contrast, overexpression of the Notch3 intracellular domain upregulated PTEN and inhibited cell proliferation and tumorigenesis in vitro and in vivo. Moreover, inhibition or overexpression of PTEN partially reversed the promotion or inhibition of cell proliferation induced by Notch3 alterations. In general, Notch3 expression positively correlated with elevated expression of PTEN, ER, lower Ki-67 index, and incidence of involved node status and predicted better recurrence-free survival in breast cancer patients. Therefore, our findings demonstrate that Notch3 inhibits breast cancer proliferation and suppresses tumorigenesis by transactivating PTEN expression.


Assuntos
Neoplasias da Mama/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Receptor Notch3/metabolismo , Animais , Neoplasias da Mama/genética , Carcinogênese , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Feminino , Humanos , Camundongos , Camundongos Nus , Prognóstico , Análise de Sobrevida , Transfecção
14.
Front Oncol ; 11: 627713, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33854967

RESUMO

BACKGROUND AND OBJECTIVES: In China, over 90% of esophageal cancer (EC) cases are esophageal squamous cell carcinoma (ESCC). ESCC is a frequently malignant tumor with poor prognosis despite the development of comprehensive therapeutic strategies, for which there is still a lack of effective prognostic factors. Previous studies found that the abnormal expression of TRPC1 is closely related to the proliferation, invasion, metastasis, and differentiation of various tumors. However, the relationship between TRPC1 and ESCC is currently unclear. The present study aimed to clarify the clinical significance of TRPC1 and to preliminarily assess the molecular mechanism by which TRPC1 regulates cell proliferation, migration, and invasion in ESCC. MATERIALS AND METHODS: Immunohistochemistry (IHC) was used to determine the expression of TRPC1 and Ki-67 in 165 cases of ESCC. The correlations between TRPC1 expression and clinicopathological characteristics were determined, and both univariate and multivariate analyses were utilized to quantify the impact of TRPC1 expression on patient survival. Cell Counting Kit-8, scratch wound healing, and transwell assays were used to determine the effects of TRPC1 on proliferation, migration, and invasion in ESCC in vitro, respectively. RESULTS: The positive expression rate of TRPC1 showed significantly decreased in ESCC (45.50%) compared with the levels in normal esophageal mucosa (NEM; 80.80%) and high-grade intraepithelial neoplasia (HGIEN; 63.20%) (P<0.001). Higher expression rate of TRPC1 was associated with low lymph node metastasis (P<0.001), high differentiation (rs = 0.232, P=0.003), and low Ki-67 (rs = -0.492, P<0.001). We further revealed that low expression of TRPC1 was associated with poor prognosis (Disease-free survival, DFS: 95% CI=0.545-0.845, P=0.001; Overall survival, OS: 95% CI=0.553-0.891, P=0.004). Furthermore, we showed that downregulation of TRPC1 promoted the proliferation, migration, and invasion of human esophageal squamous cell carcinoma cell line EC9706 in vitro. In contrast, overexpression of TRPC1 inhibited the proliferation, migration, and invasion of human esophageal squamous cell carcinoma cell line KYSE150 (P<0.01), in a manner at least in part mediated through the AKT/p27 pathway. CONCLUSION: TRPC1 inhibited the proliferation, migration, and invasion of EC9706 and KYSE150 cells, at least, in part mediated through the AKT/p27 pathway in vitro. The downregulation of TRPC1 may be one of the most important molecular events in the malignant progression of ESCC. TRPC1 could be a new candidate tumor suppressor gene and a new prognostic factor of ESCC.

15.
Transl Cancer Res ; 10(1): 210-222, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35116253

RESUMO

BACKGROUND: Lymphatic metastasis is one of the main factors affecting prognosis in esophageal squamous cell carcinoma (ESCC). Vascular endothelial growth factor-C (VEGF-C) is an important factor that promotes lymphangiogenesis. Survivin also plays a significant role in lymphatic invasion. However, the role and mechanism of their co-expression are still unclear in ESCC. The purpose of this study was to investigate whether the co-expression of VEGF-C and survivin could be a potential marker to predict patient prognosis and survival in ESCC. METHODS: The levels of VEGF-C, vascular endothelial growth factor receptor 3 (VEGFR-3), survivin, and Ki-67 were determined by immunohistochemistry (IHC) in 97 ESCC patient tumors. The correlations of co-expression of VEGF-C and survivin with pathological features and survival results were also assessed. RESULTS: High VEGF-C expression was observed in 64.9% of the patients and significantly correlated with T stage (P=0.024), node status (P=0.038), and lymph node metastasis (P=0.015). High survivin expression was significantly associated with T stage (P=0.013), N stage (P=0.016), lymph node metastasis (P=0.005), and differentiation (P=0.044) in 67.0% of the patients. Co-expression of VEGF-C and survivin (V+S+) was significantly associated with T stage (P<0.001), N stage (P=0.015), lymph node metastasis (P=0.003), differentiation (P=0.0045), and Ki-67 levels (P=0.024). High expression of VEGF-C or survivin was associated significantly with worse disease-free survival (DFS) and overall survival (OS) (P<0.05). Moreover, the V+S+ group had a worse DFS (P<0.001) and OS (P=0.001) than any other group (i.e., V-S-, V+S-, V-S+). Furthermore, multivariate DFS analyses (95% CI: 1.147-2.220, P=0.006) and multivariate OS analyses (95% CI: 1.080-2.193, P=0.017) revealed that co-expression of VEGF-C and survivin was an independent prognostic factor in ESCC patients. CONCLUSIONS: Co-expression of VEGF-C and survivin was predictive of poor prognosis in ESCC. Combined detection of VEGF-C and survivin could represent a feasible and effective marker to predict the prognosis and survival of ESCC patients.

16.
Breast Cancer Res Treat ; 182(1): 21-33, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32415497

RESUMO

PURPOSE: Previous studies have indicated that transient receptor potential (TRP) channels can influence cancer development. The TRPC subfamily consists of seven subtypes, TRPC1 - TRPC7. Interestingly, the expression levels of TRPC1 have been shown to be totally different in different breast cancer cell lines. Nevertheless, the underlying mechanism remains unknown. In this study, we explore the significance of TRPC1 expression in breast cancer. METHODS: Immunohistochemical TRPC1 staining was performed in 278 samples. TRPC1 expression in different breast tissues were examined. Then, the influence of TRPC1 on migration, invasion and proliferation was explored. We analyzed the protein of TRPC1 by Western blot to prove which pathway may be involved in. Finally, we use online database to predict the prognosis of TRPC1 in breast cancer. RESULTS: Through immunohistochemistry and in vitro experiments, we found that the expression level of TRPC1 was higher in breast cancer cells as compared with that in normal breast epithelial cells. Moreover, the expression level of TRPC1 was different between estrogen receptor-positive (ER +) and -negative (ER -) breast cancer. It was shown that TRPC1 inhibited MCF7 cell proliferation, migration, and invasion in vitro. Western blotting revealed that TRPC1 inhibited the PI3K/AKT pathway and epithelium-mesenchymal transformation, leading to subsequent inhibition of cell proliferation and metastasis. In luminal A and luminal B patients, those with high TRPC1 expression had a better prognosis. On the contrary, in basal-like and triple-negative breast cancer (TNBC) subtypes, patients with high-TRPC1 expression had a worse prognosis. CONCLUSIONS: We confirmed that TRPC1 was high expression in breast cancer. Overexpression of TRPC1 inhibits proliferation and migration of ER + breast cancer and gives a better prognosis by inhibiting PI3K/AKT pathway activation. TRPC1 may be an independent prognostic predictor in breast cancer patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Estrogênio/metabolismo , Canais de Cátion TRPC/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Apoptose , Biomarcadores Tumorais/genética , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Feminino , Seguimentos , Regulação Neoplásica da Expressão Gênica , Humanos , Pessoa de Meia-Idade , Fosfatidilinositol 3-Quinases/genética , Prognóstico , Proteínas Proto-Oncogênicas c-akt/genética , Receptor ErbB-2/metabolismo , Receptores de Progesterona/metabolismo , Canais de Cátion TRPC/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/metabolismo
17.
Front Cell Dev Biol ; 8: 615071, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505967

RESUMO

Accumulating evidence indicates that N6-methyladenosine (m6A), which directly regulates mRNA, is closely related to multiple biological processes and the progression of different malignancies, including breast cancer (BC). Studies of the aberrant expression of m6A mediators in BC revealed that they were associated with different BC subtypes and functions, such as proliferation, apoptosis, stemness, the cell cycle, migration, and metastasis, through several factors and signaling pathways, such as Bcl-2 and the PI3K/Akt pathway, among others. Several regulators that target m6A have been shown to have anticancer effects. Fat mass and obesity-associated protein (FTO) was identified as the first m6A demethylase, and a series of inhibitors that target FTO were reported to have potential for the treatment of BC by inhibiting cell proliferation and promoting apoptosis. However, the exact mechanism by which m6A modifications are regulated by FTO inhibitors remains unknown. m6A modifications in BC have only been preliminarily studied, and their mechanisms require further investigation.

18.
MedComm (2020) ; 1(2): 211-218, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34766119

RESUMO

Axillary reverse mapping (ARM) is a technique to identify arm lymphatic drainage during axillary lymph node dissection (ALND). This study compared the feasibility of ARM using indocyanine green (ICG) or methylene blue (MB), and accessed the oncologic safety of the procedure. Overall, 158 patients qualified for ALND were enrolled. The characteristics of ARM-identified nodes were recorded with ICG (n = 78) or MB (n = 80) visualization. Fine-needle aspiration cytology (FNAC) of the nodes were performed and validated by histologic analysis. The nodal identification rate in the ICG group significantly surpassed that of the MB group (87.2% vs 52.5%, P < .05) with fewer complications. Note that 10.9% of the patients had metastatic involvement of the ARM-identified nodes. Also 80% of the positive nodes were found in areas B and D, while the ARM-identified nodes mainly located in area A. All the 51 nodes diagnosed as negative of malignancy by FNAC were free of metastasis. Nodal metastasis was significantly correlated with extensive nodel involvement, advanced disease, and the characteristics of identified nodes. In conclusion, ICG appears superior to MB for ARM nodes identification. FNAC, together with the features of primary tumors and ARM nodes, can delineate which nodes could be preserved during ALND.

19.
NPJ Breast Cancer ; 4: 20, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30109262

RESUMO

Basal-like breast cancer (BLBC) is an aggressive subtype with a strong tendency to metastasize. Due to the lack of effective chemotherapy, BLBC has a poor prognosis compared with luminal subtype breast cancer. MicroRNA-221 and -222 (miR-221/222) are overexpressed in BLBC and associate with metastasis as well as poor prognosis; however, the mechanisms by which miR-221/222 function as oncomiRs remain unknown. Here, we report that miR-221/222 expression is inversely correlated with Notch3 expression in breast cancer cell lines. Notch3 is known to be overexpressed in luminal breast cancer cells and inhibits epithelial to mesenchymal transition (EMT). We demonstrate that miR-221/222 target Notch3 by binding to its 3' untranslated region and suppressing protein translation. Ectopic expression of miR-221/222 significantly promotes EMT, whereas overexpression of Notch3 intracellular domain attenuates the oncogenic function of miR-221/222, suggesting that miR-221/222 exerts its oncogenic role by negatively regulating Notch3. Taken together, our results elucidated that miR-221/222 promote EMT via targeting Notch3 in breast cancer cell lines suggesting that miR-221/222 can serve as a potential therapeutic target in BLBC.

20.
Clin Breast Cancer ; 18(5): e851-e861, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29510897

RESUMO

INTRODUCTION: The L1 cell adhesion molecule (L1-CAM) and its soluble form sL1 play a prominent role in invasion and metastasis in several cancers. However, its association with breast cancer is still unclear. PATIENTS AND METHODS: We analyzed L1-CAM expression and serum sL1 levels in cancer and para-carcinoma tissues from 162 consecutive patients with primary invasive breast cancer (PBC) using immunohistochemistry and an enzyme-linked immunosorbent assay, respectively. The serum sL1 levels were also examined in 38 patients with benign breast disease and 36 healthy controls. RESULTS: L1-CAM was expressed more frequently in cancer tissues than in para-carcinoma tissues (24.1% vs. 5.6%; P < .001), and the mean sL1 levels were significantly greater in PBC than in those with benign breast disease and healthy controls (P = .027). Both L1-CAM+ expression and higher mean sL1 levels correlated significantly with larger tumor size, lymph node involvement, higher histologic grade, advanced TNM stage, and shorter disease-free survival for PBC patients. Moreover, higher mean sL1 levels were also significantly associated with estrogen receptor-α-negative expression, human epidermal growth factor receptor 2-positive (HER2+) expression, HER2-enriched and triple-negative molecular subtypes, and L1-CAM+ expression (P < .05). On multivariate analysis, larger tumor size, nodal involvement, HER2+, and higher sL1 levels (≥ 0.7 ng/mL) were independent factors associated with L1-CAM+ expression (P < .05). No association was found between L1-CAM expression or sL1 level with age, gender, histologic type, or expression of progesterone receptor, Ki-67, p53, or vascular endothelial growth factor C (P > .05). CONCLUSION: These results indicate that L1-CAM and sL1 are elevated in PBC and both might affect the prognosis of PBC patients. In addition, sL1 might be a useful marker for screening and diagnosis.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Molécula L1 de Adesão de Célula Nervosa/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/sangue , Biomarcadores Tumorais/metabolismo , Neoplasias da Mama/sangue , Membrana Celular/metabolismo , Citoplasma/metabolismo , Progressão da Doença , Intervalo Livre de Doença , Feminino , Humanos , Metástase Linfática , Pessoa de Meia-Idade , Molécula L1 de Adesão de Célula Nervosa/sangue , Prognóstico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA