Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Heliyon ; 10(18): e37711, 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39315163

RESUMO

Objective: Hepatocellular carcinoma (HCC) ranks as the third leading cause of cancer-related deaths, constituting 75%-85 % of all primary liver cancers. The objective of this study was to develop a necroptosis-related gene signature using single-cell and bulk RNA sequencing to predict HCC patient prognoses. Methods: A total of 25 key necroptosis regulators were identified from previous literature. We evaluated the necroptosis scores of different cell types using single-cell sequencing data from HCC and analyzed 168 necroptosis-related genes. The Cancer Genome Atlas Liver Hepatocellular Carcinoma (TCGA-LIHC) dataset served as the training set for establishing a novel necroptosis-related gene risk signature, employing univariate and multivariate Cox regression analyses. Additionally, the study examined the model's relevance in immunity and immunotherapy, and predicted chemosensitivity in HCC patients based on the gene signature. The key genes were validated by the biological experiments. Results: Compared to other cell types, hepatoma cells displayed the lowest necroptosis scores. A new six-gene necroptosis-related signature (S100A11, MAGEC2, MAGEA6, CTP2C9, SOX4, AKR1B10) was developed using the TCGA database and validated in the ICGC database. Patients in the high-risk category had poorer prognoses, with the risk score serving as an independent prognostic indicator beyond other clinical factors. These high-risk patients also exhibited greater immune infiltration but demonstrated a weaker anti-tumor response due to elevated expression of immune checkpoints. Pathways involving hypoxia, glycolysis, and P53, as well as the frequency of P53 somatic mutations, were notably heightened in the high-risk group. Additionally, the six genes in the model showed significantly different mRNA expression in hepatoma cell lines compared to normal hepatocytes, with the role of MAGEA6 in liver cancer being elucidated through critical experiments. Conclusions: This study successfully developed a six-gene necroptosis-related signature to predict prognoses in HCC patients. It further explored the roles of necroptosis in hepatoma cells and the tumor microenvironment.

2.
Biochim Biophys Acta Gen Subj ; 1868(5): 130592, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38395204

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) cell-intrinsic programmed death 1 (PD-1) promotes tumor progression. However, the mechanisms that regulate its expression are unclear. This study investigated the impact of alpha-fetoprotein (AFP) on HCC cell-intrinsic PD-1 expression. METHODS: The expression of PD-1 and AFP at the gene and protein levels was detected using real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) and western blotting (WB). Proteins interacting with AFP were examined by co-immunoprecipitation (CO-IP). Chromatin immunoprecipitation (ChIP) and dual luciferase reporter assays were used to identify transcription-enhanced association domain 1 (TEAD1) binding to the promoter of PD-1. RESULTS: The expression of HCC cell-intrinsic PD-1 was positively correlated with AFP. Mechanistically, AFP inhibited the phosphorylation of large tumor suppressor 2 (LATS2) and yes-associated protein (YAP). As a result, YAP is transferred to the nucleus and forms a transcriptional complex with TEAD1, promoting PD-1 transcription by binding to its promoter. CONCLUSION: AFP is an upstream regulator of the HCC cell-intrinsic PD-1 and increases PD-1 expression via the LATS2/YAP/TEAD1 axis. GENERAL: Our findings provide insight into the mechanisms of HCC development and offer new ideas for further in-depth studies of HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , alfa-Fetoproteínas/metabolismo , Neoplasias Hepáticas/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Fatores de Transcrição de Domínio TEA
3.
Adv Sci (Weinh) ; 10(36): e2302494, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37985839

RESUMO

Stromal antigen 2 (STAG2), a subunit of the cohesin complex, is recurrently mutated in various tumors. However, the role of STAG2 in DNA repair and its therapeutic implications are largely unknown. Here it is reported that knockout of STAG2 results in increased double-stranded breaks (DSBs) and chromosomal aberrations by reducing homologous recombination (HR) repair, and confers hypersensitivity to inhibitors of ataxia telangiectasia mutated (ATMi), Poly ADP Ribose Polymerase (PARPi), or the combination of both. Of note, the impaired HR by STAG2-deficiency is mainly attributed to the restored expression of KMT5A, which in turn methylates H4K20 (H4K20me0) to H4K20me1 and thereby decreases the recruitment of BRCA1-BARD1 to chromatin. Importantly, STAG2 expression correlates with poor prognosis of cancer patients. STAG2 is identified as an important regulator of HR and a potential therapeutic strategy for STAG2-mutant tumors is elucidated.


Assuntos
Neoplasias , Reparo de DNA por Recombinação , Humanos , Reparo de DNA por Recombinação/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Reparo do DNA/genética , Neoplasias/tratamento farmacológico , Coesinas , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
5.
Acta Biochim Biophys Sin (Shanghai) ; 55(4): 633-648, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36916297

RESUMO

Ginsenoside Rh2, which is extracted from ginseng, exerts antitumor activity. Recent studies suggest that Rh2 may suppress the growth of colon cancer (CC) in vitro. However, the underlying mechanism remains unclear. In this study, we identified the relative levels of miR-150-3p in CC tissues and cells by a comprehensive strategy of data mining, computational biology, and real-time reverse transcription PCR (qRT-PCR) experiments. The regulatory effects of miR-150-3p/SRCIN1 on the proliferative and invasive abilities of CC cells are evaluated by CCK-8, EdU, wound healing, and transwell assays. Cell cycle- and apoptosis-related protein levels are assessed by western blot analysis. An in vivo tumor formation assay was conducted to explore the effects of miR-150-3p on tumor growth. Furthermore, bioinformatics and dual luciferase reporter assays are applied to determine the functional binding of miRNA to mRNA of the target gene. Finally, the relationship between Rh2 and miR-150-3p was further verified in SW620 and HCT-116 cells. miR-150-3p is downregulated in CC tissues and cell lines. Functional assays indicate that the upregulation of miR-150-3p inhibits tumor growth both in vivo and in vitro. In addition, SRCIN1 is upregulated in CC and predicts a poor prognosis, and it is the direct target for miR-150-3p. Moreover, the miR-150-3p mimic decreases Topflash/Fopflash-dependent luciferase activity, resulting in the inhibition of Wnt pathway activity. Rh2 can suppress the growth of CC by increasing miR-150-3p expression. Rh2 alleviates the accelerating effect on Wnt pathway activity, cell proliferation/migration, and colony formation caused by miR-150-3p inhibition. Rh2 inhibits the miR-150-3p/SRCIN1/Wnt axis to suppress colon cancer growth.


Assuntos
Neoplasias do Colo , Ginsenosídeos , MicroRNAs , Humanos , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias do Colo/tratamento farmacológico , Neoplasias do Colo/genética , Ginsenosídeos/farmacologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular
6.
Pathol Oncol Res ; 29: 1610893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36741965

RESUMO

Background: Gastric cancer (GC) is one of the global malignant tumors with high incidence and poor prognosis. Exploring new GC molecular markers is important to improve GC prognosis. Transmembrane protein 200A (TMEM200A) is a member of the family of transmembrane proteins (TMEM). This study is the first to investigate the potential function of TMEM200A and its relationship with immune infiltration in GC. Methods: The differential expression of TMEM200A was determined through the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. The receiver operating characteristic (ROC) curve was drawn to assess the diagnostic value of TMEM200A for GC. The relationship between TMEM200A and the clinical characteristics of patients with GC was investigated using the Wilcoxon test and the Kruskal-Wallis test. The effect of TMEM200A on overall survival (OS) was identified using the Kaplan-Meier method, the Log-rank test, the univariate/multivariate Cox regression analysis, and the nomogram prediction model. The co-expressed genes and gene set enrichment analysis (GSEA) were used to explore the potential biological functions of TMEM200A. We used the Tumor Immune Estimation Resource (TIMER) database and the ssGSEA algorithm to estimate the relationship between TMEM200A and immune cell infiltration. Furthermore, we investigated the correlation of TMEM200A with immune checkpoint/immune cell surface markers using the TCGA-STAD data set. Finally, we identified prognosis-related methylation sites in TMEM200A using MethSurv. Results: TMEM200A was highly expressed in GC tissues. TMEM200A had a good diagnostic value for GC. High expression of TMEM200A may shorten the OS of GC patients and may be an independent risk factor for OS in GC patients. TMEM200A participates in the construction of a predictive model with a good predictive effect on the survival rate of GC patients at 1, 3, and 5 years. Co-expressed genes and GSEA indicated that TMEM200A may be an adhesion molecule closely associated with tumor invasion and metastasis. In addition, TMEM200A may be significantly associated with immune cell infiltration and immune checkpoint expression. We also found that TMEM200A contains three methylation sites associated with a poor prognosis. Conclusion: Upregulated TMEM200A may be a promising prognostic marker for GC and is closely associated with the tumor microenvironment (TME).


Assuntos
Proteínas de Membrana , Neoplasias Gástricas , Humanos , Algoritmos , Bases de Dados Factuais , Proteínas de Membrana/genética , Análise Multivariada , Prognóstico , Neoplasias Gástricas/genética , Microambiente Tumoral/genética
7.
Cancers (Basel) ; 15(4)2023 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-36831512

RESUMO

The lymphatic system is a channel for fluid transport and cell migration, but it has always been controversial in promoting and suppressing cancer. VEGFC/VEGFR3 signaling has long been recognized as a major molecular driver of lymphangiogenesis. However, many studies have shown that the neural network of lymphatic signaling is complex. Lymphatic vessels have been found to play an essential role in the immune regulation of tumor metastasis and cardiac repair. This review describes the effects of lipid metabolism, extracellular vesicles, and flow shear forces on lymphangiogenesis. Moreover, the pro-tumor immune tolerance function of lymphatic vessels is discussed, and the tasks of meningeal lymphatic vessels and cardiac lymphatic vessels in diseases are further discussed. Finally, the value of conversion therapy targeting the lymphatic system is introduced from the perspective of immunotherapy and pro-lymphatic biomaterials for lymphangiogenesis.

8.
J Clin Med ; 12(3)2023 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-36769385

RESUMO

BACKGROUND: Immune-related adverse events (irAEs) are side effects that reflect the activation of patients' immune systems after treatment with immune checkpoint inhibitors (ICIs). However, there is no meta-analysis on the effect of early irAEs on patient survival. Thus, we assessed the association between early irAEs and the survival of patients treated with ICIs. METHODS: PubMed, Embase, and Web of Science were searched from May 2010 to May 2020 for all the retrospective and prospective comparative studies to evaluate the hazard ratios (HRs) for death. A random-effects model was used to calculate the pooled HR for death, and heterogeneity was assessed using I² statistics. The main outcomes were overall survival (OS) and progression-free survival (PFS). RESULTS: A total of 11 reports with 2077 patients were included. A significant association was observed between early irAEs and a favorable clinical outcome. Patients with early irAEs had prolonged OS (HR: 0.62, 95% confidence interval (CI): 0.53-0.74, p < 0.001) and PFS (HR: 0.53, 95% CI: 0.41-0.66, p < 0.001) compared to those without; these results were confirmed using a sensitivity analysis. The irAE types, malignancy types, and sample size were correlated with patients' clinical outcomes. CONCLUSIONS: Early irAEs, especially cutaneous irAEs, correlated with a better clinical outcome in patients treated with ICIs.

9.
Immunol Invest ; 52(3): 343-363, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36762677

RESUMO

BACKGROUND: Programmed death ligand 1 (PD-L1) is expressed in hepatocellular carcinoma (HCC) cells. PD-L1 function and structure are regulated through glycosylation and various signaling pathways. However, the relationship between Pseudomonas aeruginosa mannose sensitive hemagglutinin (PA-MSHA), glycosylation and PD-L1 warrants further study. In this study, we investigated the effects of PA-MSHA on the regulation of mannosyl and N-glycosylation to identify the mechanisms underlying its function. METHODS: PD-L1, ß-catenin, c-Myc, mannosyl, MGAT1 and mannosidase II in HCC were identified by postoperative specimens from the HCC cohort with immunohistochemistry and immunofluorescence. PA-MSHA was used to suppress tumor progression. Alterations to the expression of PD-L1, ß-catenin, c-Myc, MGAT1, and mannosidase II at the gene and protein levels were detected by qRT-PCR and Western blot analysis. Soluble PD-L1 (sPD-L1) were detected using enzyme-linked immunosorbent assay. RESULTS: Mannosyl and mannosidase II expression levels increased, whereas those of MGAT1 decreased in the HCC cells. The glycosylation-related pathway proteins, namely, ß-catenin, c-Myc and PD-L1, had increased expression levels. Moreover, proliferation in the HCC cells was inhibited after PA-MSHA treatment, PD-L1 function was significantly inhibited. Transmission electron microscopy showed that PA-MSHA penetrated into the HCC cytoplasm through the cytomembrane, resulting in apoptosis. Here, PA-MSHA significantly reduced sPD-L1 expression levels in the tumor cells. CONCLUSIONS: PA-MSHA plays the role of a lectin, affecting receptors on the cytomembrane. This strain inhibits mannosyl by suppressing ß-catenin signaling. We hypothesized that PA-MSHA suppresses PD-L1 by: 1. Inhibiting the glycosylation process; and 2. Suppressing ß-catenin and c-Myc, thereby reducing the transcription of this protein.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Pseudomonas aeruginosa , Humanos , Masculino , Feminino , Adulto , Pessoa de Meia-Idade , Idoso , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/terapia , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Animais , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Xenoenxertos , Antígeno B7-H1/metabolismo , Linhagem Celular Tumoral , Pseudomonas aeruginosa/classificação , Pseudomonas aeruginosa/fisiologia , Transplante de Neoplasias , Glicosilação , Transdução de Sinais , Imunoterapia , Lectinas/metabolismo
10.
Oxid Med Cell Longev ; 2023: 5207431, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36785788

RESUMO

Hepatocellular carcinoma (HCC) is one of the most common malignant tumors with high morbidity and mortality. Therefore, finding new diagnostic and therapeutic targets is vital for HCC patients. Recent studies have shown that dysregulation of RNA-binding proteins is often associated with cancer progression. Several studies have reported that the RNA-binding protein SSB can promote cancer occurrence and progression and is linked to tumor epithelial-mesenchymal transition (EMT), which could be a new diagnostic marker and therapeutic target. However, the expression and function of SSB in HCC remain to be elucidated. Therefore, this study is aimed at clarifying the expression and biological function of SSB in HCC through bioinformatics analysis combined with in vitro experiments. We found that SSB is highly expressed in HCC and is associated with the poor prognosis of HCC patients, and it can serve as an independent unfavorable prognostic factor. Knockdown of SSB can inhibit the growth of HCC cells in vitro, increase the level of apoptosis and the expression of pro-apoptosis-related proteins, and decrease the expression of antiapoptotic proteins. Meanwhile, SSB knockdown reduced HCC cell invasiveness, and the expression of EMT-related proteins changed significantly. We also found that the gene SSB was associated with the level of oxidative stress in liver cancer cells, and the level of intracellular reactive oxygen species (ROS) increased after knockdown of SSB. The results of bioinformatics analysis also showed that high expression of SSB may affect the effect of checkpoint blockade (ICB) therapy. In conclusion, we found that SSB is highly expressed in HCC and that upregulated SSB can promote the proliferation and metastasis of HCC through antiapoptotic, altered intracellular oxidative stress level, and EMT pathways, which can serve as a new diagnostic marker and therapeutic target, and patients with high SSB expression may not have obvious ICB therapy effect.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Espécies Reativas de Oxigênio/metabolismo , Transição Epitelial-Mesenquimal , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Movimento Celular , Proliferação de Células , Invasividade Neoplásica/genética , Invasividade Neoplásica/patologia , Metástase Neoplásica
11.
Acta Biochim Biophys Sin (Shanghai) ; 55(4): 649-660, 2023 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-36786074

RESUMO

Tumour cells change their metabolic patterns to support high proliferation rates and cope with oxidative stress. The lncRNA ELFN1-AS1 is highly expressed in a wide range of cancers and is essential to the proliferation and apoptosis of tumour cells. Nevertheless, its function in the metabolic reprogramming of tumour cells is unclear. Here we show that ELFN1-AS1 promotes glucose consumption as well as lactate and NADPH production. Database searching, bioinformatics analysis, RNA immunoprecipitation (RIP) and RNA pull-down assays show that ELFN1-AS1 enhances glucose-6-phosphate dehydrogenase ( G6PD) expression and activates the pentose phosphate pathway (PPP) by promoting TP53 degradation. In addition, luciferase reporter assay and chromatin immunoprecipitation (ChIP) show that YY1 binds to the ELFN1-AS1 promoter to promote transcriptional activation of ELFN1-AS1. Consistent with the in vitro experiments, knockdown of ELFN1-AS1 impedes the growth of tumours transplanted into mice by inhibiting the expression of G6PD. In conclusion, this study reveals that ELFN1-AS1 activates the PPP, and validates the regulatory role of the YY1/ ELFN1-AS1/ TP53/ G6PD axis in colorectal cancer.


Assuntos
Neoplasias Colorretais , MicroRNAs , RNA Longo não Codificante , Animais , Camundongos , Apoptose/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Humanos
12.
Cancers (Basel) ; 15(2)2023 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-36672374

RESUMO

Gastric cancer is the fifth most common cancer and the third leading cause of cancer deaths worldwide. Understanding the factors influencing the therapeutic effects in gastric cancer patients and the molecular mechanism behind gastric cancer is still facing challenges. In addition to genetic alterations and environmental factors, it has been demonstrated that epigenetic mechanisms can also induce the occurrence and progression of gastric cancer. Enhancer of zeste homolog 2 (EZH2) is the catalytic subunit of the polycomb repressor complex 2 (PRC2), which trimethylates histone 3 at Lys-27 and regulates the expression of downstream target genes through epigenetic mechanisms. It has been found that EZH2 is overexpressed in the stomach, which promotes the progression of gastric cancer through multiple pathways. In addition, targeted inhibition of EZH2 expression can effectively delay the progression of gastric cancer and improve its resistance to chemotherapeutic agents. Given the many effects of EZH2 in gastric cancer, there are no studies to comprehensively describe this mechanism. Therefore, in this review, we first introduce EZH2 and clarify the mechanisms of abnormal expression of EZH2 in cancer. Secondly, we summarize the role of EZH2 in gastric cancer, which includes the association of the EZH2 gene with genetic susceptibility to GC, the correlation of the EZH2 gene with gastric carcinogenesis and invasive metastasis, the resistance to chemotherapeutic drugs of gastric cancer mediated by EZH2 and the high expression of EZH2 leading to poor prognosis of gastric cancer patients. Finally, we also clarify some of the current statuses of drug development regarding targeted inhibition of EZH2/PRC2 activity.

13.
Neoplasma ; 70(1): 1-14, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36129834

RESUMO

The changes in cell homeostasis in the tumor microenvironment may affect the development of colorectal cancer (CRC). Genomic instability is an important factor. Persistent genomic instability leads to epigenetic changes, and mutations are a major factor in the progression of CRC. Based on these mechanisms, it is reasonable to link poly (ADP-ribose) polymerase (PARP) with the treatment of CRC. PARP is mainly involved in DNA repair, which has an essential role in the DNA damage response and prevention of DNA damage, and maintains oxidation and superoxide redox homeostasis in the intracellular environment of the tumor. This article reviews the latest research progress on PARP and PARP inhibitors (PARPi) in CRC. It mainly includes molecular mechanisms, immunity, clinical trials, and combination strategies of CRC. The research of PARPi in CRC has broad prospects, and the combinations with other drugs are the main research direction in the future.


Assuntos
Neoplasias Colorretais , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Dano ao DNA , Poli(ADP-Ribose) Polimerases/genética , Instabilidade Genômica , Combinação de Medicamentos , Neoplasias Colorretais/genética , Microambiente Tumoral
14.
Cancers (Basel) ; 14(23)2022 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-36497204

RESUMO

The accumulation of oxidative DNA base damage can severely disrupt the integrity of the genome and is strongly associated with the development of cancer. DNA glycosylase is the critical enzyme that initiates the base excision repair (BER) pathway, recognizing and excising damaged bases. The Nei endonuclease VIII-like 3 (NEIL3) is an emerging DNA glycosylase essential in maintaining genome stability. With an in-depth study of the structure and function of NEIL3, we found that it has properties related to the process of base damage repair. For example, it not only prefers the base damage of single-stranded DNA (ssDNA), G-quadruplex and DNA interstrand crosslinks (ICLs), but also participates in the maintenance of replication fork stability and telomere integrity. In addition, NEIL3 is strongly associated with the progression of cancers and cardiovascular and neurological diseases, is incredibly significantly overexpressed in cancers, and may become an independent prognostic marker for cancer patients. Interestingly, circNEIL3, a circular RNA of exon-encoded origin by NEIL3, also promotes the development of multiple cancers. In this review, we have summarized the structure and the characteristics of NEIL3 to repair base damage. We have focused on NEIL3 and circNEIL3 in cancer development, progression and prognosis.

15.
Front Pharmacol ; 13: 972825, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36339587

RESUMO

Licoricidin, a type of isoflavonoid, is extracted from the root of Glycyrrhiza glabra. It has been widely proven that licoricidin possesses multiple biological activities, including anti-cancer effects and a powerful antimicrobial effect against Helicobacter pylori (H. pylori). However, the exact mechanism of licoricidin against gastric cancer remains unclear. In this study, we comprehensively explored the effects of licoricidin on MGC-803 gastric cancer cells in vitro and in vivo and further elucidated its mechanism of action. Our results revealed that licoricidin exhibited multiple anti-gastric cancer activities, including suppressing proliferation, inducing apoptosis, arresting the cell cycle in G0/G1 phase, and inhibiting the migration and invasion abilities of MGC-803 gastric cancer cells. In addition to this, a total of 5861 proteins were identified by quantitative proteomics research strategy of TMT labeling, of which 19 differential proteins (two upregulated and 17 downregulated) were screened out. Combining bioinformatics analyses and the reported roles in cancer progression of the 19 proteins, we speculated that isoprenyl carboxyl methyltransferase (ICMT) was the most likely target of licoricidin. Western blot assays and IHC assays subsequently proved that licoricidin significantly downregulated the expression of ICMT, both in MGC-803 cells and in xenograft tumors. Moreover, licoricidin effectively reduced the level of active Ras-GTP and blocked the phosphorylation of Raf and Erk, which may be involved in its anti-gastric cancer effects. In summary, we first demonstrated that licoricidin exerted favorable anti-gastric cancer activities via the ICMT/Ras pathway, which suggests that licoricidin, as a natural product, could be a novel candidate for the management of gastric cancer.

16.
Front Surg ; 9: 878648, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211267

RESUMO

Background: Hepatocellular carcinoma (HCC) is a tumor with a high recurrence rate, poor prognosis, and rapid progression. Therefore, it is necessary to find a novel biomarker for HCC. Coiled-coil domain containing 25 (CCDC25) has been identified as a target molecule that mediates liver metastasis in colon cancer. However, the molecular mechanisms of CCDC25 in HCC are unknown. This study aimed to explore the role of CCDC25 in HCC. Methods: The expression of CCDC25 in HCC was identified through The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Receiver operating characteristic curve (ROC) curves were drawn to evaluate the diagnostic value of CCDC25 for HCC. The effect of CCDC25 on the prognosis of HCC was analyzed by using the Kaplan-Meier plotter. Co-expressed genes and Gene Set Enrichment Analysis (GSEA) were used to explore the related functions and regulatory signaling pathways of CCDC25. Moreover, we employed the Tumor Immune Estimation Resource (TIMER) database and CIBERSORT algorithm to investigate the relationship between CCDC25 and the tumor immune microenvironment (TME) in HCC. Meanwhile, the effect of CCDC25 on the sensitivity of HCC patients to chemotherapy drugs was evaluated. Finally, we explored the prognostic methylation sites of CCDC25 using the MethSurv database. Results: CCDC25 expression was low in HCC. Low CCDC25 expression was significantly associated with poor overall survival of HCC and may be comparable to the ability of AFP to diagnose HCC. Dysregulation of glucose metabolism, fatty acid metabolism, amino acid metabolism, ubiquitination modification, and apoptosis inhibition caused by CCDC25 downregulation may be the causes and results of HCC. In addition, CCDC25 was positively correlated with the infiltration level of various adaptive antitumor immune cells. The levels of immune cell infiltration and immune checkpoint expression were lower in the samples with high CCDC25 expression. What is more, we found that downregulated CCDC25 may increase the sensitivity or resistance of HCC patients to multiple drugs, including sorafenib. We also identified a methylation site for CCDC25, which may be responsible for poor prognosis and low CCDC25 expression in HCC patients. Finally, CCDC25 may be associated with HCC ferroptosis. Conclusions: CCDC25 may be a potential diagnostic and prognostic marker for HCC and is associated with immune infiltration and ferroptosis.

17.
Cell Cycle ; 21(24): 2563-2574, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35912542

RESUMO

Colorectal cancer (CRC) is now the third most prevalent tumor and one of the deadliest cancers worldwide, with an increasing prevalence every year. Therefore, we urgently need to understand the mechanisms regulating the progression of colorectal cancer and find potential diagnostic biomarkers. In this study, we performed an analysis using the TCGA and GEO databases to find a molecular biomarker for the diagnosis of CRC, namely CTPS1. The results of this analysis revealed that CTPS1 could promote tumor proliferation and metastasis. Furthermore, bioinformatics analysis revealed that CTPS1 promoted CRC progression through cell cycle and p53 pathways. Further investigation demonstrated that CTPS1 might be involved in the regulation of CCNB1, RRM2, GTSE1, CDK2 and CHEK2 genes. Moreover, PCR confirmed that CTPS1 regulated GTSE1 and CDK2 molecules. Then, western blot was used to verify that CTPS1 promoted the expression of GTSE1 and CDK2 by inhibiting the expression of p53. In summary, we identified an important diagnostic biomarker for CRC, namely CTPS1, and its importance was validated at the cellular level. These results suggest that CTPS1 could serve as a candidate biomarker for CRC and CTPS1 inhibitors may be a potential treatment for CRC.


Assuntos
Neoplasias Colorretais , Proteína Supressora de Tumor p53 , Humanos , Movimento Celular/genética , Proliferação de Células/genética , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Neoplasias Colorretais/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Proteínas Associadas aos Microtúbulos/metabolismo
18.
Neoplasma ; 69(6): 1253-1269, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35951454

RESUMO

Osteopontin (OPN) is a multifunctional phosphorylated glycoprotein that is expressed at significantly elevated levels in various cancers. OPN overexpression is closely associated with the development of cancer progression such as proliferation, metastasis, angiogenesis, apoptosis resistance, drug resistance, and immunosuppression, and may also be an independent prognostic biomarker for a variety of cancers. This review broadly summarizes the mechanisms that regulate the expression of downstream oncogenic molecules after OPN binds to integrin receptors or CD44 receptors, which involve a complex intracellular "signaling traffic network" (including key kinases, signaling pathways, and transcription factors). In addition, we review the prognostic value of OPN, OPN synergistic downstream oncogenic molecules in the female breast, non-small cell lung, prostate, colorectal, gastric, and hepatocellular carcinomas. The prognostic value of OPN in tissues or blood may vary due to differences in study subjects or detection methods, and this aspect of the study requires further systematization with a view to applying the detection of OPN to clinical applications. Importantly, based on the fact that the oncogenic effect of OPN correlates with the expression of the above-mentioned oncogenic molecules, this work may provide some help in the study of combination therapy targeting OPN and the above-mentioned oncogenic molecules.


Assuntos
Neoplasias , Osteopontina , Humanos , Carcinogênese , Carcinógenos , Prognóstico
19.
Contrast Media Mol Imaging ; 2022: 6533628, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35965618

RESUMO

The intestinal microflora is a bacterial group that lives in the human digestive tract and has a long-term interdependence with the host. Due to the close anatomical and functional relationship between the liver and the intestine, the intestinal flora affects liver metabolism via the intestinal-hepatic circulation, thereby playing an extremely important role in the pathological process of liver inflammation, chronic fibrosis, and liver cancer. In recent years, the rapid development of technologies in high-throughput sequencing and genomics has opened up possibilities for a broader and deeper understanding of the crosstalk between the intestinal flora and the occurrence and development of liver cancer. This review aims to summarize the mechanisms by which the gut microbiota changes the body's metabolism, through the gut-liver axis, thereby affecting the occurrence and development of primary liver cancer. In addition, the potential regulation of intestinal microflora in the treatment of liver cancer is discussed.


Assuntos
Carcinoma Hepatocelular , Microbioma Gastrointestinal , Neoplasias Hepáticas , Microbioma Gastrointestinal/fisiologia , Humanos , Cirrose Hepática
20.
Front Surg ; 9: 852757, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35465439

RESUMO

Background: Leiomyosarcoma of the inferior vena cava (IVC) is a rare malignancy. Here, we present the case of a 38-year-old woman with a primary IVC leiomyosarcoma and lung adenocarcinoma. Case Report: The patient, a 38-year-old Chinese female, presented to the general surgical outpatients clinic with a 18-month history of intermittent right upper abdominal pain. Contrast-enhanced computed tomography (CT) showed a tumor of IVC (3.4*2.7 cm) extending to the renal veins. In addition, chest CT revealed a mass lesion in the upper left lung lobe. Then, the patient underwent resection of the IVC tumor and wedge resection of the upper lobe of the left lung. The patient then received gefitinib (250 mg/day) as a maintenance therapy until the tumor recurrence or metastasis in the follow-up period. Pulmonary metastasis of the sarcoma were first diagnosed 20 month after the resection of the IVC leiomyosarcoma. So the patient again received thoracoscopic wedge pneumonectomy, and it was confirmed to be metastasis of IVC leiomyosarcoma. The patient received oral anlotinib treatment (12 mg once daily) after the last operation. During on-going regular follow-up visits no evidence of recurrence or metastasis was observed from December 2020 to October 2021. Conclusions: The patient with a primary IVC leiomyosarcoma and lung adenocarcinoma is extremely rare. Surgery is still an effective treatment for patients with a primary IVC leiomyosarcoma and lung adenocarcinoma at present.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA