Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.963
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
J Zhejiang Univ Sci B ; 25(5): 438-450, 2024 May 15.
Artigo em Inglês, Chinês | MEDLINE | ID: mdl-38725342

RESUMO

Gastric cancer (GC) is one of the most common gastrointestinal tumors. As a newly discovered type of non-coding RNAs, transfer RNA (tRNA)|-derived small RNAs (tsRNAs) play a dual biological role in cancer. Our previous studies have demonstrated the potential of tRF-23-Q99P9P9NDD as a diagnostic and prognostic biomarker for GC. In this work, we confirmed for the first time that tRF-23-Q99P9P9NDD can promote the proliferation, migration, and invasion of GC cells in vitro. The dual luciferase reporter gene assay confirmed that tRF-23-Q99P9P9NDD could bind to the 3' untranslated region (UTR) site of acyl-coenzyme A dehydrogenase short/branched chain (ACADSB). In addition, ACADSB could rescue the effect of tRF-23-Q99P9P9NDD on GC cells. Next, we used Gene Ontology (GO), the Kyoto Encyclopedia of Genes and Genomes (KEGG), and Gene Set Enrichment Analysis (GSEA) to find that downregulated ACADSB in GC may promote lipid accumulation by inhibiting fatty acid catabolism and ferroptosis. Finally, we verified the correlation between ACADSB and 12 ferroptosis genes at the transcriptional level, as well as the changes in reactive oxygen species (ROS) levels by flow cytometry. In summary, this study proposes that tRF-23-Q99P9P9NDD may affect GC lipid metabolism and ferroptosis by targeting ACADSB, thereby promoting GC progression. It provides a theoretical basis for the diagnostic and prognostic monitoring value of GC and opens up new possibilities for treatment.


Assuntos
Movimento Celular , Proliferação de Células , Neoplasias Gástricas , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Humanos , Linhagem Celular Tumoral , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , RNA de Transferência/genética , RNA de Transferência/metabolismo , Ferroptose/genética , Regiões 3' não Traduzidas
2.
BMC Infect Dis ; 24(1): 479, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730338

RESUMO

BACKGROUND & AIMS: Pyogenic liver abscess (PLA) is a common hepatobiliary infection that has been shown to have an increasing incidence, with biliary surgery being identified as a trigger. Our aim was to investigate the clinical characteristics and treatments of PLA patients with and without a history of biliary surgery (BS). METHODS: The study included a total of 353 patients with PLA who received treatment at our hospital between January 2014 and February 2023. These patients were categorized into two groups: the BS group (n = 91) and the non-BS group (n = 262). In the BS group, according to the anastomosis method, they were further divided into bilioenteric anastomoses group (BEA, n = 22) and non-bilioenteric anastomoses group (non-BEA, n = 69). Clinical characteristics were recorded and analyzed. RESULTS: The percentage of PLA patients with BS history was 25.78%. The BS group exhibited elevated levels of TBIL and activated APTT abnormalities (P = 0.009 and P = 0.041, respectively). Within the BS group, the BEA subgroup had a higher prevalence of diabetes mellitus (P < 0.001) and solitary abscesses (P = 0.008) compared to the non-BEA subgroup. Escherichia coli was more frequently detected in the BS group, as evidenced by positive pus cultures (P = 0.021). The BS group exhibited reduced treatment efficacy compared to those non-BS history (P = 0.020). Intriguingly, the BS group received a higher proportion of conservative treatment (45.05% vs. 21.76%), along with reduced utilization of surgical drainage (6.59% vs. 16.41%). CONCLUSIONS: Patients with BS history, especially those who have undergone BEA, have an increased susceptibility to PLA formation without affecting prognosis.


Assuntos
Procedimentos Cirúrgicos do Sistema Biliar , Abscesso Hepático Piogênico , Humanos , Abscesso Hepático Piogênico/microbiologia , Abscesso Hepático Piogênico/cirurgia , Masculino , Feminino , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Adulto , Antibacterianos/uso terapêutico , Escherichia coli/isolamento & purificação , Drenagem
3.
Food Res Int ; 186: 114321, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38729691

RESUMO

Biogenic nanoparticles are promising carriers to deliver essential minerals. Here, calcium-enriched polyphosphate nanoparticles (CaPNPs) with a Ca/P molar ratio > 0.5 were produced by Synechococcus sp. PCC 7002 in the growth medium containing 1.08 g/L CaCl2, and had nearly spherical morphologies with a wide size distribution of 5-75 nm and strongly anionic surface properties with an average ζ-potential of -39 mV, according to dynamic light-scattering analysis, transmission and scanning electron microscopy, and energy-dispersive X-ray spectroscopy. The ex-vivo ligated mouse ileal loop assays found that calcium in CaPNPs was readily available to intestinal absorption via both ion channel-mediated and endocytic pathways, specifically invoking macropinocytic internalization, lysosomal degradation, and transcytosis. Rat oral pharmacokinetics revealed that CaPNPs had a calcium bioavailability approximately 100 % relative to that of CaCl2 and more than 1.6 times of that of CaCO3. CaPNPs corrected the retinoic acid-induced increase in serum calcium, phosphorus, and bone-specific alkaline phosphatase, and decrease in serum osteocalcin, bone mineral content/density, and femoral geometric parameters with an efficacy equivalent to CaCl2 and markedly greater than CaCO3. In contrast to CaCl2, CaPNPs possessed desirable resistance against phytate's antagonistic action on calcium absorption in these ex vivo and in vivo studies. Overall, CaPNPs are attractive as a candidate agent for calcium supplementation, especially to populations on high-phytate diets.


Assuntos
Disponibilidade Biológica , Cálcio , Microalgas , Nanopartículas , Ácido Fítico , Polifosfatos , Animais , Polifosfatos/química , Camundongos , Ácido Fítico/química , Cálcio/metabolismo , Masculino , Ratos , Absorção Intestinal/efeitos dos fármacos , Ratos Sprague-Dawley
4.
Cancer Lett ; 592: 216923, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38697462

RESUMO

Liver metastasis is common in patients with gallbladder cancer (GBC), imposing a significant challenge in clinical management and serving as a poor prognostic indicator. However, the mechanisms underlying liver metastasis remain largely unknown. Here, we report a crucial role of tyrosine aminotransferase (TAT) in liver metastasis of GBC. TAT is frequently up-regulated in GBC tissues. Increased TAT expression is associated with frequent liver metastasis and poor prognosis of GBC patients. Overexpression of TAT promotes GBC cell migration and invasion in vitro, as well as liver metastasis in vivo. TAT knockdown has the opposite effects. Intriguingly, TAT promotes liver metastasis of GBC by potentiating cardiolipin-dependent mitophagy. Mechanistically, TAT directly binds to cardiolipin and leads to cardiolipin externalization and subsequent mitophagy. Moreover, TRIM21 (Tripartite Motif Containing 21), an E3 ubiquitin ligase, interacts with TAT. The histine residues 336 and 338 at TRIM21 are essential for this binding. TRIM21 preferentially adds the lysine 63 (K63)-linked ubiquitin chains on TAT principally at K136. TRIM21-mediated TAT ubiquitination impairs its dimerization and mitochondrial location, subsequently inhibiting tumor invasion and migration of GBC cells. Therefore, our study identifies TAT as a novel driver of GBC liver metastasis, emphasizing its potential as a therapeutic target.

5.
Front Oncol ; 14: 1322044, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38741776

RESUMO

Background: Although screening is widely used to reduce cancer burden, untargeted cancers are frequently missed after single cancer screening. Joint cancer screening is presumed as a more effective strategy to reduce overall cancer burden. Methods: Gender-specific screening effects on PLCO cancer incidence, PLCO cancer mortality, all-neoplasms mortality and all-cause mortality were evaluated, and meta-analyses based on gender-specific screening effects were conducted to achieve the pooled effects. The cut-off value of time-dependent receiver-operating-characteristic curve of 10-year combined PLCO cancer risk was used to reclassify participants into low- and high-risk subgroups. Further analyses were conducted to investigate screening effects stratified by risk groups and screening compliance. Results: After a median follow-up of 10.48 years for incidence and 16.85 years for mortality, a total of 5,506 PLCO cancer cases, 1,845 PLCO cancer deaths, 3,970 all-neoplasms deaths, and 14,221 all-cause deaths were documented in the screening arm, while 6,261, 2,417, 5,091, and 18,516 outcome-specific events in the control arm. Joint cancer screening did not significantly reduce PLCO cancer incidence, but significantly reduced male-specific PLCO cancer mortality (hazard ratio and 95% confidence intervals [HR(95%CIs)]: 0.88(0.82, 0.95)) and pooled mortality [0.89(0.84, 0.95)]. More importantly, joint cancer screening significantly reduced both gender-specific all-neoplasm mortality [0.91(0.86, 0.96) for males, 0.91(0.85, 0.98) for females, and 0.91(0.87, 0.95) for meta-analyses] and all-cause mortality [0.90(0.88, 0.93) for male, 0.88(0.85, 0.92) for female, and 0.89(0.87, 0.91) for meta-analyses]. Further analyses showed decreased risks of all-neoplasm mortality was observed with good compliance [0.72(0.67, 0.77) for male and 0.72(0.65, 0.80) for female] and increased risks with poor compliance [1.61(1.40, 1.85) for male and 1.30(1.13, 1.40) for female]. Conclusion: Joint cancer screening could be recommended as a potentially strategy to reduce the overall cancer burden. More compliance, more benefits. However, organizing a joint cancer screening not only requires more ingenious design, but also needs more attentions to the potential harms. Trial registration: NCT00002540 (Prostate), NCT01696968 (Lung), NCT01696981 (Colorectal), NCT01696994 (Ovarian).

6.
Biochim Biophys Acta Rev Cancer ; : 189107, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38734035

RESUMO

The functions of mitochondria, including energy production and biomolecule synthesis, have been known for a long time. Given the rising incidence of cancer, the role of mitochondria in cancer has become increasingly popular. Activated by components released by mitochondria, various pathways interact with each other to induce immune responses to protect organisms from attack. However, mitochondria play dual roles in the progression of cancer. Abnormalities in proteins, which are the elementary structures of mitochondria, are closely linked with oncogenesis. Both the aberrant accumulation of intermediates and mutations in enzymes result in the generation and progression of cancer. Therefore, targeting mitochondria to treat cancer may be a new strategy. Several drugs aimed at inhibiting mutated enzymes and accumulated intermediates have been tested clinically. Here, we discuss the current understanding of mitochondria in cancer and the interactions between mitochondrial functions, immune responses, and oncogenesis. Furthermore, we discuss mitochondria as hopeful targets for cancer therapy, providing insights into the progression of future therapeutic strategies.

7.
Apoptosis ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704789

RESUMO

Ferroptosis is a new programmed cell death characterized by iron-dependent lipid peroxidation. Targeting ferroptosis is considered a promising strategy for anti-cancer therapy. Recently, natural compound has gained increased attention for their advantage in cancer treatment, and the exploration of natural compounds as ferroptosis inducers offers a hopeful avenue for advancing cancer treatment modalities. Emodin is a natural anthraquinone derivative in many widely used Chinese medicinal herbs. In our previous study, we predicted that the anti-cancer effect of Emodin might related to ferroptosis by using RNA-seq in colorectal cancer (CRC). Thus, in this study, we aim to investigate the molecular mechanism underlying Emodin-mediated ferroptosis in CRC. Cell-based assays including CCK-8, colony formation, EdU, and Annexin V/PI staining were employed to assess Emodin's impact on cell proliferation and apoptosis. Furthermore, various techniques such as FerroOrange staining, C11-BODIPY 581/591 staining, iron, MDA, GSH detection assay and transmission electron microscopy were performed to examine the role of Emodin in ferroptosis. Additionally, specific NCOA4 knockdown cell lines were generated to elucidate the involvement of NCOA4 in Emodin-induced ferroptosis. Moreover, the effects of Emodin on ferroptosis were further confirmed through the application of inhibitors, including Ferrostatin-1, 3-MA, DFO, and PMA. As a results, Emodin inhibited proliferation and induced apoptosis in CRC cells. Emodin could decrease GSH content, xCT and GPX4 expression, meanwhile increasing ROS generation, MDA, and lipid peroxidation, and these effects could reverse by ferroptosis inhibitor, Ferostatin-1, iron chelator DFO, autophagy inhibitor 3-MA and NCOA4 silencing. Moreover, Emodin could inactivate NF-κb pathway, and PMA, an activator of NF-κb pathway could alleviate Emodin-induced ferroptosis in CRC cells. Xenograft mouse model also showed that Emodin suppressed tumor growth and induced ferroptosis in vivo. In conclusion, these results suggested that Emodin induced ferroptosis through NCOA4-mediated ferritinophagy by inactivating NF-κb pathway in CRC cells. These findings not only identified a novel role for Emodin in ferroptosis but also indicated that Emodin may be a valuable candidate for the development of an anti-cancer agent.

8.
J Nat Med ; 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38704807

RESUMO

Hepatocellular carcinoma (HCC) is a malignant tumor with extremely high mortality. The tumor microenvironment is the "soil" of its occurrence and development, and the inflammatory microenvironment is an important part of the "soil". Bile acid is closely related to the occurrence of HCC. Bile acid metabolism disorder is not only directly involved in the occurrence and development of HCC but also affects the inflammatory microenvironment of HCC. Yinchenhao decoction, a traditional Chinese medicine formula, can regulate bile acid metabolism and may affect the inflammatory microenvironment of HCC. To determine the effect of Yinchenhao decoction on bile acid metabolism in mice with HCC and to explore the possible mechanism by which Yinchenhao decoction improves the inflammatory microenvironment of HCC by regulating bile acid metabolism, we established mice model of orthotopic transplantation of hepatocellular carcinoma. These mice were treated with three doses of Yinchenhao decoction, then liver samples were collected and tested. Yinchenhao decoction can regulate the disorder of bile acid metabolism in liver cancer mice. Besides, it can improve inflammatory reactions, reduce hepatocyte degeneration and necrosis, and even reduce liver weight and the liver index. Taurochenodeoxycholic acid, hyodeoxycholic acid, and taurohyodeoxycholic acid are important molecules in the regulation of the liver inflammatory microenvironment, laying a foundation for the regulation of the liver tumor inflammatory microenvironment based on bile acids. Yinchenhao decoction may improve the inflammatory microenvironment of mice with HCC by ameliorating hepatic bile acid metabolism.

9.
Free Radic Biol Med ; 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38705496

RESUMO

Phloretin has been widely perceived as an antioxidant. However, the bioavailability of phloretin in vivo is generally far too low to elicit a direct antioxidant effect by scavenging reactive oxygen species (ROS). Here we showed that administration of phloretin of apple polyphenols extended lifespan of Caenorhabditis elegans and promoted fitness. Specially phloretin enhanced the survival rates of nematodes under oxidants in an inverted U-shaped dose-response manner. The lifespan-extending effects of phloretin were mediated by ROS via complex I inhibition. The increase of ROS stimulated p38 MAPK/PMK-1 as well as transcription factors of NRF2/SKN-1 and FOXO/DAF-16. Consistent with the involvement of NRF2/SKN-1 and FOXO/DAF-16 in lifespan-extending effects, activities of SOD and CAT were enhanced by phloretin. The exogenous application of antioxidants BHA and NAC abolished the increase of ROS, the enhancement of SOD and CAT activities, and the lifespan extending effects of phloretin. Meanwhile, with the inhibition of mitochondrial complex I, ATP was instantly decreased. Both energy sensors of AMPK/AAK-2 and SIRT1/SIR-2.1 were involved in the lifespan extension by phloretin. Transcriptomic, real-time qPCR and molecular docking analyses demonstrated that the binding of phloretin at complex I located at NDUFS1/NUO-5, NDUFS2/GAS-1, and NDUFS6/NDUF-6. The molecular dynamic simulation and binding free energy calculations showed that phloretin had high binding affinities towards NDUFS1 (-7.21 kcal/mol) and NDUFS6 (-7.02 kcal/mol). Collectively, our findings suggested phloretin had effects of life expectancy enhancement and fitness promotion via redox regulations in vivo. NDUFS1/NUO-5 and NDUFS6/NDUF-6 might be new targets in the lifespan and wellness regulations.

11.
EClinicalMedicine ; 72: 102629, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38745967

RESUMO

Background: Niraparib significantly prolonged progression-free survival versus placebo in patients with platinum-sensitive, recurrent ovarian cancer (PSROC), regardless of germline BRCA mutation (gBRCAm) status, in NORA. This analysis reports final data on overall survival (OS). Methods: This randomised, double-blind, placebo-controlled, phase 3 trial enrolled patients across 30 centres in China between 26 September 2017 and 2 February 2019 (clinicaltrials.gov, NCT03705156). Eligible patients had histologically confirmed, recurrent, (predominantly) high-grade serous epithelial ovarian cancer, fallopian tube carcinoma, or primary peritoneal carcinoma (no histological restrictions for those with gBRCAm) and had received ≥2 prior lines of platinum-based chemotherapy. Patients were randomised (2:1) to receive niraparib or placebo, with stratification by gBRCAm status, time to recurrence following penultimate platinum-based chemotherapy, and response to last platinum-based chemotherapy. Following a protocol amendment, the starting dose was individualised: 200 mg/day for patients with bodyweight <77 kg and/or platelet count <150 × 103/µL at baseline and 300 mg/day otherwise. OS was a secondary endpoint. Findings: Totally, 265 patients were randomised to receive niraparib (n = 177) or placebo (n = 88), and 249 (94.0%) received an individualised starting dose. As of 14 August 2023, median follow-up for OS was 57.9 months (IQR, 54.8-61.6). Median OS (95% CI) with niraparib versus placebo was 51.5 (41.4-58.9) versus 47.6 (33.3-not evaluable [NE]) months, with hazard ratio [HR] of 0.86 (95% CI, 0.60-1.23), in the overall population; 56.0 (36.1-NE) versus 47.6 (31.6-NE) months, with HR of 0.86 (95% CI, 0.46-1.58), in patients with gBRCAm; and 46.5 (41.0-NE) versus 46.9 (31.8-NE) months, with HR of 0.87 (95% CI, 0.56-1.35), in those without. No new safety signals were identified, and myelodysplastic syndromes/acute myeloid leukaemia occurred in three (1.7%) niraparib-treated patients. Interpretation: Niraparib maintenance therapy with an individualised starting dose demonstrated a favourable OS trend versus placebo in PSROC patients, regardless of gBRCAm status. Funding: Zai Lab (Shanghai) Co., Ltd; National Major Scientific and Technological Special Project for "Significant New Drugs Development" in 2018, China [grant number 2018ZX09736019].

12.
Talanta ; 276: 126205, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38718649

RESUMO

Considering the high probability of recurrence or metastasis after thyroidectomy, it is meaningful to develop a rapid, sensitive and specific method for monitoring thyrophyma-related biomarkers. In this study, a homogeneous electrochemiluminescence immunoassay (HO-ECLIA) coupled with magnetic beads (MBs)-based enrichment tactic was established for the determination of thyrophyma-related thyroglobulin (Tg). Importantly, owing to the abundant surface groups and good biocompatibility of carbon quantum dots (CQDs), the incorporation of CQDs onto the Tg antigen surface was achieved, resulting in the formation of Tg-encapsulated CQDs (CQDs-Tg), which served not only as an ECL probe but as a biorecognition element. Under optimal experimental conditions, the proposed platform demonstrated a wide linear range from 0.01 to 100 ng·mL-1 with a detection limit of 6.9 pg·mL-1 (S/N = 3), and performed well in real serum sample analysis against interference. Collectively, the proposed platform exhibited the rapid response, satisfactory sensitivity and specificity toward Tg in complex serum milieu, and held a considerable potential for clinical prognosis monitoring of thyrophyma.

13.
IUBMB Life ; 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38721892

RESUMO

Low back pain is a common clinical symptom of intervertebral disc degeneration (IVDD), which seriously affects the quality of life of the patients. The abnormal apoptosis and senescence of nucleus pulposus cells (NPCs) play important roles in the pathogenesis of IVDD. PHLDA2 is an imprinted gene related to cell apoptosis and tumour progression. However, its role in NPC degeneration is not yet clear. Therefore, this study was set to explore the effects of PHLDA2 on NPC senescence and apoptosis and the underlying mechanisms. The expression of PHLDA2 was examined in human nucleus pulposus (NP) tissues and NPCs. Immunohistochemical staining, magnetic resonance imaging imaging and western blot were performed to evaluate the phenotypes of intervertebral discs. Senescence and apoptosis of NPCs were assessed by SA-ß-galactosidase, flow cytometry and western blot. Mitochondrial function was investigated by JC-1 staining and transmission electron microscopy. It was found that the expression level of PHLDA2 was abnormally elevated in degenerated human NP tissues and NPCs. Furthermore, knockdown of PHLDA2 can significantly inhibit senescence and apoptosis of NPCs, whereas overexpression of PHLDA2 can reverse senescence and apoptosis of NPCs in vitro. In vivo experiment further confirmed that PHLDA2 knockdown could alleviate IVDD in rats. Knockdown of PHLDA2 could also reverse senescence and apoptosis in IL-1ß-treated NPCs. JC-1 staining indicated PHLDA2's knockdown impaired disruption of the mitochondrial membrane potential and also ameliorated superstructural destruction of NPCs as showed by transmission electron microscopy. Finally, we found the PHLDA2 knockdown promoted Collagen-II expression and suppressed MMP3 expression in NPCs by repressing wnt/ß-catenin pathway. In conclusion, the results of the present study showed that PHLDA2 promotes IL-1ß-induced apoptosis and senescence of NP cells via mitochondrial route by activating the Wnt/ß-catenin pathway, and suggested that therapy targeting PHLDA2 may provide valuable insights into possible IVDD therapies.

14.
15.
Sci Total Environ ; 931: 172938, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703850

RESUMO

Cadmium (Cd) is a widely distributed typical environmental pollutant and one of the most toxic heavy metals. It is well-known that environmental Cd causes testicular damage by inducing classic types of cell death such as cell apoptosis and necrosis. However, as a new type of cell death, the role and mechanism of pyroptosis in Cd-induced testicular injury remain unclear. In the current study, we used environmental Cd to generate a murine model with testicular injury and AIM2-dependent pyroptosis. Based on the model, we found that increased cytoplasmic mitochondrial DNA (mtDNA), activated mitochondrial proteostasis stress occurred in Cd-exposed testes. We used ethidium bromide to generate mtDNA-deficient testicular germ cells and further confirmed that increased cytoplasmic mtDNA promoted AIM2-dependent pyroptosis in Cd-exposed cells. Uracil-DNA glycosylase UNG1 overexpression indicated that environmental Cd blocked UNG-dependent repairment of damaged mtDNA to drive the process in which mtDNA releases to cytoplasm in the cells. Interestingly, we found that environmental Cd activated mitochondrial proteostasis stress by up-regulating protein expression of LONP1 in testes. Testicular specific LONP1-knockdown significantly reversed Cd-induced UNG1 protein degradation and AIM2-dependent pyroptosis in mouse testes. In addition, environmental Cd significantly enhanced the m6A modification of Lonp1 mRNA and its stability in testicular germ cells. Knockdown of IGF2BP1, a reader of m6A modification, reversed Cd-induced upregulation of LONP1 protein expression and pyroptosis activation in testicular germ cells. Collectively, environmental Cd induces m6A modification of Lonp1 mRNA to activate mitochondrial proteostasis stress, increase cytoplasmic mtDNA content, and trigger AIM2-dependent pyroptosis in mouse testes. These findings suggest that mitochondrial proteostasis stress is a potential target for the prevention of testicular injury.

16.
Environ Res ; 252(Pt 3): 119053, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38714223

RESUMO

Water treatment is one of the most important issues for all walks of life around the world. The unique advantages of the solid-state power electronic pulses in water treatment make it attractive and promising in practical applications. The output voltage, rising time, repetition rate, and peak power of output pulses have a significant impact on the effectiveness of water treatment. Especially in pulse electric field treatment and pulse discharge treatment, the pulse with fast rising time achieves the advantage of generating plasma without corona, which can avoid water heating effect and greatly improve the efficiency of the pulse generator. High repetition rate can significantly reduce the peak power requirement of the pulse in water treatment application, making the equipment smaller and improving the power density. Therefore, the study developed a high-voltage high frequency sub-nanosecond pulse power generator (PPG) system for wastewater treatment. It adopts SiC DSRD (Drift Step Recovery Diode) solid-state switches and realize modular design, which can achieve high performance and can be flexible expanded according to the requirements of water treatment capacity. Finally, an expandable high-voltage PPG for water treatment is built. The output parameters of the PPG include output pulse voltage range from 1 to 5.28 kV, rise time <600 ps (20%-90%), repetition up to 1 MHz. The experiment results of PPG application for pulse discharge water treatment is presented. The results indicate that the proposed generator achieves high-efficiency degradation of 4-Chlorophenol (4-CP), which is one of the most common chlorophenol compounds in wastewater. From experiment, the homemade system can degrade 450 mL waste water containing 500 mg/L 4-CP in 35 min, with a degradation rate of 98%. Thereby, the requirement for electric field intensity decreased. Through the further quantitative analysis, the impact of frequency, voltage, and electrode spacing on the degradation effect of 4-CP is confirmed.

17.
Br J Pharmacol ; 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38715438

RESUMO

BACKGROUND AND PURPOSE: Chemotherapy-induced peripheral neuropathy (CIPN) commonly causes neuropathic pain, but its pathogenesis remains unclear, and effective therapies are lacking. Naringenin, a natural dihydroflavonoid compound, has anti-inflammatory, anti-nociceptive and anti-tumour activities. However, the effects of naringenin on chemotherapy-induced pain and chemotherapy effectiveness remain unexplored. EXPERIMENTAL APPROACH: Female and male mouse models of chemotherapy-induced pain were established using paclitaxel. Effects of naringenin were assessed on pain induced by paclitaxel or calcitonin gene-related peptide (CGRP) and on CGRP expression in dorsal root ganglia (DRG) and spinal cord tissue. Additionally, we examined peripheral macrophage infiltration, glial activation, c-fos expression, DRG neuron excitability, microglial M1/M2 polarization, and phosphorylation of spinal NF-κB. Furthermore, we investigated the synergic effect and related mechanisms of naringenin and paclitaxel on cell survival of cancer cells in vitro. KEY RESULTS: Systemic administration of naringenin attenuated paclitaxel-induced pain in both sexes. Naringenin reduced paclitaxel-enhanced CGRP expression in DRGs and the spinal cord, and alleviated CGRP-induced pain in naïve mice of both sexes. Naringenin mitigated macrophage infiltration and reversed paclitaxel-elevated c-fos expression and DRG neuron excitability. Naringenin decreased spinal glial activation and NF-κB phosphorylation in both sexes but influenced microglial M1/M2 polarization only in females. Co-administration of naringenin with paclitaxel enhanced paclitaxel's anti-tumour effect, impeded by an apoptosis inhibitor. CONCLUSION AND IMPLICATIONS: Naringenin's anti-nociceptive mechanism involves CGRP signalling and neuroimmunoregulation. Furthermore, naringenin facilitates paclitaxel's anti-tumour action, possibly involving apoptosis. This study demonstrates naringenin's potential as a supplementary treatment in cancer therapy by mitigating side effects and potentiating efficacy of chemotherapy.

18.
Clin Cosmet Investig Dermatol ; 17: 953-959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38699407

RESUMO

Squamous cell carcinoma (SCC) in situ can occur on any skin or mucus surface and is more commonly found in elderly patients on areas of skin that have been sunburnt. Most previous case reports are from dermatologists, with few published reports from pathologists. In this study, three patients underwent pathological routine and auxiliary immunohistochemical (IHC) examination and were ultimately diagnosed with pagetoid SCC in situ - a different diagnosis from the initial clinical assessment. All three patients received a complete resection of the skin mass. After follow-up, as of June 2023, the patients had no tumour recurrence or metastasis. Pagetoid SCC in situ is a particular type of SCC in situ that has no specific features in clinical manifestations, gross diagnosis or histopathological sections. The final diagnosis depends on IHC staining. Pagetoid SCC in situ expresses EMA, CK5/6 and p63 but not CEA, CK8 or S-100, which are expressed in extramammary Paget's disease. Pagetoid SCC in situ is usually only locally invasive, and the main treatment is complete surgical resection. The prognosis is related to human papillomavirus infection, surgical margin closure, disease location, tumour thickness and other factors.

19.
Biomed Pharmacother ; 175: 116667, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703504

RESUMO

Regulated cell death (RCD) is a form of cell death that can be regulated by numerous biomacromolecules. Accumulating evidence suggests that dysregulated expression and altered localization of related proteins in RCD promote the development of cancer. Targeting subroutines of RCD with pharmacological small-molecule compounds is becoming a promising therapeutic avenue for anti-tumor treatment, especially in hematological malignancies. Herein, we summarize the aberrant mechanisms of apoptosis, necroptosis, pyroptosis, PANoptosis, and ferroptosis in hematological malignancies. In particular, we focus on the relationship between cell death and tumorigenesis, anti-tumor immunotherapy, and drug resistance in hematological malignancies. Furthermore, we discuss the emerging therapeutic strategies targeting different RCD subroutines. This review aims to summarize the significance and potential mechanisms of RCD in hematological malignancies, along with the development and utilization of pertinent therapeutic strategies.

20.
Cancer Lett ; : 216935, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38704136

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent malignancy characterized by complex heterogeneity and drug resistance. Resistance to ferroptosis is closely related to the progression of HCC. While HCC tumors vary in their sensitivity to ferroptosis, the precise factors underlying this heterogeneity remain unclear. In this study, we sought to elucidate the mechanisms that contribute to ferroptosis resistance in HCC. Whole-genome CRISPR/Cas9 screen using a subtoxic concentration (IC20) of ferroptosis inducer erastin in the HCC cell line Huh7 revealed TRIM34 as a critical driver of ferroptosis resistance in HCC. Further investigation revealed that TRIM34 suppresses ferroptosis in HCC cells, promoting their proliferation, migration, and invasion both in vitro and in vivo. Furthermore, TRIM34 expression is elevated in HCC tumor tissues, correlating with a poor prognosis. Mechanistically, TRIM34 directly interacts with Up-frameshift 1 (UPF1), a core component of the nonsense-mediated mRNA decay (NMD) pathway, to promote its ubiquitination and degradation. This interaction suppresses GPX4 transcript degradation, thus promoting the protein levels of this critical ferroptosis suppressor in HCC. In light of the close crosstalk between ferroptosis and the adaptive immune response in cancer, HCC cells with targeting knockdown of TRIM34 exhibited an improved response to anti-PD-1 treatment. Taken together, the TRIM34/UPF1/GPX4 axis mediates ferroptosis resistance in HCC, thereby promoting malignant phenotypes. Targeting TRIM34 may thus represent a promising new strategy for HCC treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA