Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 103
Filtrar
1.
Front Endocrinol (Lausanne) ; 15: 1371444, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38836220

RESUMO

Objective: Individuals with hypopituitarism (HPs) have an increased risk of developing non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) due to growth hormone deficiency (GHD). We aimed to investigate the possible mechanisms underlying the relationship between GHD and NAFLD using proteomic and metabolomic insights. Methods: Serum metabolic alternations were assessed in male HPs using untargeted metabolomics. A rat model of HP was established through hypophysectomy, followed by recombinant human growth hormone (rhGH) intervention. The mechanisms underlying GHD-mediated NAFLD were elucidated through the application of label-free proteomics and phosphorylation proteomics. Results: Metabolomic analysis revealed that biomarkers of mitochondrial dysfunction and oxidative stress, such as alanine, lactate, and creatine, were significantly elevated in HPs compared to age-matched controls. In rats, hypophysectomy led to marked hepatic steatosis, lipid peroxidation, and reduced glutathione (GSH), which were subsequently modulated by rhGH replacement. Proteomic analysis identified cytochrome P450s, mitochondrial translation elongation, and PPARA activating genes as the major distinguishing pathways in hypophysectomized rats. The processes of fatty acid transport, synthesis, oxidation, and NADP metabolism were tightly described. An enhanced regulation of peroxisome ß-oxidation and ω-oxidation, together with a decreased NADPH regeneration, may exacerbate oxidative stress. Phosphoproteome data showed downregulation of JAK2-STAT5B and upregulation of mTOR signaling pathway. Conclusions: This study identified proteo-metabolomic signatures associated with the development of NAFLD in pituitary GHD. Evidence was found of oxidative stress imbalance resulting from abnormal fatty acid oxidation and NADPH regeneration, highlighting the role of GH deficiency in the development of NAFLD.


Assuntos
Hipopituitarismo , Metabolômica , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo , Proteômica , Animais , Masculino , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/etiologia , Ratos , Hipopituitarismo/metabolismo , Hipopituitarismo/etiologia , Ratos Sprague-Dawley , Hormônio do Crescimento Humano/deficiência , Hormônio do Crescimento Humano/metabolismo , Humanos
2.
Biochem Biophys Res Commun ; 711: 149934, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38626621

RESUMO

C-terminally encoded peptides (CEPs) are peptide hormones that function as mobile signals coordinating crucial developmental programs in plants. Previous studies have revealed that CEPs exert negative regulation on root development through interaction with CEP receptors (CEPRs), CEP DOWNSTREAMs (CEPDs), the cytokinin receptor ARABIDOPSIS HISTIDINE KINASE (AHKs) and the transcriptional repressor Auxin/Indole-3-Acetic Acid (AUX/IAA). However, the precise molecular mechanisms underlying CEPs-mediated regulation of root development via auxin and cytokinin signaling pathways still necessitate further detailed investigation. In this study, we examined prior research and elucidated the underlying molecular mechanisms. The results showed that both synthetic AtCEPs and overexpression of AtCEP5 markedly supressed primary root elongation and lateral root (LR) formation in Arabidopsis. Molecular biology and genetics elucidated how CEPs inhibit root growth by suppressing auxin signaling while promoting cytokinin signaling. In summary, this study elucidated the inhibitory effects of AtCEPs on Arabidopsis root growth and provided insights into their potential molecular mechanisms, thus enhancing our comprehension of CEP-mediated regulation of plant growth and development.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Citocininas , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos , Raízes de Plantas , Transdução de Sinais , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Arabidopsis/genética , Citocininas/metabolismo , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Reguladores de Crescimento de Plantas/metabolismo , Hormônios Peptídicos/metabolismo , Hormônios Peptídicos/genética
3.
Anal Chem ; 96(18): 7030-7037, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656919

RESUMO

Intracellular cancer-related biomarker imaging strategy has been used for specific identification of cancer cells, which was of great importance to accurate cancer clinical diagnosis and prognosis studies. Localized DNA circuits with improved sensitivity showed great potential for intracellular biomarkers imaging. However, the ability of localized DNA circuits to specifically image cancer cells is limited by off-site signal leakage associated with a single-biomarker sensing strategy. Herein, we integrated the endogenous enzyme-powered strategy with logic-responsive and localized signal amplifying capability to construct a self-assembled endogenously AND logic DNA nanomachine (EDN) for highly specific cancer cell imaging. When the EDN encountered a cancer cell, the overexpressed DNA repairing enzyme apurinic/apyrimidinic endonuclease 1 (APE1) and miR-21 could synergistically activate a DNA circuit via cascaded localized toehold-mediated strand displacement (TMSD) reactions, resulting in amplified fluorescence resonance energy transfer (FRET) signal. In this strategy, both endogenous APE1 and miR-21, served as two "keys" to activate the AND logic operation in cancer cells to reduce off-tumor signal leakage. Such a multiplied molecular recognition/activation nanomachine as a powerful toolbox realized specific capture and reliable imaging of biomolecules in living cancer cells.


Assuntos
DNA Liase (Sítios Apurínicos ou Apirimidínicos) , DNA , Transferência Ressonante de Energia de Fluorescência , MicroRNAs , Humanos , MicroRNAs/análise , MicroRNAs/metabolismo , DNA/química , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Neoplasias/diagnóstico por imagem , Imagem Óptica
4.
Purinergic Signal ; 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642324

RESUMO

In clinical practice, depression and anxiety frequently coexist, and they are both comorbid with somatic diseases. The P2X7R is an adenosine 5'-triphosphate (ATP)-gated non-selective cation channel that is widely expressed in immune-related cells. Under conditions of stress, chronic pain, and comorbid chronic physical illness, P2X7R activation in glial cells leads to neuroinflammation. This could contribute to the development of anxiety and depression-related emotional disturbances. Previous studies have shown that the P2X7 receptor (P2X7R) plays an important role in the pathogenesis of both anxiety and depression. Thus, the P2X7R may play a role in the comorbidity of anxiety and depression. Positron emission tomography can be used to assess the degree and location of neuroinflammation by monitoring functional and expression-related changes in P2X7R, which can facilitate clinical diagnoses and guide the treatment of patients with anxiety and depression. Moreover, single nucleotide polymorphisms (SNPs) in the P2X7R gene are associated with susceptibility to different types of psychiatric disorders. Thus, evaluating the SNPs of the P2X7R gene could enable personalized mood disorder diagnoses and treatments. If the P2X7R were set as a therapeutic target, selective P2X7R antagonists may modulate P2X7R function, thereby altering the balance of intra- and extra-cellular ATP. This could have therapeutic implications for treating anxiety and depression, as well as for pain management. According to in vitro and in vivo studies, the P2X7R plays an important role in anxiety and depression. In this review, we consider the potential of the P2X7R as a therapeutic target for comorbid anxiety and depression, and discuss the potential diagnostic and therapeutic value of this receptor.

5.
Cereb Cortex ; 34(3)2024 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-38511722

RESUMO

Neurovascular decoupling plays a significant role in dysfunction following an ischemic stroke. This study aimed to explore the effect of low- and high-frequency repetitive transcranial magnetic stimulation on neurovascular remodeling after ischemic stroke. To achieve this goal, we compared functional hyperemia, cerebral blood flow regulatory factors, and neurochemical transmitters in the peri-infract cortex 21 days after a photothrombotic stroke. Our findings revealed that low- and high-frequency repetitive transcranial magnetic stimulation increased the real-time cerebral blood flow in healthy mice and improved neurobehavioral outcomes after stroke. Furthermore, high-frequency (5-Hz) repetitive transcranial magnetic stimulation revealed stronger functional hyperemia recovery and increased the levels of post-synaptic density 95, neuronal nitric oxide synthase, phosphorylated-endothelial nitric oxide synthase, and vascular endothelial growth factor in the peri-infract cortex compared with low-frequency (1-Hz) repetitive transcranial magnetic stimulation. The magnetic resonance spectroscopy data showed that low- and high-frequency repetitive transcranial magnetic stimulation reduced neuronal injury and maintained excitation/inhibition balance. However, 5-Hz repetitive transcranial magnetic stimulation showed more significant regulation of excitatory and inhibitory neurotransmitters after stroke than 1-Hz repetitive transcranial magnetic stimulation. These results indicated that high-frequency repetitive transcranial magnetic stimulation could more effectively promote neurovascular remodeling after stroke, and specific repetitive transcranial magnetic stimulation frequencies might be used to selectively regulate the neurovascular unit.


Assuntos
Hiperemia , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Camundongos , Estimulação Magnética Transcraniana/métodos , Fator A de Crescimento do Endotélio Vascular , Resultado do Tratamento
6.
Acta Pharm Sin B ; 14(3): 1412-1427, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38486994

RESUMO

Mesenchymal stem cells (MSCs) experience substantial viability issues in the stroke infarct region, limiting their therapeutic efficacy and clinical translation. High levels of deadly reactive oxygen radicals (ROS) and proinflammatory cytokines (PC) in the infarct milieu kill transplanted MSCs, whereas low levels of beneficial ROS and PC stimulate and improve engrafted MSCs' viability. Based on the intrinsic hormesis effects in cellular biology, we built a microglia-inspired MSC bioengineering system to transform detrimental high-level ROS and PC into vitality enhancers for strengthening MSC therapy. This system is achieved by bioorthogonally arming metabolic glycoengineered MSCs with microglial membrane-coated nanoparticles and an antioxidative extracellular protective layer. In this system, extracellular ROS-scavenging and PC-absorbing layers effectively buffer the deleterious effects and establish a micro-livable niche at the level of a single MSC for transplantation. Meanwhile, the infarct's inanimate milieu is transformed at the tissue level into a new living niche to facilitate healing. The engineered MSCs achieved viability five times higher than natural MSCs at seven days after transplantation and exhibited a superior therapeutic effect for stroke recovery up to 28 days. This vitality-augmented system demonstrates the potential to accelerate the clinical translation of MSC treatment and boost stroke recovery.

7.
Adv Healthc Mater ; 13(5): e2302652, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37794560

RESUMO

Small frame nucleic acids (FNAs) serve as excellent carrier materials for various functional nucleic acid molecules, showcasing extensive potential applications in biomedicine development. The carrier module and function module combination is crucial for probe design, where an improper combination can significantly impede the functionality of sensing platforms. This study explores the effect of various combinations on the sensing performance of nanodevices through simulations and experimental approaches. Variances in response velocities, sensitivities, and cell uptake efficiencies across different structures are observed. Factors such as the number of functional molecules loaded, loading positions, and intermodular distances affect the rigidity and stability of the nanostructure. The findings reveal that the structures with full loads and moderate distances between modules have the lowest potential energy. Based on these insights, a multisignal detection platform that offers optimal sensitivity and response speed is developed. This research offers valuable insights for designing FNAs-based probes and presents a streamlined method for the conceptualization and optimization of DNA nanodevices.


Assuntos
MicroRNAs , Nanoestruturas , Ácidos Nucleicos , MicroRNAs/genética , DNA/química , Nanoestruturas/química , Simulação por Computador , Nanotecnologia/métodos
8.
Int J Nanomedicine ; 18: 4933-4947, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37693886

RESUMO

Background: Dentin caries remains a significant public concern, with no clinically viable material that effectively combines remineralization and antimicrobial properties. To address this issue, this study focused on the development of a bio-inspired multifunctional nanogel with both antibacterial and biomineralization properties. Methods: First, p(NIPAm-co-DMC) (PNPDC) copolymers were synthesized from N-isopropylacrylamide (NIPAm) and 2-methacryloyloxyethyl-trimethyl ammonium chloride (DMC). Subsequently, PNPDC was combined with γ-polyglutamic acid (γ-PGA) through physical cross-linking to form nanogels. These nanogels served as templates for the mineralization of calcium phosphate (Cap), resulting in Cap-loaded PNPDC/PGA nanogels. The nanogels were characterized using various techniques, including TEM, particle tracking analysis, XRD, and FTIR. The release properties of ions were also assessed. In addition, the antibacterial properties of the Cap-loaded PNPDC/PGA nanogels were evaluated using the broth microdilution method and a biofilm formation assay. The remineralization effects were examined on both demineralized dentin and type I collagen in vitro. Results: PNPDC/PGA nanogels were successfully synthesized and loaded with Cap. The diameter of the Cap-loaded PNPDC/PGA nanogels was measured as 196.5 nm at 25°C and 162.3 nm at 37°C. These Cap-loaded nanogels released Ca2+ and PO43- ions quickly, effectively blocking dental tubules with a depth of 10 µm and promoting the remineralization of demineralized dentin within 7 days. Additionally, they facilitated the heavy intrafibrillar mineralization of type I collagen within 3 days. Moreover, the Cap-loaded nanogels exhibited MIC50 and MIC90 values of 12.5 and 50 mg/mL against Streptococcus mutans, respectively, with an MBC value of 100 mg/mL. At a concentration of 50 mg/mL, the Cap-loaded nanogels also demonstrated potent inhibitory effects on biofilm formation by Streptococcus mutans while maintaining good biocompatibility. Conclusion: Cap-loaded PNPDC/PGA nanogels are a multifunctional biomimetic system with antibacterial and dentin remineralization effects. This strategy of using antibacterial nanogels as mineral feedstock carriers offered fresh insight into the clinical management of caries.


Assuntos
Calcinose , Cárie Dentária , Humanos , Nanogéis , Cariostáticos , Colágeno Tipo I , Cárie Dentária/tratamento farmacológico , Antibacterianos/farmacologia
9.
Adv Sci (Weinh) ; 10(28): e2304020, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37544917

RESUMO

Accurate delineation of glioma infiltrative margins remains a challenge due to the low density of cancer cells in these regions. Here, a hierarchical imaging strategy to define glioma margins by locating the immunosuppressive tumor-associated macrophages (TAMs) is proposed. A pH ratiometric fluorescent probe CP2-M that targets immunosuppressive TAMs by binding to mannose receptor (CD206) is developed, and it subsequently senses the acidic phagosomal lumen, resulting in a remarkable fluorescence enhancement. With assistance of CP2-M, glioma xenografts in mouse models with a tumor-to-background ratio exceeding 3.0 for up to 6 h are successfully visualized. Furthermore, by intra-operatively mapping the pH distribution of exposed tissue after craniotomy, the glioma allograft in rat models is precisely excised. The overall survival of rat models significantly surpasses that achieved using clinically employed fluorescent probes. This work presents a novel strategy for locating glioma margins, thereby improving surgical outcomes for tumors with infiltrative characteristics.


Assuntos
Glioma , Macrófagos Associados a Tumor , Camundongos , Humanos , Ratos , Animais , Glioma/metabolismo , Corantes Fluorescentes , Receptor de Manose
10.
Front Mol Neurosci ; 16: 1231374, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37501727

RESUMO

Tuina, a method of traditional Chinese manual manipulation, is an effective alternative therapy for neuropathic pain (NP), but its analgesic mechanism remains unclear. In this study, we used resting-state functional magnetic resonance imaging (R-fMRI) to explore the analgesic mechanism of Tuina in an NP rat model. After undergoing surgery to induce chronic compression of the dorsal root ganglion (CCD), one group of rats underwent Tuina at the ipsilateral BL40 acupoint once a day for 10 min during the 25 days following surgery while another group did not. Behavioral tests were performed at baseline, on the third day following surgery, and once a week for the next 4 weeks. R-fMRI was performed at baseline and 7 days and 28 days following surgery. Behavioral testing revealed that the Tuina group presented a significant response improvement to mechanical and thermal nociception stimuli compared to the untreated group 2 weeks following CCD surgery. Interestingly, rats submitted to Tuina presented higher measures of spontaneous neuronal activity in basal forebrain region, primary somatosensory cortex barrel field, dentate gyrus, secondary somatosensory cortex, striatum, descending corticofugal pathways, and globus pallidum of the left hemisphere 4 weeks after the CCD surgery compared to rats having undergone CCD only. In addition, on the 28th day, the ALFF signals of the left dentate gyrus, left secondary somatosensory cortex, left striatum, and bilateral primary cingulate cortex were significantly increased while those in the right dentate gyrus and bilateral periaqueductal gray were significantly decreased compared to those on the 7th day. Correlation analysis showed that the ALFF values of the left descending corticofugal pathways and globus pallidum had a positive correlation with mechanical withdrawal threshold and paw withdrawal thermal latency tests. Altogether, these results indicate that NPP induced by CCD surgery affects the plasticity of the cerebral cortex, and that Tuina alleviate pain behavior by promoting cortical remodeling.

11.
Sheng Li Xue Bao ; 75(3): 317-327, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-37340641

RESUMO

The present study aimed to investigate the protective effect of S-propargyl-cysteine (SPRC) on atherosclerosis progression in mice. A mouse model of vulnerable atherosclerotic plaque was created in ApoE-/- mice by carotid artery tandem stenosis (TS) combined with a Western diet. Macrophotography, lipid profiles, and inflammatory markers were measured to evaluate the antiatherosclerotic effects of SPRC compared to atorvastatin as a control. Histopathological analysis was performed to assess the plaque stability. To explore the protective mechanism of SPRC, human umbilical vein endothelial cells (HUVECs) were cultured in vitro and challenged with oxidized low-density lipoprotein (ox-LDL). Cell viability was determined with a Cell Counting Kit-8 (CCK-8). Endothelial nitric oxide synthase (eNOS) phosphorylation and mRNA expression were detected by Western blot and RT-qPCR respectively. The results showed that the lesion area quantified by en face photographs of the aortic arch and carotid artery was significantly less, plasma total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) were reduced, plaque collagen content was increased and matrix metalloproteinase-9 (MMP-9) was decreased in 80 mg/kg per day SPRC-treated mice compared with model mice. These findings support the role of SPRC in plaque stabilization. In vitro studies revealed that 100 µmol/L SPRC increased the cell viability and the phosphorylation level of eNOS after ox-LDL challenge. These results suggest that SPRC delays the progression of atherosclerosis and enhances plaque stability. The protective effect may be at least partially related to the increased phosphorylation of eNOS in endothelial cells.


Assuntos
Aterosclerose , Placa Aterosclerótica , Animais , Humanos , Camundongos , Colesterol/metabolismo , Cisteína/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Lipoproteínas LDL/farmacologia , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , Fosforilação , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia
12.
Talanta ; 265: 124820, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37331040

RESUMO

The DNA nanomachines as excellent synthetic biological tools have been widely used for the sensitive detection of intracellular microRNA (miRNA) and DNAzyme-involved gene silencing. However, intelligent DNA nanomachines which have the ability to sense intracellular specific biomolecules and respond to external information in complex environments still remain challenging. Herein, we develop a miRNA-responsive DNAzyme cascaded catalytic (MDCC) nanomachine to perform multilayer cascade reactions, enabling the amplified intracellular miRNA imaging and miRNA-guided efficient gene silencing. The intelligent MDCC nanomachine is designed based on multiple DNAzyme subunit-encoded catalyzed hairpin assembly (CHA) reactants sustained by the pH-responsive Zeolitic imidazolate framework-8 (ZIF-8) nanoparticles. After cellular uptake, the MDCC nanomachine degrades in acidic endosome and releases three hairpin DNA reactants and Zn2+, and the latter can act as an effective cofactor for DNAzyme. In the presence of miRNA-21, a catalytic hairpin assembly (CHA) reaction is triggered, which produces a large number of Y-shaped fluorescent DNA constructs containing three DNAzyme modules for gene silencing. The construction of Y-shaped DNA modified with multisite fluorescence and the circular reaction realizes ultrasensitive miRNA-21 imaging of cancer cells. Moreover, miRNA-guided gene silencing inhibits the cancer cell proliferation through the DNAzyme-specific recognition and cleavage of target EGR-1 (Early Growth Response-1) mRNA, which is one key tumor-involved mRNA. The strategy may provide a promising platform for highly sensitive determination of biomolecules and accurate gene therapy of cancer cells.


Assuntos
Técnicas Biossensoriais , DNA Catalítico , MicroRNAs , MicroRNAs/genética , DNA Catalítico/metabolismo , DNA , Catálise , RNA Mensageiro , Técnicas Biossensoriais/métodos
13.
Front Immunol ; 14: 967345, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37350971

RESUMO

Introduction: Inborn errors of immunity (IEI) are a heterogeneous group of disorders characterized by increased risk of infections, autoimmunity, autoinflammatory diseases, malignancy and allergy. Next-generation sequencing has revolutionized the identification of genetic background of these patients and assists in diagnosis and treatment. In this study, we identified a probable unique monogenic cause of IEI, and evaluated the immunological methods and pathogenic detections. Methods: A family with a member with a clinical diagnosis of IEI was screened by whole genomic sequencing (WGS). Demographic data, clinical manifestations, medical history, physical examination, laboratory findings and imaging features of the patient were extracted from medical records. Comprehensive immune monitoring methods include a complete blood count with differential, serum levels of cytokines and autoantibodies, T-cell and B-cell subsets analysis and measurement of serum immunoglobulins. In addition, metagenomic sequencing (mNGS) of blood, cerebrospinal fluid and biopsy from small intestine were used to detect potential pathogens. Results: The patient manifested with recurrent infections and autoimmune disorders, who was eventually diagnosed with IEI. Repetitive mNGS tests of blood, cerebrospinal fluid and biopsy from small intestine didn't detect pathogenic microorganism. Immunological tests showed a slightly decreased level of IgG than normal, elevated levels of tumor necrosis factor and interleukin-6. Lymphocyte flow cytometry showed elevated total B cells and natural killer cells, decreased total T cells and B-cell plasmablasts. WGS of the patient identified a novel heterozygous mutation in IRF2BP2 (c.439_450dup p. Thr147_Pro150dup), which was also confirmed in his father. The mutation was classified as variant of uncertain significance (VUS) according to the American College of Medical Genetics and Genomics guidelines. Conclusion: We identified a novel IRF2BP2 mutation in a family with a member diagnosed with IEI. Immune monitoring and WGS as auxiliary tests are helpful in identifying genetic defects and assisting diagnosis in patients with clinically highly suspected immune abnormalities and deficiencies in inflammation regulation. In addition, mNGS techniques allow a more comprehensive assessment of the pathogenic characteristics of these patients. This report further validates the association of IRF2BP2 deficiency and IEI, and expands IEI phenotypes.


Assuntos
Doenças Autoimunes , Reinfecção , Humanos , Doenças Autoimunes/diagnóstico , Doenças Autoimunes/genética , Autoanticorpos , Autoimunidade , Linfócitos B , Proteínas de Ligação a DNA , Fatores de Transcrição
14.
EMBO Rep ; 24(8): e57550, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37381832

RESUMO

Long interspersed nuclear elements (LINEs) play essential roles in shaping chromatin states, while the factors that cooperate with LINEs and their roles in higher-order chromatin organization remain poorly understood. Here, we show that MATR3, a nuclear matrix protein, interplays with antisense LINE1 (AS L1) RNAs to form a meshwork via phase separation, providing a dynamic platform for chromatin spatial organization. MATR3 and AS L1 RNAs affect the nuclear localization of each other. After MATR3 depletion, the chromatin, particularly H3K27me3-modified chromatin, redistributes in the cell nuclei. Topologically associating domains (TADs) that highly transcribe MATR3-associated AS L1 RNAs show decreased intra-TAD interactions in both AML12 and ES cells. MATR3 depletion increases the accessibility of H3K27me3 domains adjacent to MATR3-associated AS L1, without affecting H3K27me3 modifications. Furthermore, amyotrophic lateral sclerosis (ALS)-associated MATR3 mutants alter biophysical features of the MATR3-AS L1 RNA meshwork and cause an abnormal H3K27me3 staining. Collectively, we reveal a role of the meshwork formed by MATR3 and AS L1 RNAs in gathering chromatin in the nucleus.


Assuntos
Esclerose Lateral Amiotrófica , RNA Antissenso , Humanos , Histonas/genética , Esclerose Lateral Amiotrófica/genética , Cromatina/genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas Associadas à Matriz Nuclear/genética , Proteínas Associadas à Matriz Nuclear/metabolismo
15.
RSC Adv ; 13(21): 14131-14138, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180024

RESUMO

Different subtypes of breast cancer (BCC) have variable degrees of malignancy, which is closely related to their extracellular pH (pHe). Therefore, it is increasingly significant to monitor the extracellular pH sensitively to further determine the malignancy of different subtypes of BCC. Here, a l-arginine and Eu3+ assembled nanoparticle Eu3+@l-Arg was prepared to detect the pHe of two breast cancer models (TUBO is non-invasive and 4T1 is malignant) using a clinical chemical exchange saturation shift imaging technique. The experiments in vivo showed that Eu3+@l-Arg nanomaterials could respond sensitively to changes of pHe. In 4T1 models, the CEST signal enhanced about 5.42 times after Eu3+@l-Arg nanomaterials were used to detect the pHe. In contrast, few enhancements of the CEST signal were seen in the TUBO models. This significant difference had led to new ideas for identifying subtypes of BCC with different degrees of malignancy.

16.
Adv Clin Exp Med ; 32(10): 1099-1111, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37077142

RESUMO

Orthognathic surgery causes functional and aesthetic changes, which could affect patients' quality of life (QOL). The current analysis assessed the impact of orthodontic-surgical treatment on the parameters affecting the QOL using different scoring systems. The criteria for inclusion were studies written in various languages that compared the effects of the intervention on patients' QOL before surgery and at various periods after surgery (3 weeks to several months), which resulted in including 19 studies into this meta-analysis. The outcomes of these studies underwent random-effect modeling to calculate the mean difference (MD) and 95% confidence intervals (95% CIs) of the impact of different surgical techniques on clinical parameters, and publication bias was analyzed with Begg's test. According to the total score of the Orthognathic Quality of Life Questionnaire (OQLQ), surgery significantly affected patients' QOL after 2 months or less (p = 0.049), up to 6 months (p < 0.001), and when comparing 2 months or less with up to 6 months (2-6 months) (p < 0.001). In addition, the total Oral Health Impact Profile-14 (OHIP-14) score showed a significant difference in the QOL after 6 months (p = 0.003) and up to 12 months (p = 0.002) after surgery. Therefore, orthodontic-surgical treatment significantly improves patients' QOL after surgery compared to before surgery.


Assuntos
Cirurgia Ortognática , Procedimentos Cirúrgicos Ortognáticos , Humanos , Qualidade de Vida , Inquéritos e Questionários
17.
J Orthop Res ; 41(6): 1291-1298, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36203347

RESUMO

Lateral ankle sprains (LAS) might lead to joint sensory deafferentation, which induces maladaptive neuroplasticity, especially the morphological atrophy of the cerebellar vermis. However, longitudinal evidence on the causality of injury and neural differences is still lacking. To this end, this study aimed to determine whether the morphology of the central nervous system would be altered before and after ligament transection in LAS mouse models. A total of 40 C57BL/6 mice were randomly divided among the LAS, Sham and Blank groups. We repeatedly performed the balance beam test and neural voxel-based morphometry (VBM) measurements using an 11.7 T magnetic resonance imaging before and 2 months after the surgery. The results showed that for balance outcomes, the LAS group had a significantly longer time and more slips of the balance beam tests compared with the Sham and Blank groups at 2 months after surgery, with no significant difference among the three groups before surgery. Regarding the VBM analysis, the LAS group showed significantly lower VBM values in the central lobule III of the cerebellar vermis and medial amygdalar nucleus (MEA) compared with the Sham and Blank groups after surgery, with no significant difference among the three groups before surgery. In conclusion, lateral ligament injuries might lead to morphological atrophy of the cerebellar vermis in animal models, which might pave the way for the pathological process of ankle instability after LAS.


Assuntos
Traumatismos do Tornozelo , Ligamentos Colaterais , Instabilidade Articular , Entorses e Distensões , Animais , Camundongos , Articulação do Tornozelo/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Traumatismos do Tornozelo/diagnóstico por imagem , Instabilidade Articular/etiologia , Imageamento por Ressonância Magnética , Entorses e Distensões/complicações
18.
Small ; 18(47): e2203431, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36180405

RESUMO

Mesenchymal stem cell (MSC) therapy via intravenous transplantation exhibits great potential for brain tissue regeneration, but still faces thorny clinical translation challenges as the unknown dynamic fate leads to the contentious therapeutic mechanism and the poor MSC viability in harsh lesions limits therapeutic efficiency. Here, a vitality-enhanced dual-modal tracking system is designed to improve engraftment efficiency and is utilized to noninvasively explore the fate of intravenous transplanted human umbilical cord-derived MSCs during long-term treatment of ischemic stroke. Such a system is obtained by bioorthogonally conjugating magnetic resonance imaging (MRI) contrast and near-infrared fluorescence (NIRF) imaging nanoparticles to metabolic glycoengineered MSCs with a lipoic acid-containing extracellular antioxidative protective layer. The dynamic fates of MSCs in multi-dimensional space-time evolution are digitally detailed for up to 28 days using MRI and NIRF imaging equipment, and the protective layer greatly shields MSCs from reactive oxygen spices (ROS) degradation, enhances MSC survival, and engraftment efficiency. Additionally, it is observed that the bioengineered MSCs exhibit dynamic intelligent responses corresponding to microenvironment remodeling and exert enhanced therapeutic effects. This dual-modal tracking system enables long-term tracking of MSCs while improving their viability at the lesion sites, which may serve as a valuable tool for expediting the clinical translation of MSC therapy.


Assuntos
Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais , Acidente Vascular Cerebral , Humanos , Transplante de Células-Tronco Mesenquimais/métodos , Células-Tronco Mesenquimais/metabolismo , Cordão Umbilical , Imageamento por Ressonância Magnética/métodos , Meios de Contraste/metabolismo , Acidente Vascular Cerebral/diagnóstico por imagem , Acidente Vascular Cerebral/terapia
19.
J Thorac Oncol ; 17(12): 1375-1386, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36049655

RESUMO

INTRODUCTION: The pathogenesis of thymic epithelial tumors remains largely unknown. We previously identified GTF2I L424H as the most frequently recurrent mutation in thymic epithelial tumors. Nevertheless, the precise role of this mutation in tumorigenesis of thymic epithelial cells is unclear. METHODS: To investigate the role of GTF2I L424H mutation in thymic epithelial cells in vivo, we generated and characterized a mouse model in which the Gtf2i L424H mutation was conditionally knocked-in in the Foxn1+ thymic epithelial cells. Digital spatial profiling was performed on thymomas and normal thymic tissues with GeoMx-mouse whole transcriptome atlas. Immunohistochemistry staining was performed using both mouse tissues and human thymic epithelial tumors. RESULTS: We observed that the Gtf2i mutation impairs development of the thymic medulla and maturation of medullary thymic epithelial cells in young mice and causes tumor formation in the thymus of aged mice. Cell cycle-related pathways, such as E2F targets and MYC targets, are enriched in the tumor epithelial cells. Results of gene set variation assay analysis revealed that gene signatures of cortical thymic epithelial cells and thymic epithelial progenitor cells are also enriched in the thymomas of the knock-in mice, which mirrors the human counterparts in The Cancer Genome Atlas database. Immunohistochemistry results revealed similar expression pattern of epithelial cell markers between mouse and human thymomas. CONCLUSIONS: We have developed and characterized a novel thymoma mouse model. This study improves knowledge of the molecular drivers in thymic epithelial cells and provides a tool for further study of the biology of thymic epithelial tumors and for development of novel therapies.


Assuntos
Neoplasias Epiteliais e Glandulares , Timoma , Neoplasias do Timo , Fatores de Transcrição TFIII , Fatores de Transcrição TFII , Animais , Humanos , Camundongos , Mutação , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Epiteliais e Glandulares/patologia , Timoma/genética , Timoma/patologia , Neoplasias do Timo/genética , Neoplasias do Timo/patologia , Fatores de Transcrição TFII/genética , Fatores de Transcrição TFIII/genética
20.
J Healthc Eng ; 2022: 7628183, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36046011

RESUMO

Surgery has been the primary treatment for breast cancer. However, instant postoperative complications, such as sleep disorder and pain, dramatically impair early postoperative quality of recovery, resulting in more extended hospital stays and higher costs. Recent clinical trials indicated that stellate ganglion block (SGB) could prolong sleep time and improve sleep quality in breast cancer survivors. Moreover, during the perioperative period, SGB enhanced the recovery of gastrointestinal functions in patients with laparoscopic colorectal cancer surgery and thoracolumbar spinal surgery. Furthermore, perioperative SGB decreased intraoperative requirements for anesthetics and analgesics in patients with complex regional pain syndrome. However, information is scarce regarding the effects of SGB on postoperative quality recovery in patients with breast cancer surgery. Therefore, we investigated the effects of SGB on the postoperative quality of recovery of patients undergoing breast cancer surgery. Sixty patients who underwent an elective unilateral modified radical mastectomy were randomized into two 30-patient groups that received either an ultrasound-guided right-sided SGB with 6 ml 0.25% ropivacaine (SGB group) or no block (control group). The primary outcome was the quality of postoperative recovery 24 hours after surgery, assessed with a Chinese version of the 40-item Quality of Recovery (QoR-40) questionnaire. Secondary outcomes were intraoperative requirements of propofol and opioids, rest pain at two, four, eight, and 24 hours after surgery, patient satisfaction score, and the incidence of postoperative abdominal distension. At 24 hours after surgery, global QoR-40 scores were higher in the SGB group than in the control group. Besides, in the SGB group, patients needed less propofol, had a lower incidence of postoperative abdominal bloating, and had higher satisfaction scores. Ultrasound-guided SGB could improve the quality of postoperative recovery in patients undergoing breast cancer surgery by less intraoperatively need for propofol and better postoperative recovery of sleep and gastrointestinal function.


Assuntos
Neoplasias da Mama , Propofol , Neoplasias da Mama/cirurgia , Feminino , Humanos , Mastectomia , Dor , Propofol/uso terapêutico , Gânglio Estrelado , Ultrassonografia de Intervenção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA