Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Molecules ; 29(8)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38675654

RESUMO

Diabetic wound healing is a significant clinical challenge because abnormal immune cells in the wound cause chronic inflammation and impair tissue regeneration. Therefore, regulating the behavior and function of macrophages may be conducive to improving treatment outcomes in diabetic wounds. Herein, sulfated chitosan (26SCS)-containing composite sponges (26SCS-SilMA/Col-330) with well-arranged layers and high porosity were constructed based on collagen and silk fibroin, aiming to induce an appropriate inflammatory response and promote angiogenesis. The results indicated that the ordered topological structure of composite sponges could trigger the pro-inflammatory response of Mφs in the early stage, and rapid release of 26SCS in the early and middle stages (within the concentration range of 1-3 mg/mL) induced a positive inflammatory response; initiated the pro-inflammatory reaction of Mφs within 3 days; shifted M1 Mφs to the M2 phenotype within 3-7 days; and significantly up-regulated the expression of two typical angiogenic growth factors, namely VEGF and PDGF-BB, on day 7, leading to rapid HUVEC migration and angiogenesis. In vivo data also demonstrated that on the 14th day after surgery, the 26SCS-SilMA/Col-330-implanted areas exhibited less inflammation, faster re-epithelialization, more abundant collagen deposition and a greater number of blood vessels in the skin tissue. The composite sponges with higher 26SCS contents (the (5.0) 26SCS-SilMA/Col-330 and the (7.5) 26SCS-SilMA/Col-330) could better orchestrate the phenotype and function of Mφs and facilitate wound healing. These findings highlight that the 26SCS-SilMA/Col-330 sponges developed in this work might have great potential as a novel dressing for the treatment of diabetic wounds.


Assuntos
Quitosana , Inflamação , Macrófagos , Neovascularização Fisiológica , Cicatrização , Cicatrização/efeitos dos fármacos , Quitosana/química , Animais , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Inflamação/patologia , Células Endoteliais da Veia Umbilical Humana , Colágeno/metabolismo , Colágeno/química , Diabetes Mellitus Experimental , Camundongos , Ratos , Masculino , Fibroínas/química , Fibroínas/farmacologia , Angiogênese
2.
Food Chem ; 449: 139216, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38604031

RESUMO

This study aimed to identify saltiness-enhancing peptides from yeast protein and elucidate their mechanisms by molecular docking. Yeast protein hydrolysates with optimal saltiness-enhancing effects were prepared under conditions determined using an orthogonal test. Ten saltiness-enhancing peptide candidates were screened using an integrated virtual screening strategy. Sensory evaluation demonstrated that these peptides exhibited diverse taste characteristics (detection thresholds: 0.13-0.50 mmol/L). Peptides NKF, LGLR, WDL, NMKF, FDSL and FDGK synergistically or additively enhanced the saltiness of a 0.30% NaCl solution. Molecular docking revealed that these peptides predominantly interacted with TMC4 by hydrogen bonding, with hydrophilic amino acids from both peptides and TMC4 playing a pivotal role in their binding. Furthermore, Leu217, Gln377, Glu378, Pro474 and Cys475 were postulated as the key binding sites of TMC4. These findings establish a robust theoretical foundation for salt reduction strategies in food and provide novel insights into the potential applications of yeast proteins.


Assuntos
Simulação de Acoplamento Molecular , Peptídeos , Paladar , Peptídeos/química , Peptídeos/metabolismo , Humanos , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Cloreto de Sódio/química
3.
Kidney Blood Press Res ; 49(1): 345-354, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38615671

RESUMO

INTRODUCTION: This study evaluated the phenotypic and pathology characteristics of patients undergoing kidney biopsy at a single center, while also determining the frequency and factors associated with clinical outcomes. METHODS: The incidence and distribution of biopsy-proven kidney diseases in 2000-2019 were surveyed. Consecutive individuals diagnosed with membranous nephropathy (MN), immunoglobulin A nephropathy (IgAN), and minimal change disease (MCD) between August 2015 and December 2019 were enrolled in the prospective 2-year follow-up study. Outcomes included remission of proteinuria and kidney disease progression events. Multivariable-adjusted Cox proportional hazards model was applied. RESULTS: 4,550 kidney biopsies were performed in 2000-2019, showing a noticeable increase in the proportion of MN. 426 patients were enrolled in the follow-up cohort. 346 (81.2%) achieved remission of proteinuria, 39 (9.2%) suffered kidney disease progression and 51.3% of them were diagnosed with IgAN. Kidney pathological diagnosis (MN vs. MCD: hazard ratio [HR], 0.42; 95% confidence interval [95% CI], 0.31-0.57; IgAN vs. MCD: 0.58; 0.39-0.85), levels of 24-h urine protein at biopsy (1.04; 1.00-1.08) and presence of nodular mesangial sclerosis (0.70; 0.49-0.99) were significantly correlated with remission of proteinuria after adjusting for baseline variables. 24-h urine protein levels at biopsy (1.14; 1.04-1.25) and the presence of crescents (2.30; 1.06-4.95) were the independent risk factors for kidney disease progression events after adjusting for baseline variables. CONCLUSION: The increasing frequency of MN has been affirmed over the past 2 decades. The therapeutic status, clinical outcomes, and factors influencing these outcomes were presented in this single-center study for the three primary glomerular diseases.


Assuntos
Progressão da Doença , Glomerulonefrite por IGA , Glomerulonefrite Membranosa , Rim , Nefrose Lipoide , Humanos , Glomerulonefrite Membranosa/patologia , Glomerulonefrite Membranosa/diagnóstico , Glomerulonefrite por IGA/patologia , Glomerulonefrite por IGA/diagnóstico , Nefrose Lipoide/patologia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Biópsia , Rim/patologia , Estudos Prospectivos , Seguimentos , Proteinúria/etiologia
4.
Bioorg Chem ; 146: 107278, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38484586

RESUMO

VEGFR, a receptor tyrosine kinase inhibitor (TKI), is an important regulatory factor that promotes angiogenesis and vascular permeability. It plays a significant role in processes such as tumor angiogenesis, tumor cell invasion, and metastasis. VEGFR is mainly composed of three subtypes: VEGFR-1, VEGFR-2, and VEGFR-3. Among them, VEGFR-2 is the crucial signaling receptor for VEGF, which is involved in various pathological and physiological functions. At present, VEGFR-2 is closely related to a variety of cancers, such as non-small cell lung cancer (NSCLC), Hepatocellular carcinoma, Renal cell carcinoma, breast cancer, gastric cancer, glioma, etc. Consequently, VEGFR-2 serves as a crucial target for various cancer treatments. An increasing number of VEGFR inhibitors have been discovered to treat cancer, and they have achieved tremendous success in the clinic. Nevertheless, VEGFR inhibitors often exhibit severe cytotoxicity, resistance, and limitations in indications, which weaken the clinical therapeutic effect. In recent years, many small molecule inhibitors targeting VEGFR have been identified with anti-drug resistance, lower cytotoxicity, and better affinity. Here, we provide an overview of the structure and physiological functions of VEGFR, as well as some VEGFR inhibitors currently in clinical use. Also, we summarize the in vivo and in vitro activities, selectivity, structure-activity relationship, and therapeutic or preventive use of VEGFR small molecule inhibitors reported in patents in the past three years (2021-2023), thereby presenting the prospects and insights for the future development of targeted VEGFR inhibitors.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Renais , Neoplasias Pulmonares , Humanos , Receptor 1 de Fatores de Crescimento do Endotélio Vascular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores da Angiogênese/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Neoplasias Renais/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/química
5.
Food Res Int ; 182: 114139, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38519171

RESUMO

The previously obtained chicken-derived umami peptides in the laboratory were evaluated for their saltiness-enhancing effect by sensory evaluation and S-curve, and the results revealed that peptides TPPKID, PKESEKPN, TEDWGR, LPLQDAH, NEFGYSNR, and LPLQD had significant saltiness-enhancing effects. In the binary solution system with salt, the ratio of the experimental detection threshold (129.17 mg/L) to the theoretical detection threshold (274.43 mg/L) of NEFGYSNR was 0.47, which had a synergistic saltiness-enhancing effect with salt. The model of transmembrane channel-like protein 4 (TMC4) channel protein was constructed by homology modeling, which had a 10-fold transmembrane structure and was well evaluated. Molecular docking and frontier molecular orbitals showed that the main active sites of TMC4 were Lys 471, Met 379, Cys 475, Gln 377, and Pro 380, and the main active sites of NEFGYSNR were Tyr, Ser and Asn. This study may provide a theoretical reference for low-sodium diets.


Assuntos
Galinhas , Peptídeos , Animais , Simulação de Acoplamento Molecular , Peptídeos/química , Proteínas , Cloreto de Sódio na Dieta
6.
Dermatol Surg ; 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38470987

RESUMO

BACKGROUND: Facial fold and groove formation is influenced by the ptosis of the superficial fat compartments in the mid-face region. OBJECTIVE: This study aimed to design a facial rejuvenation technique that targets sagging of the mid-face fat compartments and achieves a youthful facial configuration. MATERIALS AND METHODS: A total of 102 patients underwent suture net restoration. Each specific ptosis fat compartment was carefully lifted and held at the regional facial ligaments to effectively restore volume distribution. Patient outcomes were evaluated through preoperative and postoperative photography comparison, 3-D photographic analysis, and postoperative evaluations. RESULTS: Significant mid-cheek rejuvenation was observed. The procedure resulted in a remarkable, 10.89% increase in malar projection. The nasolabial fold improved by at least 1 grade in 61.43% of the patients and by at least 2 grades in 37.14%. A total of 87.65% of the patients expressed high satisfaction or satisfaction with the outcomes of the procedure. CONCLUSION: By specifically targeting the mid-face ptosis fat compartments, the technique demonstrated significant enhancements of both the nasolabial fold and the malar projection. The results indicate that this novel technique holds promise as an efficient approach for satisfactorily addressing facial aging concerns.

7.
Food Res Int ; 178: 113908, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38309861

RESUMO

Yeast extract (YE) is derived from the soluble component in yeast cells, which is rich in peptides and has been used as a sweet-enhancing agent. It has the potential to be utilized to produce natural sweet-flavored peptides or sweet-enhancing peptides. To study the synergistic effect and mechanism of sweetness-enhancing peptides derived from YE, ultrafiltration fraction with molecular weight less than 1 kDa was screened according to sensory analysis, which showed a synergistic sweetening effect in stevioside and mogroside solution. Twenty potential taste peptides were identified from the screened fractions, among which EV, AM, AVDNIPVGPN and VDNIPVGPN showed sweetness-enhancing effects on both stevioside and mogroside. The sweetener-receptor-peptide complex was constructed to investigate the interaction of stevioside and mogroside to taste receptor type 1 member 2 accompanied by these peptides. The results of the molecular docking indicated that new hydrophobic interactions (Leu 279, Pro 308, Val 309, etc.) and hydrogen bonds (Ser 40, Ala 43, Asp 278, etc.) were formed between sweeteners and active sites in the venus flytrap domain. In conclusion, the presence of sweetness-enhancing peptides from YE improved the binding stability of sweeteners and receptors by increasing the binding interaction, especially the hydrophobic interactions, which contribute to the synergistic effect of sweetness-enhancing peptides.


Assuntos
Diterpenos do Tipo Caurano , Glucosídeos , Edulcorantes , Simulação de Acoplamento Molecular , Edulcorantes/análise , Diterpenos do Tipo Caurano/análise , Peptídeos/farmacologia
8.
J Agric Food Chem ; 71(50): 19903-19919, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37955969

RESUMO

Ferritin, a distinctive iron-storage protein, possesses a unique cage-like nanoscale structure that enables it to encapsulate and deliver a wide range of biomolecules. Recent advances prove that ferritin can serve as an efficient 8 nm diameter carrier for various bioinorganic nutrients, such as minerals, bioactive polyphenols, and enzymes. This review offers a comprehensive summary of ferritin's structural features from different sources and emphasizes its functions in iron supplementation, calcium delivery, single- and coencapsulation of polyphenols, and enzyme package. Additionally, the influence of innovative food processing technologies, including manothermosonication, pulsed electric field, and atmospheric cold plasma, on the structure and function of ferritin are examined. Furthermore, the limitations and prospects of ferritin in food and nutritional applications are discussed. The exploration of ferritin as a multifunctional protein with the capacity to load various biomolecules is crucial to fully harnessing its potential in food applications.


Assuntos
Ferritinas , Ferro , Ferritinas/química , Ferro/metabolismo , Minerais/metabolismo , Polifenóis/química
9.
Cancer Med ; 12(21): 20626-20638, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37881109

RESUMO

BACKGROUND: Colorectal cancer (CRC) is one of the most common malignancies, and early detection plays a crucial role in enhancing curative outcomes. While colonoscopy is considered the gold standard for CRC diagnosis, noninvasive screening methods of DNA methylation biomarkers can improve the early detection of CRC and precancerous lesions. METHODS: Bioinformatics and machine learning methods were used to evaluate CRC-related genes within the TCGA database. By identifying the overlapped genes, potential biomarkers were selected for further validation. Methylation-specific PCR (MSP) was utilized to identify the associated genes as biomarkers. Subsequently, a real-time PCR assay for detecting the presence of neoplasia or cancer of the colon or rectum was established. This screening approach involved the recruitment of 978 participants from five cohorts. RESULTS: The genes with the highest specificity and sensitivity were Septin9, AXL4, and SDC2. A total of 940 participants were involved in the establishment of the final PCR system and the subsequent performance evaluation test. A multiplex TaqMan real-time PCR system has been illustrated to greatly enhance the ability to detect precancerous lesions and achieved an accuracy of 87.8% (95% CI 82.9-91.5), a sensitivity of 82.7% (95% CI 71.8-90.1), and a specificity of 90.1% (95% CI 84.3-93.9). Moreover, the detection rate of precancerous lesions of this assay reached 55.0% (95% CI 38.7-70.4). CONCLUSION: The combined detection of the methylation status of SEPT9, SDC2, and ALX4 in plasma holds the potential to further enhance the sensitivity of CRC detection.


Assuntos
Neoplasias Colorretais , Lesões Pré-Cancerosas , Humanos , Metilação de DNA , Biomarcadores Tumorais/genética , Sensibilidade e Especificidade , Neoplasias Colorretais/diagnóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Detecção Precoce de Câncer/métodos , Proteínas do Citoesqueleto/genética , Lesões Pré-Cancerosas/diagnóstico , Lesões Pré-Cancerosas/genética
10.
Food Res Int ; 172: 113142, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689906

RESUMO

Umami peptides have received extensive attention due to their ability to enhance flavors and provide nutritional benefits. The increasing demand for novel umami peptides and the vast number of peptides present in food call for more efficient methods to screen umami peptides, and further exploration is necessary. Therefore, the purpose of this study is to develop deep learning (DL) model to realize rapid screening of umami peptides. The Umami-BERT model was devised utilizing a novel two-stage training strategy with Bidirectional Encoder Representations from Transformers (BERT) and the inception network. In the pre-training stage, attention mechanisms were implemented on a large amount of bioactive peptides sequences to acquire high-dimensional generalized features. In the re-training stage, umami peptide prediction was carried out on UMP789 dataset, which is developed through the latest research. The model achieved the performance with an accuracy (ACC) of 93.23% and MCC of 0.78 on the balanced dataset, as well as an ACC of 95.00% and MCC of 0.85 on the unbalanced dataset. The results demonstrated that Umami-BERT could predict umami peptides directly from their amino acid sequences and exceeded the performance of other models. Furthermore, Umami-BERT enabled the analysis of attention pattern learned by Umami-BERT model. The amino acids Alanine (A), Cysteine (C), Aspartate (D), and Glutamicacid (E) were found to be the most significant contributors to umami peptides. Additionally, the patterns of summarized umami peptides involving A, C, D, and E were analyzed based on the learned attention weights. Consequently, Umami-BERT exhibited great potential in the large-scale screening of candidate peptides and offers novel insight for the further exploration of umami peptides.


Assuntos
Alanina , Peptídeos , Sequência de Aminoácidos , Aminoácidos , Cisteína
11.
Artigo em Inglês | MEDLINE | ID: mdl-37633008

RESUMO

Glycosylation is one of the most common post-translational modifications (PTMs). Protein glycosylation analysis is the bottleneck to deeply understand their functions. At present, the LC-MS analysis of glycosylated post-translational modification is mainly focused on the analysis of glycopeptides. However, the factors affecting the identification of glycopeptides were not fully elucidated. In the paper, we have carefully studied the factors, e.g., HILIC materials, search engines, protein amount, gradient duration, extraction solution, etc. According to the results, HILIC materials were the most important factors affecting the glycopeptides identification, and the amphoteric sulfoalkyl betaine stationary phase enriched glycopeptides 6-fold more compared to the amphiphilic ion-bonded fully porous spherical silica stationary phase. We explored the influence of the extraction solutions on glycan identification. Comparing sodium dodecyl sulfate (SDS) and urea (UA), the results showed that N-glycolylneuraminic acid (NeuGc) type of glycan content was found to be increased 1.4-fold in the SDS compared to UA. Besides, we explored the influence of the search engine on glycopeptide identification. Comparing pGlyco3.0 and MSFragger-Glyco, it was observed that pGlyco3.0 outperformed MSFragger-Glyco in identifying glycopeptides. Then, using our optimized method we found that there was a significant difference in the distribution of monosaccharide types in plasma and brain tissue, e.g., the content of NeuAc in brain was 5-fold higher than that in plasma. To importantly, two glycoproteins (Neurexin-2 and SUN domain-containing protein 2) were also found for the first time by our method. In summary, we have comprehensively studied the factors influencing glycopeptide identification than any previous research, and the optimized method could be widely used for identifying the glycoproteins or glycolpeptides biomarkers for disease detection and therapeutic targets.


Assuntos
Peróxido de Benzoíla , Glicopeptídeos , Espectrometria de Massas , Glicosilação , Betaína
12.
Mol Nutr Food Res ; 67(17): e2300012, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37452409

RESUMO

SCOPE: Excessive iron contributes to oxidative damage and cognitive decline in Alzheimer's disease. Sesamol, a compound in sesame oil that exhibits both anti-inflammatory and neuroprotective properties, is examined in this study for its ability to alleviate cognitive impairments in iron overload mice model. METHODS AND RESULTS: An iron overload model is established by intraperitoneally injecting dextran iron (250 mg kg-1 body weight) twice a week for 6 weeks, while sesamol (100 mg kg-1 body weight) is administered daily for the same length of time. The results demonstrate that sesamol protects spatial working memory and learning ability in iron overload mice, and inhibits neuronal loss and brain atrophy induced by iron overload. Moreover, sesamol significantly decreases interleukin-6 and malondialdehyde, and increases glutathione peroxidase 4 in the brains of iron overload mice. Additionally, sesamol maintains iron homeostasis in the brain by regulating the expressions of transferrin receptors, divalent metal transporter 1, and hepcidin, and reducing iron accumulation. Furthermore, sesamol suppresses disturbed systemic iron homeostasis and inflammation, particularly liver interleukin-6 expression. CONCLUSION: These findings suggest that sesamol may be effective in mitigating neuroinflammatory responses and cognitive impairments induced by iron overload, potentially through its involvement in mediating the liver-brain axis.


Assuntos
Disfunção Cognitiva , Sobrecarga de Ferro , Camundongos , Animais , Interleucina-6 , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/etiologia , Inflamação/tratamento farmacológico , Benzodioxóis/farmacologia , Sobrecarga de Ferro/complicações , Sobrecarga de Ferro/tratamento farmacológico , Peso Corporal , Ferro
13.
Cell Biosci ; 13(1): 120, 2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37386520

RESUMO

Immune checkpoint inhibitors (ICIs) targeting CTLA-4 and PD-1/PD-L1 to boost tumor-specific T lymphocyte immunity have opened up new avenues for the treatment of various histological types of malignancies, with the possibility of durable responses and improved survival. However, the development of acquired resistance to ICI therapy over time after an initial response remains a major obstacle in cancer therapeutics. The potential mechanisms of acquired resistance to ICI therapy are still ambiguous. In this review, we focused on the current understanding of the mechanisms of acquired resistance to ICIs, including the lack of neoantigens and effective antigen presentation, mutations of IFN-γ/JAK signaling, and activation of alternate inhibitory immune checkpoints, immunosuppressive tumor microenvironment, epigenetic modification, and dysbiosis of the gut microbiome. Further, based on these mechanisms, potential therapeutic strategies to reverse the resistance to ICIs, which could provide clinical benefits to cancer patients, are also briefly discussed.

14.
Food Chem ; 425: 136480, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37276669

RESUMO

Angiotensin-I-converting enzyme (ACE) inhibitory activity and salt-reduction properties of umami peptides identified in chicken soup were investigated. The ACE inhibition rate of TPLVDR (91.22%) and AEINKILGN (81.26%) was significantly higher than other umami peptides, and their semi-inhibitory concentration was 0.017 mM and 0.034 mM, respectively. After in vitro digestion, the inhibitory activity of AEINKILGN and TPLVDR decreased, but the original sequences were still detected. The docking results showed that AEINKILGN and TPLVDR mainly interacted with Zn2+ and key sites (His353, Lys511and Glu411) in the active pockets of ACE through hydrogen bonds, which was crucial to the ACE inhibitory activity. Based on response surface methodology and sensory analysis, saltiness and palatability models were established to investigate the salt-reduction effect. The optimal level of AEINKILGN was about 1.16 mg/mL in 0.44% salt solution. And the TPLVDR was applicable to the low salt solution (0.1-0.2%) at a concentration from 0.23 to 0.29 mg/mL.


Assuntos
Inibidores da Enzima Conversora de Angiotensina , Galinhas , Animais , Inibidores da Enzima Conversora de Angiotensina/química , Simulação de Acoplamento Molecular , Peptidil Dipeptidase A/química , Peptídeos/farmacologia , Peptídeos/química , Cloreto de Sódio na Dieta , Cloreto de Sódio
15.
J Agric Food Chem ; 71(20): 7803-7811, 2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37189274

RESUMO

Ultrafiltration combined with nanoliquid chromatography quadrupole time-of-flight mass spectrometry (nano-LC-QTOF-MS) and sensory evaluation was used to separate and identify umami peptides in chicken breast soup. Fifteen peptides with umami propensity scores of >588 were identified from the fraction (molecular weight ≤1 kDa) using nano-LC-QTOF-MS, and their concentrations ranged from 0.02 ± 0.01 to 6.94 ± 0.41 µg/L in chicken breast soup. AEEHVEAVN, PKESEKPN, VGNEFVTKG, GIQKELQF, FTERVQ, and AEINKILGN were considered as umami peptides according to sensory analysis results (detection threshold: 0.18-0.91 mmol/L). The measurement of point of subjective equality showed that these six umami peptides (2.00 g/L) were equivalent to 0.53-0.66 g/L of monosodium glutamate (MSG) in terms of umami intensity. Notably, the sensory evaluation results showed that the peptide of AEEHVEAVN significantly enhanced the umami intensity of the MSG solution and chicken soup models. The molecular docking results showed that the serine residues were the most frequently observed binding sites in T1R1/T1R3. The binding site Ser276 particularly contributed to the formation of the umami peptide-T1R1 complexes. The acidic glutamate residues observed in the umami peptides were also involved in their binding to the T1R1 and T1R3 subunits.


Assuntos
Glutamato de Sódio , Paladar , Animais , Simulação de Acoplamento Molecular , Glutamato de Sódio/metabolismo , Galinhas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Peptídeos/química
16.
Aging Dis ; 14(4): 1458-1471, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37163422

RESUMO

The accumulation and deposition of beta-amyloid (Aß) are key neuropathological hallmarks of Alzheimer's disease (AD). PARP16, a Poly(ADP-ribose) polymerase, is a known tail-anchored endoplasmic reticulum (ER) transmembrane protein that transduces ER stress during pathological processes. Here, we found that PARP16 was significantly increased in the hippocampi and cortices of APPswe/PS1dE9 (APP/PS1) mice and hippocampal neuronal HT22 cells exposed to Aß, suggesting a positive correlation between the progression of AD pathology and the overexpression of PARP16. To define the effect of PARP16 on AD progression, adeno-associated virus mediated-PARP16 knockdown was used in APP/PS1 mice to investigate the role of PARP16 in spatial memory, amyloid burden, and neuroinflammation. Knockdown of PARP16 partly attenuated impaired spatial memory, as indicated by the Morris water maze test, and decreased amyloid deposition, neuronal apoptosis, and the production of inflammatory cytokines in the brains of APP/PS1 mice. In vitro experiments demonstrated that the knockdown of PARP16 expression rescued neuronal damage and ER stress triggered by Aß. Furthermore, we discovered that intracellular PARP16 acts as an RNA-binding protein that regulates the mRNA stability of amyloid precursor protein (APP) and protects targeted APP from degradation, thereby increasing APP levels and AD pathology. Our findings revealed an unanticipated role of PARP16 in the pathogenesis of AD, and at least in part, its association with increased APP mRNA stability.

17.
PeerJ ; 11: e15064, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923499

RESUMO

Plant-growth promoting rhizobacteria (PGPR) play a vital role in soil fertility and crop production. The rhizosphere of many crop plants has been well documented by screening PGPR for their plant-growth promoting (PGP) mechanisms. However, the rhizosphere of grass species that may act as potential habitats for novel PGPR remains relatively unexplored. Ageratina adenophora is a noxious weed that has invaded more than 40 tropical and subtropical countries in Asia, Oceania, Africa, and Europe. Its presence has led to changes in plant species composition, reducing their biodiversity and destroying ecosystem function. In this study, we screened 1,200 bacterial strains isolated from the rhizosphere soil of A. adenophora in three floristic regions in Yunnan Province, China. Samples were screened for their in vitro ability for N-fixation, production of the plant growth regulator indole-3-acetic acid (IAA), and the synthesis of 1-amino-cyclopropane-1-carboxylate (ACC) deaminase, which controls the levels of ethylene in developing plant roots. We found that 144 strains showed at least one of these PGP attributes. 16S rRNA gene sequencing showed that most (62.5%) of the samples were bacteria closely related to members of the genera Pseudomonas (27 strains), Providencia (20 strains), Chryseobacterium (14 strains), Ensifer (12 strains), Enterobacter (nine strains), and Hafnia (eight strains). Their abundance and biodiversity in the soil of individual floristic regions correlate positively with the invasion history of A. adenophora. From these PGP bacterial strains, KM_A34 (Pantoea agglomerans), KM_C04 (Enterobacter asburiae), and KM_A57 (Pseudomonas putida), which had the greatest in vitro ability of N-fixation, and IAA and ACC deaminase production, respectively, were selected. The strains were evaluated for their effect on the seed germination and growth of soybean, faba bean, pea, wheat, and Chinese cabbage other than A. adenophora. Chamber experiments showed these strains significantly (P < 0.05) increased (14.2-43.4% over the controls) germination rates of the soybean, faba bean, pea, and/or Chinese cabbage seeds. They also reduced relative seed germination times (20.8-48.8% over the controls) of soy bean, faba bean and/or wheat seeds. Greenhouse pot experiments showed that they significantly (P < 0.05) promoted the aboveground and belowground height of plant foliage (12.1-23.1% and 11.5-31.4% over the controls, respectively) and/or the dry weights (16.1-33.5% and 10.6-23.4% over the controls, respectively) of the soy bean, faba bean, pea, wheat and/or Chinese cabbage. These data indicate that the rhizosphere microbiota of A. adenophora contain a PGPR pool that may be used as bioinoculants to improve the growth and productivity of these crops.


Assuntos
Ageratina , Rhizobiaceae , Plantas Daninhas , Rizosfera , Ecossistema , RNA Ribossômico 16S/genética , China , Solo
18.
Cells ; 12(5)2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36899887

RESUMO

Glaesserella parasuis (G. parasuis), an important pathogenic bacterium, cause Glässer's disease, and has resulted in tremendous economic losses to the global swine industry. G. parasuis infection causes typical acute systemic inflammation. However, the molecular details of how the host modulates the acute inflammatory response induced by G. parasuis are largely unknown. In this study, we found that G. parasuis LZ and LPS both enhanced the mortality of PAM cells, and at the same time, the level of ATP was enhanced. LPS treatment significantly increased the expressions of IL-1ß, P2X7R, NLRP3, NF-κB, p-NF-κB, and GSDMD, leading to pyroptosis. Furthermore, these proteins' expression was enhanced following extracellular ATP further stimulation. When reduced the production of P2X7R, NF-κB-NLRP3-GSDMS inflammasome signaling pathway was inhibited, and the mortality of cells was reduced. MCC950 treatment repressed the formation of inflammasome and reduced mortality. Further exploration found that the knockdown of TLR4 significantly reduced ATP content and cell mortality, and inhibited the expression of p-NF-κB and NLRP3. These findings suggested upregulation of TLR4-dependent ATP production is critical for G. parasuis LPS-mediated inflammation, provided new insights into the molecular pathways underlying the inflammatory response induced by G. parasuis, and offered a fresh perspective on therapeutic strategies.


Assuntos
Inflamassomos , NF-kappa B , Animais , Suínos , NF-kappa B/metabolismo , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptor 4 Toll-Like/metabolismo , Lipopolissacarídeos/farmacologia , Regulação para Cima , Inflamação , Trifosfato de Adenosina
19.
J Am Chem Soc ; 145(11): 6546-6553, 2023 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-36912863

RESUMO

Assembling nanoparticles (NPs) into well-defined superstructures can lead to emergent collective properties that depend on their 3-D structural arrangement. Peptide conjugate molecules designed to both bind to NP surfaces and direct NP assembly have proven useful for constructing NP superstructures, and atomic- and molecular-level alterations to these conjugates have been shown to manifest in observable changes to nanoscale structure and properties. The divalent peptide conjugate, C16-(PEPAu)2 (PEPAu = AYSSGAPPMPPF), directs the formation of one-dimensional helical Au NP superstructures. This study examines how variation of the ninth amino acid residue (M), which is known to be a key Au anchoring residue, affects the structure of the helical assemblies. A series of conjugates of differential Au binding affinities based on variation of the ninth residue were designed, and Replica Exchange with Solute Tempering (REST) Molecular Dynamics simulations of the peptides on an Au(111) surface were performed to determine the approximate surface contact and to assign a binding score for each new peptide. A helical structure transition from double helices to single helices is observed as the peptide binding affinity to the Au(111) surface decreases. Accompanying this distinct structural transition is the emergence of a plasmonic chiroptical signal. REST-MD simulations were also used to predict new peptide conjugate molecules that would preferentially direct the formation of single-helical AuNP superstructures. Significantly, these findings demonstrate how small modifications to peptide precursors can be leveraged to precisely direct inorganic NP structure and assembly at the nano- and microscale, further expanding and enriching the peptide-based molecular toolkit for controlling NP superstructure assembly and properties.


Assuntos
Ouro , Nanopartículas Metálicas , Ouro/química , Nanopartículas Metálicas/química , Peptídeos/química , Simulação de Dinâmica Molecular
20.
Foods ; 12(3)2023 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-36766202

RESUMO

A nontargeted fingerprinting approach combined with the chemometrics method and sensory analysis was used to assess the differences in taste-chemical compositions of chicken breast soup with different ages and their sensory qualities. The sensory evaluation results showed that the overall taste as well as the sourness, saltiness, and umami scores of the soup were increased with the age of chicken. Fifty-nine compounds were identified from four soup samples by liquid chromatography-tandem quadrupole time-of-flight mass spectrometry (LC-QTOF-MS/MS), and their total content was the highest in the 90 wk soup samples. Six upregulated compounds (carnosine, hypoxanthine, inosine, inosine 5'-monophosphate (5'-IMP), adenosine 5'-monophosphate (5'-AMP), and lactic acid) were identified as potential contributors to the taste characteristics of the 90 wk soup samples by orthogonal projections to latent structures-discriminant analysis (OPLS-DA). Additional experiments showed that 5'-AMP particularly contributed to the sourness of the soup, while carnosine contributed to the saltiness and umami of the soup.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA