Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(25): e2400546121, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38857407

RESUMO

Reduction of carbon dioxide (CO2) by renewable electricity to produce multicarbon chemicals, such as ethylene (C2H4), continues to be a challenge because of insufficient Faradaic efficiency, low production rates, and complex mechanistic pathways. Here, we report that the rate-determining steps (RDS) on common copper (Cu) surfaces diverge in CO2 electroreduction, leading to distinct catalytic performances. Through a combination of experimental and computational studies, we reveal that C─C bond-making is the RDS on Cu(100), whereas the protonation of *CO with adsorbed water becomes rate-limiting on Cu(111) with a higher energy barrier. On an oxide-derived Cu(100)-dominant Cu catalyst, we reach a high C2H4 Faradaic efficiency of 72%, partial current density of 359 mA cm-2, and long-term stability exceeding 100 h at 500 mA cm-2, greatly outperforming its Cu(111)-rich counterpart. We further demonstrate constant C2H4 selectivity of >60% over 70 h in a membrane electrode assembly electrolyzer with a full-cell energy efficiency of 23.4%.

2.
J Pediatr (Rio J) ; 100(6): 614-621, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38797509

RESUMO

OBJECTIVE: To assess the outcome of patients with cancer-related sepsis requiring continuous renal replacement therapy (CRRT) in a single-center pediatric intensive care unit (PICU). METHOD: Children with sepsis who necessitate CRRT from January 2017 to December 2021 were enrolled. The patients with leukemia/lymphoma or solid tumors were defined as underlying cancer. Multivariate logistic regression analysis was performed to identify the death risk factors in patients with cancer-related sepsis. RESULTS: A total of 146 patients were qualified for inclusion. Forty-six (31.5%) patients with cancer-related sepsis and 100 (68.5%) non-cancer-related sepsis. The overall PICU mortality was 28.1% (41/146), and mortality was significantly higher in cancer-related sepsis patients compared with non-cancer patients (41.3% vs. 22.0%, p = 0.016). Need mechanical ventilation, p-SOFA, acute liver failure, higher fluid overload at CRRT initiation, hypoalbuminemia, and high inotropic support were associated with PICU mortality in cancer-related sepsis patients. Moreover, levels of IL-6, total bilirubin, creatinine, blood urea nitrogen, and international normalized ratio were significantly higher in non-survivors than survivors. In multivariate logistic regression analysis, pediatric sequential organ failure assessment (p-SOFA) score (OR:1.805 [95%CI: 1.047-3.113]) and serum albumin level (OR: 0.758 [95%CI: 0.581 -0.988]) were death risk factors in cancer-related sepsis receiving CRRT, and the AUC of combined index of p-SOFA and albumin was 0.852 (95% CI: 0.730-0.974). CONCLUSION: The overall PICU mortality is high in cancer-related sepsis necessitating CRRT. Higher p-SOFA and lower albumin were independent risk factors for PICU mortality.


Assuntos
Terapia de Substituição Renal Contínua , Unidades de Terapia Intensiva Pediátrica , Neoplasias , Sepse , Humanos , Estudos Retrospectivos , Sepse/mortalidade , Sepse/complicações , Sepse/terapia , Masculino , Feminino , Neoplasias/mortalidade , Neoplasias/complicações , Neoplasias/terapia , Criança , Pré-Escolar , Fatores de Risco , Lactente , Mortalidade Hospitalar , Adolescente
3.
RSC Adv ; 13(36): 25369-25378, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37661955

RESUMO

Chinese herbal medicine and Chinese patent medicine have been widely applied for cancer care in China. Rupestonic acid, an active ingredient of Artemisia rupestris L., has recently been confirmed to have certain anti-tumor effects in vitro. In this study, we employed the application of a commonly devoted triphenylamine as a fluorophore and the addition of 2,4-thiazolidinedione as a bridge to integrate rupestonic acid into the AIE system to create an fluorescent probe with anti-tumor properties. The spectral, cytotoxic, and cellular imaging properties of the probe were measured. Its promising responses make possible the application of the probe in antitumor theragnostic systems.

4.
Clin Immunol ; 254: 109698, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37481013

RESUMO

Strengthened glycolysis is crucial for the macrophage pro-inflammatory response during sepsis. Activating transcription factor 4 (ATF4) plays an important role in regulating glucose and lipid metabolic homeostasis in hepatocytes and adipocytes. However, its immunometabolic role in macrophage during sepsis remains largely unknown. In the present study, we found that the expression of ATF4 in peripheral blood mononuclear cells (PBMCs) was increased and associated with glucose metabolism in septic patients. Atf4 knockdown specifically decreased LPS-induced spleen macrophages and serum pro-inflammatory cytokines levels in mice. Moreover, Atf4 knockdown partially blocked LPS-induced pro-inflammatory cytokines, lactate accumulation and glycolytic capacity in RAW264.7. Mechanically, ATF4 binds to the promoter region of hexokinase II (HK2), and interacts with hypoxia inducible factor-1α (HIF-1α) and stabilizes HIF-1α through ubiquitination modification in response to LPS. Furthermore, ATF4-HIF-1α-HK2-glycolysis axis launches pro-inflammatory response in macrophage depending on the activation of mammalian target of rapamycin (mTOR). Importantly, Atf4 overexpression improves the decreased level of pro-inflammatory cytokines and lactate secretion and HK2 expression in LPS-induced tolerant macrophages. In conclusion, we propose a novel function of ATF4 as a crucial glycolytic activator contributing to pro-inflammatory response and improving immune tolerant in macrophage involved in sepsis. So, ATF4 could be a potential new target for immunotherapy of sepsis.


Assuntos
Hexoquinase , Sepse , Animais , Camundongos , Fator 4 Ativador da Transcrição/metabolismo , Citocinas/metabolismo , Glicólise , Hexoquinase/genética , Hexoquinase/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Tolerância Imunológica , Ácido Láctico , Leucócitos Mononucleares/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , Mamíferos/metabolismo , Sepse/genética , Sepse/metabolismo , Ubiquitinação
5.
Adv Mater ; 35(35): e2301479, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37243974

RESUMO

Boron neutron capture therapy (BNCT) has emerged as a treatment modality with high precision and efficacy of intractable tumors. At the core of effective tumor BNCT are 10 B carriers with facile preparation as well as advantageous pharmacokinetic and therapeutic profiles. Herein, the design and preparation of sub-10 nm 10 B-enriched hexagonal boron nitride nanoparticles grafted with poly(glycerol) (h-10 BN-PG), and their application to cancer treatment by BNCT are reported. By virtue of their small particle size and outstanding stealth property, h-10 BN-PG nanoparticles accumulate efficiently in murine CT26 colon tumors with a high intratumor 10 B concentration of 8.8%ID g-1 or 102.1 µg g-1 at 12 h post-injection. Moreover, h-10 BN-PG nanoparticles penetrate into the inside of the tumor parenchyma and then are taken up by the tumor cells. BNCT comprising a single bolus injection of h-10 BN-PG nanoparticles and subsequent one-time neutron irradiation results in significant shrinkage of subcutaneous CT26 tumors. h-10 BN-PG-mediated BNCT not only causes direct DNA damage to the tumor cells, but also triggers pronounced inflammatory immune response in the tumor tissues, which contributes to long-lasting tumor suppression after the neutron irradiation. Thus, the h-10 BN-PG nanoparticles are promising BNCT agents to eradicate tumor through highly efficient 10 B accumulation.


Assuntos
Terapia por Captura de Nêutron de Boro , Nanopartículas , Camundongos , Animais , Glicerol , Terapia por Captura de Nêutron de Boro/métodos , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico
6.
ACS Sens ; 8(2): 748-756, 2023 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-36749024

RESUMO

For a long time, chemiresistive gas sensors based on metal oxide semiconductors (MOSs) suffer from higher operating temperatures, resulting in higher energy consumption and instability of the sensors. Generally, a MOS-based chemiresistive gas sensor being able to work at room temperature is considered to be outstanding already. Here, a highly sensitive NO2 gas sensor based on the carbon dots-WO3 heterostructure, which can work below room temperature at -6 °C, is fabricated. At 18, -1, and -6 °C, its detection limits are 200 ppb, 5 ppm, and 20 ppm, respectively, and the corresponding response values (Ra/Rg) are 1.11, 1.04, and 1.13, respectively. The sensor exhibits good selectivity, stability, and linearity between relative humidity and response values too. A peculiar response behavior was observed. Toward oxidizing gas NO2, the resistance of the sensor based mainly on n-type WO3 shows decrease behavior. Its peculiar response behavior and strong gas sensing ability at lower temperatures were elucidated theoretically using the results of first-principles calculations. The reduction of NO2 into NO by surface oxygen vacancies of WO3 and the following adsorption of NO on the surface of WO3 lead to electron transfer from NO to WO3, and the Fermi level shifts toward the conduction band, making the sensor exhibit the peculiar response behavior. The stronger adsorption capability of carbon dots toward NO2 and a synergistic effect of carbon dots and WO3 together make the sensor capable of working at lower temperatures and own higher sensitivity.


Assuntos
Carbono , Dióxido de Nitrogênio , Temperatura , Adsorção , Transporte de Elétrons
7.
Respir Res ; 24(1): 24, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36691012

RESUMO

BACKGROUND: Advanced glycation end product receptor (RAGE) acts as a receptor of pro-inflammatory ligands and is highly expressed in alveolar epithelial cells (AECs). Autophagy in AECs has received much attention recently. However, the roles of autophagy and RAGE in the pathogenesis of acute lung injury remain unclear. Therefore, this study aimed to explore whether RAGE activation signals take part in the dysfunction of alveolar epithelial barrier through autophagic death. METHODS: Acute lung injury animal models were established using C57BL/6 and Ager gene knockout (Ager -/- mice) mice in this study. A549 cells and primary type II alveolar epithelial (ATII) cells were treated with siRNA to reduce Ager gene expression. Autophagy was inhibited by 3-methyladenine (3-MA). Lung injury was assessed by histopathological examination. Cell viability was estimated by cell counting kit-8 (CCK-8) assay. The serum and bronchoalveolar lavage fluid (BALF) levels of interleukin (IL)-6, IL-8 and soluble RAGE (sRAGE) were evaluated by Enzyme-linked immunosorbent assay (ELISA). The involvement of RAGE signals, autophagy and apoptosis was assessed using western blots, immunohistochemistry, immunofluorescence, transmission electron microscopy and TUNEL test. RESULTS: The expression of RAGE was promoted by lipopolysaccharide (LPS), which was associated with activation of autophagy both in mice lung tissues and A549 cells as well as primary ATII cells. sRAGE in BALF was positively correlated with IL-6 and IL-8 levels. Compared with the wild-type mice, inflammation and apoptosis in lung tissues were alleviated in Ager-/- mice. Persistently activated autophagy contributed to cell apoptosis, whereas the inhibition of autophagy by 3-MA protected lungs from damage. In addition, Ager knockdown inhibited LPS-induced autophagy activation and attenuated lung injury. In vitro, knockdown of RAGE significantly suppressed the activation of LPS-induced autophagy and apoptosis of A549 and primary ATII cells. Furthermore, RAGE activated the downstream STAT3 signaling pathway. CONCLUSION: RAGE plays an essential role in the pathogenesis of ATII cells injury. Our results suggested that RAGE inhibition alleviated LPS-induced lung injury by directly suppressing autophagic apoptosis of alveolar epithelial cells.


Assuntos
Lesão Pulmonar Aguda , Células Epiteliais Alveolares , Animais , Camundongos , Células Epiteliais Alveolares/metabolismo , Lipopolissacarídeos/farmacologia , Receptor para Produtos Finais de Glicação Avançada , Interleucina-8/metabolismo , Camundongos Endogâmicos C57BL , Pulmão/metabolismo , Lesão Pulmonar Aguda/metabolismo , Apoptose , Interleucina-6/metabolismo
8.
Chin Med J (Engl) ; 135(21): 2585-2595, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36469355

RESUMO

BACKGROUND: Gut-resident macrophages (gMacs) supplemented by monocytes-to-gMacs differentiation play a critical role in maintaining intestinal homeostasis. Activating transcription factor 4 (ATF4) is involved in immune cell differentiation. We therefore set out to investigate the role of ATF4-regulated monocytes-to-gMacs differentiation in sepsis-induced intestinal injury. METHODS: Sepsis was induced in C57BL/6 wild type (WT) mice and Atf4- knockdown ( Atf4+/ - ) mice by cecal ligation and puncture or administration of lipopolysaccharide (LPS). Colon, peripheral blood mononuclear cells, sera, lung, liver, and mesenteric lymph nodes were collected for flow cytometry, hematoxylin and eosin staining, immunohistochemistry, quantitative reverse transcription polymerase chain reaction, and enzyme-linked immunosorbent assay, respectively. RESULTS: CD64, CD11b, Ly6C, major histocompatibility complex-II (MHC-II), CX3CR1, Ly6G, and SSC were identified as optimal primary markers for detecting the process of monocytes-to-gMacs differentiation in the colon of WT mice. Monocytes-to-gMacs differentiation was impaired in the colon during sepsis and was associated with decreased expression of ATF4 in P1 (Ly6C hi monocytes), the precursor cells of gMacs. Atf4 knockdown exacerbated the impairment of monocytes-to-gMacs differentiation in response to LPS, resulting in a significant reduction of gMacs in the colon. Furthermore, compared with WT mice, Atf4+/- mice exhibited higher pathology scores, increased expression of inflammatory factor genes ( TNF-α, IL-1ß ), suppressed expression of CD31 and vascular endothelial-cadherin in the colon, and increased translocation of intestinal bacteria to lymph nodes and lungs following exposure to LPS. However, the aggravation of sepsis-induced intestinal injury resulting from Atf4 knockdown was not caused by the enhanced inflammatory effect of Ly6C hi monocytes and gMacs. CONCLUSION: ATF4, as a novel regulator of monocytes-to-gMacs differentiation, plays a critical role in protecting mice against sepsis-induced intestinal injury, suggesting that ATF4 might be a potential therapeutic target for sepsis treatment.


Assuntos
Leucócitos Mononucleares , Sepse , Animais , Camundongos , Leucócitos Mononucleares/metabolismo , Fator 4 Ativador da Transcrição/genética , Fator 4 Ativador da Transcrição/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos Endogâmicos C57BL , Macrófagos/metabolismo , Diferenciação Celular
9.
Int J Neurosci ; : 1-8, 2022 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-36458565

RESUMO

BACKGROUND: Cyanidin has a protective effect on the nervous system and has been reported to treat tumor effectively. However, its impact on glioma stem cells (GSC) is unknown. METHODS: Using seven GSC lines, the anti-tumor effect of cyanidin is tested. The effect of cyanidin on the cell viability in each cell line is evaluated. Wnt signaling pathway-related genes are checked after treatment of cyanidin. Cytoplasmic/nuclear ß-catenin protein levels post cyanidin treatment is detected. Protein levels of c-Myc after cyanidin treatment are determined. Twist1 and Snail1 protein levels after cyanidin treatment are checked as well. RESULTS: Cyanidin significantly reduces the cell viability of all GSCs, and exhibited the most substantial effect in GBM2 but no apparent effect in 293T cells. It can regulate the Wnt signaling pathway of all GSC lines. In the GBM2, GBM7, G166, and G179 cell lines, there is upregulation of WNT1 and MYC genes, while in the G144 and GliNS2 cell line, these two genes are down-regulated after cyanidin treatment. Cytoplasmic and nuclear protein levels of ß-catenin in all cell lines are down-regulated. Cyanidin treatment significantly decreases the protein level for c-Myc in the GBM2 cell line compared with untreated cells, not in G144 or GliNS2 cells. Furthermore, cyanidin strongly reduces the expression of Twist1 and Snail1 in GBM2, G179, and G144 cell lines, while the GliNS2 cells show an opposite change in the cytoplasm and no change in nuclear. CONCLUSION: Cyanidin exerts an anti-tumor effect in glioma stem cell lines, probably through the Wnt signaling pathway.

10.
Biomaterials ; 290: 121833, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36201945

RESUMO

Photodynamic therapy (PDT) has recently emerged as a promising, targeted treatment modality for glioblastoma (GBM) which is the most vicious type of brain tumor. Successful GBM-PDT hinges upon light activation of a photosensitizer accumulated in the tumor. However, inadequate tumor accumulation of photosensitizer severely limits the success of PDT of GBM. To tackle this difficulty, we herein propose a drug delivery strategy of "platelets with photo-controlled release property". This strategy exploits platelets as carriers to deliver a photosensitizer which, in the current study, is a nano-composite (BNPD-Ce6) comprised of chlorine e6 (Ce6) loaded to boron nitride nanoparticles with a surface coating of polyglycerol and doxorubicin. To demonstrate the working mechanism and therapeutic advantage of this strategy, we loaded mouse platelets with BNPD-Ce6 to yield the nano-device BNPD-Ce6@Plt. In vitro experiments showed BNPD-Ce6@Plt to have a high loading capacity and efficiency. Laser irradiation (LI) at a wavelength of 808 nm induced ROS generation in BNPD-Ce6@Plt which displayed rapid activation, aggregation, and speedy discharge of BNPD-Ce6 into co-cultured GL261 mouse GBM cells which in turn, after LI, exhibited marked ROS generation, DNA damage, reduced viability, and cell death. In vivo animal experiments, mice that were intravenously injected with BNPD-Ce6@Plt exhibited rapid and extensive BNPD-Ce6 accumulation in both subcutaneous and intra-brain GL261 tumors shortly after LI of the tumors and the tumors displayed massive tissue necrosis after LI for a second time. Finally, a PDT regimen of two intravenous BNPD-Ce6@Plt injections each followed by multiple times of extracranial LI at the tumor site significantly inhibited the growth of intra-brain GL261 tumors and markedly increased the survival of the host animals. No apparent tissue damage was found in vital organs. Our findings make a compelling case for the notion that platelets are efficient carriers that can photo-controllably deliver nano-photosensitizers to achieve highly targeted and efficacious PDT of GBM. This work presents a novel approach to GBM-PDT with great translational potential.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Nanopartículas , Fotoquimioterapia , Porfirinas , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Preparações de Ação Retardada , Linhagem Celular Tumoral , Porfirinas/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Neoplasias Encefálicas/tratamento farmacológico
11.
Front Immunol ; 13: 990522, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263056

RESUMO

Background: Myeloid-derived suppressor cells (MDSCs) expansion is an important mechanism underlying immunosuppression during sepsis. Though continuous renal replacement therapy (CRRT) may attenuate hyperinflammatory response in sepsis, its role in regulating MDSCs is unknown. The aim of this study was to assess the potential role of CRRT involved in sepsis-induced MDSCs expansion in pediatric sepsis. Method: The proportion of polymorphonuclear MDSCs (PMN-MDSCs) was detected before CRRT (pre-CRRT), at 24 hours after CRRT (CRRT 1st day) and on the 7th day after CRRT (CRRT 7th day). The correlation analyses were performed to elucidate the relationship of MDSCs with clinical indexes in sepsis. Results: Totally 22 pediatric patients with sepsis were enrolled [median age 44 (IQR15, 83) months]. PMN-MDSCs were expanded in pediatric sepsis compared with healthy controls (4.30% vs. 0.37%, P=0.04). The proportion of PMN-MDSCs showed a decreased tendency on the CRRT 7th day compared with that on the CRRT 1st day in survivors (2.29% vs.5.32%, P = 0.088). There was no significant difference in the proportion of PMN-MDSCs between survivors and non-survivors before CRRT (4.51% vs. 3.33%, P=0.745). The levels of interleukin 6 (IL-6) was decreased on the CRRT 7th day compared with CRRT 1st day in survivors. In the subgroups of patients with significantly decreased IL-6 levels after CRRT, the proportion of PMN-MDSCs on the CRRT 7th day were also significantly decreased compared with that on the CRRT 1st day (2.21% vs. 6.67%, P = 0.033). Conclusion: The proportion of PMN-MDSCs was down-regulated on the CRRT 7th day in survivors with sepsis. The reduced PMN-MDSCs expansion may relate to decreased IL-6 level.


Assuntos
Terapia de Substituição Renal Contínua , Células Supressoras Mieloides , Sepse , Humanos , Criança , Adulto , Interleucina-6 , Sepse/terapia , Proliferação de Células
12.
Front Pediatr ; 10: 955317, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36160784

RESUMO

Objective: The cancer patients with severe acute respiratory distress syndrome (ARDS) benefit from extracorporeal membrane oxygenation (ECMO) remains unanswered. We analyzed clinical characteristics and outcomes of pediatric patients with leukemia/lymphoma who developed ARDS and treated with ECMO. Methods: Pediatric leukemia or lymphoma patients with ARDS who underwent ECMO between August 2017 and December 2021 were retrospectively analyzed in a tertiary pediatric intensive care unit (PICU). Results: Seven patients with median age 53 (IQR 42-117) months and 4 males were included. Six cases of leukemia [5 of acute lymphocytic leukemia (ALL) and 1 of acute myelogenous leukemia (AML, M5)] and 1 of non-Hodgkin lymphoma with severe ARDS received ECMO on chemotherapy period. The etiology of ARDS is community or chemotherapy-associated bacterial or/and fungal or viral infection. All the patients received chemotherapy in the 2 weeks prior to ECMO and five were neutropenic at initial ECMO. Six cases underwent veno-arterial ECMO (VA ECMO) and 1 for veno-venous ECMO (VV-ECMO). The median duration of ECMO support was 122 (IQR 56-166) hours. Overall, 42.9% (three of seven) survived to hospital discharge and 6 months survival rate was 28.6% (two of seven). Bleeding was the main ECMO-associated complication occurring in 7 patients, followed by nosocomial infection in 4 cases. All the patients required vasopressor support, and 6 received continuous renal replacement therapy (CRRT). Conclusion: Our experiences suggest that rescue ECMO provides a selective treatment strategy in childhood hematologic malignancies with severe ARDS.

13.
Colloids Surf B Biointerfaces ; 218: 112771, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36007316

RESUMO

Colloidal stability of nanomaterials in physiological media is an indispensable property for their biomedical applications. However, gadolinium borate (GdBO3) nanoparticles that hold promise as a theranostic agent for neutron capture therapy (NCT) and magnetic resonance imaging (MRI) of cancer tend to precipitate in phosphate buffered saline (PBS) owing to formation of insoluble gadolinium phosphate. To address this issue, in this work 10B-enriched GdBO3 nanoparticles were prepared and coated with mesoporous silica (mSiO2) of ~ 40 nm in thickness and subsequently grafted with hydrophilic polyglycerol (PG). The resulting GdBO3 @mSiO2-PG nanoparticles showed excellent colloidal stability in PBS due to the protection of the mSiO2 coating as well as superior dispersibility because of the high hydrophilicity of the PG layer. In vitro experiments revealed that GdBO3 @mSiO2-PG possessed low cytotoxicity and could be taken up by cancer cells in a concentration-dependent manner. In vivo studies indicated that GdBO3 @mSiO2-PG can circulate in mouse body for a considerably long time without obvious acute toxicity. In addition, GdBO3 @mSiO2-PG also showed promise as a T1-weighted MRI contrast agent with a proton longitudinal relaxivity of 0.67 mM-1 s-1. Our results indicate that GdBO3 @mSiO2-PG with enhanced colloidal stability in physiological media could serve as a promising multifunctional agent for cancer theranostics.


Assuntos
Nanopartículas , Terapia por Captura de Nêutron , Animais , Boratos , Linhagem Celular Tumoral , Meios de Contraste/farmacologia , Gadolínio , Glicerol , Imageamento por Ressonância Magnética/métodos , Camundongos , Fosfatos , Polímeros , Prótons , Dióxido de Silício
14.
ACS Sens ; 7(8): 2243-2252, 2022 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-35868028

RESUMO

Asthma is a chronic disease characterized by recurrent attacks of breathlessness and wheezing, which vary in severity and frequency from person to person. H2S is considered as the biomarker of asthma. Here, an ultrasensitive chemiresistive H2S gas sensor based on a γ-Bi2MoO6-CuO heterostructure with a detection limit of 5 ppb has been fabricated. It can distinguish asthmatic patients from healthy people roughly by analyzing the exhaled breaths of 28 asthmatic patients and 28 healthy people, suggesting that the sensor can be used to assist physicians in the diagnosis of asthma. Pathologically, it is discovered by this sensor that with the relief of asthma, the concentration of H2S in one's exhaled breath gradually increases. This subtle concentration variation of H2S can be accurately detected, indicating that this sensor can be used in the asthma severity monitoring too. Physical models have been built by first-principles calculation to reveal the causes of the sensor's ultrasensitivity. The stable adsorption of H2S on the surface of CuO results in massive charge transferring and the appearance of the defect states, which play the major role in the ultrasensitivity of the sensor. Upon integrating this sensor with circuits, the cheap, smart, and portable H2S sensing device can be obtained, which can make asthmatic patients' access to this device easy and make the severity monitoring of asthma convenient, especially for children and the aged.


Assuntos
Asma , Testes Respiratórios , Idoso , Asma/diagnóstico , Biomarcadores , Testes Respiratórios/métodos , Criança , Expiração , Humanos , Modelos Teóricos
15.
PLoS Pathog ; 18(4): e1010504, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35482828

RESUMO

RSK1, an essential cellular kinase for Kaposi's sarcoma-associated herpesvirus (KSHV) replication, is highly phosphorylated and SUMOylated during KSHV lytic cycle, which determine the substrate phosphorylation and specificity of RSK1, respectively. However, the SUMO E3 ligase responsible for attaching SUMO to RSK1 has not yet been identified. By genome-wide screening, we found that KSHV ORF45 is necessary and sufficient to enhance RSK1 SUMOylation. Mechanistically, KSHV ORF45 binds to SUMOs via two classic SUMO-interacting motifs (SIMs) and functions as a SIM-dependent SUMO E3 ligase for RSK1. Mutations on these ORF45 SIMs resulted in much lower lytic gene expressions, viral DNA replication, and mature progeny virus production. Interestingly, KSHV ORF45 controls RSK1 SUMOylation and phosphorylation via two separated functional regions: SIMs and amino acid 17-90, respectively, which do not affect each other. Similar to KSHV ORF45, ORF45 of Rhesus Macaque Rhadinovirus has only one SIM and also increases RSK1 SUMOylation in a SIM-dependent manner, while other ORF45 homologues do not have this function. Our work characterized ORF45 as a novel virus encoded SUMO E3 ligase, which is required for ORF45-RSK1 axis-mediated KSHV lytic gene expression.


Assuntos
Herpesvirus Humano 8 , Proteínas Imediatamente Precoces , Animais , Linhagem Celular , Replicação do DNA , DNA Viral , Herpesvirus Humano 8/genética , Herpesvirus Humano 8/metabolismo , Proteínas Imediatamente Precoces/genética , Proteínas Imediatamente Precoces/metabolismo , Macaca mulatta/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Replicação Viral
16.
BMC Pediatr ; 22(1): 138, 2022 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-35296267

RESUMO

BACKGROUND: To assess the outcome of extracorporeal membrane oxygenation (ECMO) for severe adenovirus (Adv) pneumonia with refractory hypoxic respiratory failure (RHRF) in paediatric patients. METHODS: A retrospective observational study was performed in a tertiary paediatric intensive care unit (PICU) in China. Patients with RHRF caused by Adv pneumonia who received ECMO support after mechanical ventilation failed to achieve adequate oxygenation between 2017 and 2020 were included. The outcome variables were the in-hospital survival rate and the effects of ECMO on the survival rate. RESULTS: In total, 18 children with RHRF received ECMO. The median age was 19 (9.5, 39.8) months, and the median ECMO duration was 196 (152, 309) h. The in-hospital survival rate was 72.2% (13/18). Thirteen patients (72.2%) required continuous renal replacement therapy (CRRT) due to fluid imbalance or acute kidney injury (AKI). At ECMO initiation, compared with survivors, nonsurvivors had a lower PaO2/FiO2 ratio [49 (34.5, 62) vs. 63 (56, 71); p = 0.04], higher oxygen index (OI) [41 (34.5, 62) vs. 30 (26.5, 35); p = 0.03], higher vasoactive inotropic score (VIS) [30 (16.3, 80) vs. 100 (60, 142.5); p = 0.04], longer duration from mechanical ventilation to ECMO support [8 (4, 14) vs. 4 (3, 5.5) h, p=0.02], and longer time from confirmed RHRF to ECMO initiation [9 (4.8, 13) vs. 5 (1.3, 5.5) h; p = 0.004]. Patients with PaO2/FiO2 <61 mmHg or an OI >43 and hypoxic respiratory failure for more than 9 days before the initiation of ECMO had worse outcomes. CONCLUSIONS: ECMO seemed to be effective, as severe paediatric Adv pneumonia patients with RHRF had a cumulative survival rate of 72.2% in our study. Our study provides insight into ECMO rescue in children with severe Adv pneumonia.


Assuntos
Infecções por Adenoviridae , Oxigenação por Membrana Extracorpórea , Pneumonia Viral , Insuficiência Respiratória , Adenoviridae , Adulto , Criança , China , Humanos , Hipóxia/etiologia , Hipóxia/terapia , Oxigênio , Pneumonia Viral/complicações , Pneumonia Viral/terapia , Insuficiência Respiratória/etiologia , Insuficiência Respiratória/terapia , Estudos Retrospectivos , Resultado do Tratamento , Adulto Jovem
17.
Ther Apher Dial ; 26(5): 1023-1029, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34877787

RESUMO

INTRODUCTION: Multiple organ dysfunction syndrome (MODS) with secondary hemophagocytic lymphohistiocytosis (SHLH) causes significant mortality. We aimed to identify the predictor factors for death in pediatric patients with SHLH-associated MODS receiving continuous renal replacement therapy (CRRT). METHODS: This multicentered nested case-control study was conducted from 2016 to 2020. The characteristics were compared between survivors and non-survivors. Logistic regression was applied to identify the risk factors for death. The cutoff values were assessed by receiver operating characteristics curves. RESULTS: Fifty two patients were enrolled in this study. Interleukin-6 level (p = 0.018) and the number of organ dysfunction (p = 0.047) were independent risk factors for death. The cutoff value of 13.12 pg/ml interleukin-6 and three organs dysfunction at CRRT initiation presented a high sensitivity and specificity. CONCLUSION: The number of organ dysfunction and interleukin-6 at CRRT initiation are independent risk factors for death in pediatric patients with SHLH-associated MODS.


Assuntos
Terapia de Substituição Renal Contínua , Linfo-Histiocitose Hemofagocítica , Estudos de Casos e Controles , Criança , Humanos , Interleucina-6 , Linfo-Histiocitose Hemofagocítica/complicações , Linfo-Histiocitose Hemofagocítica/terapia , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/terapia , Prognóstico , Estudos Prospectivos , Terapia de Substituição Renal/efeitos adversos , Estudos Retrospectivos
18.
Blood Purif ; 51(7): 600-607, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34488221

RESUMO

BACKGROUND: Extracorporeal therapy that included therapeutic plasma exchange (TPE) or continuous hemofiltration (CHF) for toxic epidermal necrolysis (TEN) syndrome was used in small number of patients. We aimed to describe the sequential mode of combined application of CHF and TPE in 3 TEN patients with multiple organ dysfunction (MODS) in pediatric intensive care unit. METHODS: Three patients with fatal TEN received sequential CHF and TPE due to unsatisfactorily conventional treatments. CHF was initiated and performed on a daily basis with 35-50 mL/kg.h replacement fluid at the rate of 3-5 mL/kg.min blood flow. CHF was temporarily interrupted for TPE, which was performed with exchange 1-1.5-fold of one body calculated plasma volume in each section. RESULTS: All 3 fatal TEN (with >30% involvement of body surface and MODS) following unsuccessful treatment with corticosteroids and intravenous immunoglobulin. Antibiotics were suspected in the TEN-triggered drugs. The range number of TPE sessions was 3-5 and the duration of CHF was from 120 h to 202 h. After initiation of TPE and CHF, blistering with extensive epidermal necrosis halted and the skin re-epithelialized within 2 weeks. Serum C-reactive protein, procalcitonin, tumor necrosis factor-α , and interlukin-6 decreased and percentage of natural killer cells increased in surviving children. Two patients survived to discharge and one case died due to nosocomial infection with multidrug-resistant Acinetobacter baumannii. CONCLUSION: After sequential TPE and CHF, skin lesions and inflammatory response improved in TEN. Our result indicates extracorporeal therapy could be used as an alternative modality for fatal pediatric TEN.


Assuntos
Síndrome de Stevens-Johnson , Criança , Humanos , Imunoglobulinas Intravenosas/uso terapêutico , Insuficiência de Múltiplos Órgãos/etiologia , Insuficiência de Múltiplos Órgãos/terapia , Troca Plasmática , Plasmaferese , Estudos Retrospectivos , Síndrome de Stevens-Johnson/tratamento farmacológico , Síndrome de Stevens-Johnson/patologia
19.
PLoS Pathog ; 17(12): e1010123, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34871326

RESUMO

RSK1, a downstream kinase of the MAPK pathway, has been shown to regulate multiple cellular processes and is essential for lytic replication of a variety of viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV). Besides phosphorylation, it is not known whether other post-translational modifications play an important role in regulating RSK1 function. We demonstrate that RSK1 undergoes robust SUMOylation during KSHV lytic replication at lysine residues K110, K335, and K421. SUMO modification does not alter RSK1 activation and kinase activity upon KSHV ORF45 co-expression, but affects RSK1 downstream substrate phosphorylation. Compared to wild-type RSK1, the overall phosphorylation level of RxRxxS*/T* motif is significantly declined in RSK1K110/335/421R expressing cells. Specifically, SUMOylation deficient RSK1 cannot efficiently phosphorylate eIF4B. Sequence analysis showed that eIF4B has one SUMO-interacting motif (SIM) between the amino acid position 166 and 170 (166IRVDV170), which mediates the association between eIF4B and RSK1 through SUMO-SIM interaction. These results indicate that SUMOylation regulates the phosphorylation of RSK1 downstream substrates, which is required for efficient KSHV lytic replication.


Assuntos
Herpesvirus Humano 8/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Sumoilação/fisiologia , Replicação Viral/fisiologia , Linhagem Celular , Humanos
20.
Zhonghua Wei Zhong Bing Ji Jiu Yi Xue ; 33(2): 150-154, 2021 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-33729131

RESUMO

OBJECTIVE: To investigate the effect and mechanism of 6-formylindolo[3,2-b]carbazole (FICZ) on lipopolysaccharide (LPS)-induced acute lung injury (ALI) in mice. METHODS: Male C57BL/6J mice aged 8-12 weeks were divided into 4 groups with 8 mice in each group, according to the method of simple random sampling. Sepsis-induced ALI mice model was established by intraperitoneal injection of LPS 5 mg/kg (LPS group), and phosphate buffer saline (PBS) control group (PBS group) was injected with equal volume of PBS. The LPS+FICZ group was intervened by intraperitoneal injection of 1 µg FICZ 1 hour after LPS stimuli, while the FICZ control group (FICZ group) was given the same amount of FICZ 1 hour after intraperitoneal injection of PBS. Serum and lung tissue were collected 24 hours after LPS stimuli, and the pathological changes of lung tissue were analyzed by hematoxylin-eosin (HE) staining and wet/dry weight (W/D) ratio of lung tissue. The concentrations of inflammatory factors in serum and lung tissue were detected by enzyme linked immunosorbent assay (ELISA). The expression levels of endoplasmic reticulum stress signaling pathway related molecules were detected by real-time fluorescent quantitative polymerase chain reaction (RT-qPCR) and Western blotting. RESULTS: Compared with PBS group, inflammatory cell infiltration, alveolar collapse and obvious alveolar exudative lesions had increased, lung tissue W/D ratio was significantly increased, serum interleukin-6 (IL-6) level, lung tissue IL-6 mRNA expression, and the mRNA expressions of glucose-regulated protein 78 (GRP78), protein kinase R-like endoplasmic reticulum kinase (PERK), CCAAT/EBP homologous protein (CHOP), and the protein expressions of GRP78, PERK, activating transcription factor 6 (ATF6), CHOP in lung tissue were significantly increased in LPS group. However, the indexes of FICZ group were not affected. Compared with LPS group, LPS+FICZ group had less inflammatory cell infiltration, relatively intact alveolar structure. Lung W/D weight ratio in LPS+FICZ group was significantly decreased (5.38±0.10 vs. 6.60±0.30, P < 0.01), so as serum IL-6 (ng/L: 15.55±3.77 vs. 32.22±3.84) and lung IL-6 mRNA expression (2-ΔΔCt: 0.79±0.21 vs. 6.89±0.92, both P < 0.01). The mRNA expressions of GRP78, PERK and CHOP were also significantly decreased [GRP78 mRNA (2-ΔΔCt): 1.90±0.16 vs. 7.55±1.29, PERK mRNA (2-ΔΔCt): 1.68±0.20 vs. 4.54±0.89, CHOP mRNA (2-ΔΔCt): 1.13±0.24 vs. 4.44±1.13, all P < 0.05], and the protein expressions of GRP78, PERK, ATF6 and CHOP were significantly decreased (GRP78/GAPDH: 0.59±0.02 vs. 0.77±0.01, PERK/GAPDH: 0.48±0.03 vs. 1.04±0.05, ATF6/GAPDH: 0.51±0.03 vs. 0.65±0.01, CHOP/GAPDH: 0.91±0.05 vs. 1.11±0.07, all P < 0.05). CONCLUSIONS: FICZ protects LPS-induced ALI possibly via suppressing endoplasmic reticulum stress and reducing IL-6 expression in blood and lung tissue.


Assuntos
Lesão Pulmonar Aguda , Lipopolissacarídeos , Lesão Pulmonar Aguda/induzido quimicamente , Lesão Pulmonar Aguda/tratamento farmacológico , Animais , Carbazóis/farmacologia , Chaperona BiP do Retículo Endoplasmático , Estresse do Retículo Endoplasmático , Lipopolissacarídeos/toxicidade , Pulmão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA