RESUMO
Introduction: Ionizing radiation has been widely used in industry, medicine, military and agriculture. Radiation-induced skin injury is a significant concern in the context of radiotherapy and accidental exposure to radiation. The molecular changes at the single-cell level and intercellular communications during radiation-induced skin injury are not well understood. Methods: This study aims to illustrate this information in a murine model and human skin samples from a radiation accident using single-cell RNA sequencing (scRNA-Seq). We further characterize the functional significance of key molecule, which may provide a potential therapeutic target. ScRNA-Seq was performed on skin samples from a nuclear accident patient and rats exposed to ionizing radiation. Bioinformatic tools were used to analyze the cellular heterogeneity and preferential mRNAs. Comparative analysis was performed to identify dysregulated pathways, regulators, and ligand-receptor interactions in fibroblasts. The function of key molecule was validated in skin cells and in three mouse models of radiation-induced skin injury. Results: 11 clusters in human skin and 13 clusters of cells in rat skin were depicted respectively. Exposure to ionizing radiation caused changes in the cellular population (upregulation of fibroblasts and endothelial cells, downregulation of keratinocytes). Fibroblasts and keratinocytes possessed the most interaction pairs with other cell lineages. Among the five DEGs common to human and rat skins, Nur77 was highly expressed in fibroblasts, which mediated radiosensitivity by cell apoptosis and modulated crosstalk between macrophages, keratinocytes and endothelial cells in radiation-induced skin injury. In animal models, Nur77 knock-out mice (Nur77 -/-) showed more severe injury after radiation exposure than wild-type counterparts in three models of radiation-induced skin injury with complex mechanisms. Conclusion: The study reveals a single-cell transcriptional framework during radiation-induced skin injury, which provides a useful resource to uncover key events in its progression. Nur77 is a novel target in radiation-induced skin injury, which provides a potential therapeutic strategy against this disease.
Assuntos
Queratinócitos , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares , RNA-Seq , Análise de Célula Única , Pele , Animais , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/genética , Membro 1 do Grupo A da Subfamília 4 de Receptores Nucleares/metabolismo , Humanos , Camundongos , Ratos , Pele/efeitos da radiação , Pele/patologia , Pele/metabolismo , Pele/lesões , Queratinócitos/efeitos da radiação , Queratinócitos/metabolismo , Fibroblastos/efeitos da radiação , Fibroblastos/metabolismo , Masculino , Camundongos Knockout , Radiação Ionizante , Lesões por Radiação/genética , Lesões por Radiação/patologia , Análise da Expressão Gênica de Célula ÚnicaRESUMO
BACKGROUND: Transmembrane protein 92 (TMEM92) has been implicated in the facilitation of tumor progression. Nevertheless, comprehensive analyses concerning the prognostic significance of TMEM92, as well as its role in immunological responses across diverse cancer types, remain to be elucidated. METHODS: In this study, data was sourced from a range of publicly accessible online platforms and databases, including TCGA, GTEx, UCSC Xena, CCLE, cBioPortal, HPA, TIMER2.0, GEPIA, CancerSEA, GDSC, exoRBase, and ImmuCellAI. We systematically analyzed the expression patterns of TMEM92 at both mRNA and protein levels across diverse human organs, tissues, extracellular vesicles (EVs), and cell lines associated with multiple cancer types. Subsequently, analyses were conducted to determine the relationship between TMEM92 and various parameters such as prognosis, DNA methylation, copy number variation (CNV), the tumor microenvironment (TME), immune cell infiltration, genes with immunological relevance, tumor mutational burden (TMB), microsatellite instability (MSI), mismatch repair (MMR), and half-maximal inhibitory concentration (IC50) values. RESULTS: In the present study, we observed a pronounced overexpression of TMEM92 across a majority of cancer types, which was concomitantly associated with a less favorable prognosis. A notable association emerged between TMEM92 expression and both DNA methylation and CNV. Furthermore, a pronounced relationship was discerned between TMEM92 expression, the TME, and the degree of immune cell infiltration. Intriguingly, while TMEM92 expression displayed a positive correlation with macrophage presence, it inversely correlated with the infiltration level of CD8 + T cells. Concurrently, significant associations were identified between TMEM92 and the major histocompatibility complex, TMB, MSI, and MMR. Results derived from Gene Set Enrichment Analysis and Gene Set Variation Analysis further substantiated the nexus of TMEM92 with both immune and metabolic pathways within the oncogenic context. CONCLUSIONS: These findings expanded the understanding of the roles of TMEM92 in tumorigenesis and progression and suggest that TMEM92 may have an immunoregulatory role in several malignancies.
Assuntos
Proteínas de Membrana , Neoplasias , Microambiente Tumoral , Humanos , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Variações do Número de Cópias de DNA , Metilação de DNA , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Regulação Neoplásica da Expressão Gênica , Linfócitos do Interstício Tumoral/imunologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Instabilidade de Microssatélites , Neoplasias/genética , Neoplasias/imunologia , Neoplasias/patologia , Neoplasias/metabolismo , Prognóstico , Microambiente Tumoral/imunologiaRESUMO
Nonalcoholic fatty liver disease (NAFLD) is the most prevalent type of chronic liver disease. However, the disease is underappreciated as a remarkable chronic disorder as there are rare managing strategies. Several studies have focused on determining NAFLD-caused hepatocyte death to elucidate the disease pathoetiology and suggest functional therapeutic and diagnostic options. Pyroptosis, ferroptosis, and necroptosis are the main subtypes of non-apoptotic regulated cell deaths (RCDs), each of which represents particular characteristics. Considering the complexity of the findings, the present study aimed to review these types of RCDs and their contribution to NAFLD progression, and subsequently discuss in detail the role of necroptosis in the pathoetiology, diagnosis, and treatment of the disease. The study revealed that necroptosis is involved in the occurrence of NAFLD and its progression towards steatohepatitis and cancer, hence it has potential in diagnostic and therapeutic approaches. Nevertheless, further studies are necessary.
Assuntos
Progressão da Doença , Necroptose , Hepatopatia Gordurosa não Alcoólica , Animais , Humanos , Ferroptose , Hepatócitos/patologia , Fígado/patologia , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Hepatopatia Gordurosa não Alcoólica/terapia , Hepatopatia Gordurosa não Alcoólica/diagnóstico , PiroptoseRESUMO
Synchronously improving the photothermal conversion efficiency and photodynamic activity of organic small molecule photosensitizers is crucial for their further wide application in cancer treatment. Recently, the emerging A-D-A photosensitizer-based phototherapy systems have attracted great interest due to their plentiful inherent merits. Herein, we propose a design strategy for A-D-A photosensitizers with synchronously enhanced photothermal conversion and reactive oxygen species (ROS) generation efficiencies. Side chain programming is carried out to design three A-D-A photosensitizers (IDT-H, IDT-Br, IDT-I) containing hexyl, bromohexyl, and iodohexyl side chains, respectively. Theoretical calculations confirm that a bulky iodine atom could weaken the intermolecular π-π stacking and enhance spin-orbit coupling constants of IDT-I. These molecular mechanisms enable IDT-I nanoparticles (NPs) to exhibit 2.4-fold and 1.7-fold higher ROS generation efficiency than that of IDT-H NPs and IDT-Br NPs, respectively, as well as the highest photothermal conversion efficiency. Both the experimental results in vitro and in vivo verify that IDT-I NPs are perfectly qualified for the mission of photothermal and photodynamic synergistic therapy. Therefore, in this contribution, we provide a promising perspective for the design of A-D-A photosensitizers with simultaneously improved photothermal and photodynamic therapy ability.
RESUMO
Radiation-induced intestinal damage (RIID) is a common side effect of radiotherapy in patients with abdominopelvic malignancies. Gap junctions are special structures consisting of connexins (Cxs). This study aimed to investigate the expression and role of connexins in RIID and underlying mechanism. In this study, a calcein-AM fluorescence probe was used to detect changes in gap junctional intercellular communication in intestinal epithelial IEC-6 cells. Our results show that gap junctional intercellular communication of IEC-6 cells was reduced at 6, 12, 24, and 48 h after irradiation, with the most pronounced effect at 24 h. Western blotting and immunofluorescence results showed that the expression of Cx43, but not other connexins, was reduced in irradiated intestinal epithelial cells. Silencing of Cx43 reduced gap junctional intercellular communication between irradiated intestinal epithelial cells with increased ROS and intracellular Ca2+ levels. Furthermore, knockdown of Cx43 reduced the number of clonal clusters, decreased cell proliferation with increased cytotoxicity and apoptosis. Western blotting results showed that silencing of Cx43 resulted in changed γ-H2AX and PI3K/AKT pathway proteins in irradiated intestinal epithelial cells. Administration of the PI3K/AKT pathway inhibitor LY294002 inhibited the radioprotective effects in Cx43-overexpressing intestinal epithelial cells. Our study demonstrated that Cx43 expression is decreased by ionizing radiation, which facilitates the radioprotection of intestinal epithelial cells.
Assuntos
Conexina 43 , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Cálcio/metabolismo , Conexinas/metabolismo , Conexinas/farmacologia , Transdução de Sinais , Junções Comunicantes , Comunicação CelularRESUMO
We summarize the copy number variations (CNVs) and phenotype spectrum of infantile epileptic spasms syndrome (IESS) in a Chinese cohort. The CNVs were identified by genomic copy number variation sequencing. The CNVs and clinical data were analyzed. 74 IESS children with CNVs were enrolled. 35 kinds of CNVs were identified. There were 11 deletions and 5 duplications not reported previously in IESS, including 2 CNVs not reported in epilepsy. 87.8% were de novo, 9.5% were inherited from mother and 2.7% from father. Mosaicism occurred in one patient with Xq21.31q25 duplication. 16.2% (12/74) were 1p36 deletion, and 20.3% (15/74) were 15q11-q13 duplication. The age of seizure onset ranged from 17 days to 24 months. Seizure types included epileptic spasms, focal seizures, tonic seizures, and myoclonic seizures. All patients displayed developmental delay. Additional features included craniofacial anomaly, microcephaly, congenital heart defects, and hemangioma. 29.7% of patients were seizure-free for more than 12 months, and 70.3% still had seizures after trying 2 or more anti-seizure medications. In conclusion, CNVs is a prominent etiology of IESS. 1p36 deletion and 15q duplication occurred most frequently. CNV detection should be performed in patients with IESS of unknown causes, especially in children with craniofacial anomalies and microcephaly.
Assuntos
Variações do Número de Cópias de DNA , Fenótipo , Espasmos Infantis , Humanos , Variações do Número de Cópias de DNA/genética , Espasmos Infantis/genética , Feminino , Masculino , Lactente , Duplicação Cromossômica/genética , Cromossomos Humanos Par 15/genética , Pré-Escolar , Recém-Nascido , Deleção Cromossômica , Mosaicismo , Aberrações Cromossômicas , Deficiência IntelectualRESUMO
BACKGROUND: Epigenetic alteration plays an essential role in the occurrence and development of extranodal natural killer/T cell lymphoma (ENKTL). Histone methyltransferase (HMT) KMT2D is an epigenetic regulator that plays different roles in different tumors, but its role and mechanism in ENKTL are still unclear. METHODS: We performed immunohistochemical staining of 112 ENKTL formalin-fixed paraffin-embedded (FFPE) samples. Then, we constructed KMT2D knockdown cell lines and conducted research on cell biological behavior. Finally, to further investigate KMT2D-mediated downstream genes, ChIP-seq and ChIP -qPCR was performed. RESULTS: The low expression of KMT2D was related to a decreased abundance in histone H3 lysine 4 mono- and trimethylation (H3K4me1/3). In KMT2D knockdown YT and NK-YS cells, cell proliferation was faster (P < 0.05), apoptosis was decreased (P < 0.05), the abundance of S phase cells was increased (P < 0.05), and the level of H3K4me1 was decreased. Notably, ChIP-seq revealed two crucial genes and pathways downregulated by KMT2D. CONCLUSIONS: KMT2D is a tumor suppressor gene that mediates H3K4me1 and influences ENKTL proliferation and apoptosis by regulating the cell cycle. Moreover, in ENKTL, serum- and glucocorticoid-inducible kinase-1 (SGK1) and suppressor of cytokine signaling-1 (SOCS1) are downstream genes of KMT2D.
Assuntos
Linfoma Extranodal de Células T-NK , Humanos , Histona Metiltransferases , Linfoma Extranodal de Células T-NK/patologia , Carcinogênese/genética , Proteína 1 Supressora da Sinalização de CitocinaRESUMO
Despite the intense progress of photodynamic and chemotherapy, however, they cannot prevent solid tumor invasion, metastasis, and relapse, along with inferior efficacy and severe side effects. The hypoxia-responsive nanoprodrugs integrating photodynamic functions are highly sought to address the above-mentioned problems and overcome the tumor hypoxia-reduced efficacy. Herein, a hypoxia-responsive tetrameric supramolecular polypeptide nanoprodrug (SPN-TAPP-PCB4) is constructed from the self-assembly of tetrameric porphyrin-central poly(l-lysine-azobenzene-chlorambucil) (TAPP-(PLL-Azo-CB)4) and an anionic water-soluble [2]biphenyl-extended-pillar[6]arene (AWBpP6) via the synergy of hydrophobic, π-π stacking, and host-guest interactions. Upon laser irradiation, the central TAPP can convert oxygen to generate single oxygen (1 O2 ) to kill tumor cells. Furthermore, under the acidic and PDT-aggravated hypoxia tumor cell microenvironment, SPN-TAPP-PCB4 is rapidly disassembled, and then efficiently releases activated CB through the hypoxic-responsive cleavage of azobenzene linkages. Both in vitro and in vivo biological studies showcase synergistic cancer-killing actions between photodynamic therapy (PDT) and chemotherapy (CT) with negligible toxicity. Consequently, this supramolecular polypeptide nanoprodrug offers an effective strategy to design a hypoxia-responsive nanoprodrug for a potential combo PDT-CT transition.
Assuntos
Hipóxia , Oxigênio , Humanos , Compostos Azo , PeptídeosRESUMO
OBJECTIVE: Radiogenic skin injury (RSI) is a common complication during cancer radiotherapy or accidental exposure to radiation. The aim of this study is to investigate the metabolism of bile acids (BAs) and their derivatives during RSI. METHODS: Rat skin tissues were irradiated by an X-ray linear accelerator. The quantification of BAs and their derivatives were performed by liquid chromatography-mass spectrometry (LC-MS)-based quantitative analysis. Key enzymes in BA biosynthesis were analyzed from single-cell RNA sequencing (scRNA-Seq) data of RSI in the human patient and animal models. The in vivo radioprotective effect of deoxycholic acid (DCA) was detected in irradiated SD rats. RESULTS: Twelve BA metabolites showed significant differences during the progression of RSI. Among them, the levels of cholic acid (CA), DCA, muricholic acid (MCA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), glycohyodeoxycholic acid (GHCA), 12-ketolithocholic acid (12-ketoLCA) and ursodeoxycholic acid (UDCA) were significantly elevated in irradiated skin, whereas lithocholic acid (LCA), tauro-ß-muricholic acid (Tß-MCA) and taurocholic acid (TCA) were significantly decreased. Additionally, the results of scRNA-Seq indicated that genes involved in 7a-hydroxylation process, the first step in BA synthesis, showed pronounced alterations in skin fibroblasts or keratinocytes. The alternative pathway of BA synthesis is more actively altered than the classical pathway after ionizing radiation. In the model of rat radiogenic skin damage, DCA promoted wound healing and attenuated epidermal hyperplasia. CONCLUSIONS: Ionizing radiation modulates the metabolism of BAs. DCA is a prospective therapeutic agent for the treatment of RSI.
Assuntos
Ácidos e Sais Biliares , Metabolismo dos Lipídeos , Humanos , Ratos , Animais , Ratos Sprague-Dawley , Ácido Desoxicólico/farmacologia , Radiação IonizanteRESUMO
Background: Tumor mutational burden (TMB) is a valuable prognostic biomarker. This study explored the predictive value of TMB and the potential association between TMB and immune infiltration in diffuse large B-cell lymphoma (DLBCL). Methods: We downloaded the gene expression profile, somatic mutation, and clinical data of DLBCL patients from The Cancer Genome Atlas (TCGA) database. We classified the samples into high-and low-TMB groups to identify differentially expressed genes (DEGs). Functional enrichment analyses were performed to determine the biological functions of the DEGs. We utilized the cell-type identification by estimating relative subsets of RNA transcripts (CIBERSORT) algorithm to estimate the abundance of 22 immune cells, and the significant difference was determined by the Wilcoxon rank-sum test between the high- and low-TMB group. Hub gene had been screened as the prognostic TMB-related immune biomarker by the combination of the Immunology Database and Analysis Portal (ImmPort) database and the univariate Cox analysis from the Gene Expression Omnibus (GEO) database including six DLBCL datasets. Various database applications such as Tumor Immune Estimation Resource (TIMER), CellMiner, konckTF, and Genotype-Tissue Expression (GTEx) verified the functions of the target gene. Wet assay confirmed the target gene expression at RNA and protein levels in DLBCL tissue and cell samples. Results: Single nucleotide polymorphism (SNP) occurred more frequently than insertion and deletion, and C > T was the most common single nucleotide variant (SNV) in DLBCL. Survival analysis showed that the high-TMB group conferred poor survival outcomes. A total of 62 DEGs were obtained, and 13 TMB-related immune genes were identified. Univariate Cox analysis results illustrated that CD1c mutation was associated with lower TMB and manifested a satisfactory clinical prognosis by analysis of large samples from the GEO database. In addition, infiltration levels of immune cells in the high-TMB group were lower. Using the TIMER database, we systematically analyzed that the expression of CD1c was positively correlated with B cells, neutrophils, and dendritic cells and negatively correlated with CD8+ T cells, CD4+ T cells, and macrophages. Drug sensitivity showed a significant positive correlation between CD1c expression level and clinical drug sensitivity from the CellMiner database. CREB1, AHR, and TOX were used to comprehensively explore the regulation of CD1c-related transcription factors and signaling pathways by the KnockTF database. We searched the GETx database to compare the mRNA expression levels of CD1c between DLBCL and normal tissues, and the results suggested a significant difference between them. Moreover, wet experiments were conducted to verify the high expression of CD1c in DLBCL at the RNA and protein levels. Conclusions: Higher TMB correlated with poor survival outcomes and inhibited the immune infiltrates in DLBCL. Our results suggest that CD1c is a TMB-related prognostic biomarker.
Assuntos
Linfoma Difuso de Grandes Células B , Humanos , Algoritmos , Linfócitos B , Biomarcadores , Linfoma Difuso de Grandes Células B/genética , RNARESUMO
Esophageal cancer (EC) is a deadly malignancy. Small extracellular vesicles (sEVs) with programmed death ligand 1 (sEV-PDL1) induce immune escape to promote tumor progression. Furthermore, the imbalance between circulating follicular helper T (Tfh) and circulating follicular regulatory T (Tfr) cells is related to the progression of many malignant tumors. However, the role of the EC-derived sEV-PDL1 in circulating Tfh/Tfr is unknown. Circulating Tfh and Tfr cells were detected by flow cytometry. sEVs were isolated through differential centrifugation and cultured for cell expansion assays. Naïve CD4+ T cells were isolated, stimulated, and cultured with sEVs to evaluate the frequencies, phenotypes, and functions of Tfh and Tfr cells. The proportion of circulating Tfh in patients with EC was lower than that in healthy donors (HDs), whereas that of circulating Tfr was higher. The EC group showed significantly lower circulating Tfh/Tfr and a higher level of sEV-PDL1 than HDs. Notably, sEV-PDL1 was negatively correlated with circulating Tfh/Tfr in the EC group. In vitro assays, sEV-PDL1 inhibited Tfh expansion, enhanced the cytotoxic T lymphocyte-associated antigen 4+ (CTLA4+) Tfh cell percentage, decreased the levels of interleukin (IL)-21 and interferon-γ, and increased IL-10. sEV-PDL1 promoted the expansion and immunosuppressive functions of circulating Tfr; the increased percentages of CTLA4+ Tfr and inducible T cell co-stimulator+ Tfr were accompanied with high IL-10. However, applying an anti-PDL1 antibody significantly reversed this. Our results suggest a novel mechanism of sEV-PDL1-mediated immunosuppression in EC. Inhibiting sEV-PDL1 to restore circulating Tfh/Tfr balance provides a novel therapeutic approach for EC.
Assuntos
Neoplasias Esofágicas , Vesículas Extracelulares , Humanos , Linfócitos T Auxiliares-Indutores , Células T Auxiliares Foliculares , Interleucina-10 , Antígeno CTLA-4 , Antígeno B7-H1 , Linfócitos T Reguladores , Terapia de ImunossupressãoRESUMO
Radiotherapy (RT) has been the standard of care for treating a multitude of cancer types. Radiation-induced gastric injury (RIGI) is a common complication of RT for thoracic and abdominal tumors. It manifests acutely as radiation gastritis or gastric ulcers, and chronically as chronic atrophic gastritis or intestinal metaplasia. In recent years, studies have shown that intracellular signals such as oxidative stress response, p38/MAPK pathway and transforming growth factor-ß signaling pathway are involved in the progression of RIGI. This review also summarized the risk factors, diagnosis and treatment of this disease. However, the root of therapeutic challenges lies in the incomplete understanding of the mechanisms. Here, we also highlight the potential mechanistic, diagnostic and therapeutic directions of RIGI.
Assuntos
Gastrite Atrófica , Neoplasias Gástricas , Úlcera Gástrica , Humanos , Gastrite Atrófica/complicações , Gastrite Atrófica/patologia , Fatores de Risco , Estresse Oxidativo , Neoplasias Gástricas/radioterapia , Neoplasias Gástricas/patologiaRESUMO
Lipid droplets (LDs) is a newly essential organelle, which participates in carious physiological and pathological processes. LDs are considered as potential markers for disease diagnosis. Specific imaging of LDs is useful to understand their basic biological function and to diagnose diseases. Here we designed and synthesized two fluorescent probes based on the low polarity and high viscosity in LDs. The terminal probe ZH-2 exhibits lipophilicity, NIR emission, viscosity sensitivity, and LDs specificity. The probe has been successfully used for visualizing LDs metabolism, discriminating between normal and cancerous cells, and diagnosing fatty liver disease.
Assuntos
Neoplasias , Hepatopatia Gordurosa não Alcoólica , Humanos , Corantes Fluorescentes , Gotículas Lipídicas , Metabolismo dos LipídeosRESUMO
Extranodal natural killer/T-cell lymphoma (ENKTL) with hepatosplenic involvement is rare, accounting for approximately 0.2% of ENKTL cases. The clinicopathologic features of ENKTL with hepatosplenic involvement are still poorly understood. Seven cases of ENKTL with hepatosplenic involvement were investigated retrospectively by clinical features, pathology, immunophenotype, genotype, Epstein-Barr virus (EBV) status, and survival analysis. The median age was 36 years; three patients (3/7) had a history of primary nasal ENKTL. Six cases (6/7) presented liver or spleen structures that were replaced by neoplasms, and the neoplastic cells displayed diffuse infiltration; one case (1/7) displayed neoplastic cells scattered in hepatic sinuses and portal areas. The cellular morphology and immunohistochemical features were similar to those of ENKTL involving other sites. Follow-up data were available in five of the seven patients. All five patients received first-line chemotherapy based on L-asparaginase. Three patients died, and two were still alive by the last follow-up. The median overall survival (OS) was 21 months. ENKTL with hepatosplenic involvement is rare, regardless of whether it is initial or secondary. There are two histopathologic patterns of ENKTL with hepatosplenic involvement, and L-asparaginase-based chemotherapy combined with AHSCT might yield good efficacy. Morphological features of ENKTL in the spleen and liver A The architecture of the spleen was affected, and dense infiltration of the neoplastic cells was observed in the left part; B Focal infiltration of the neoplastic cells was located in the red pulp; C Dense infiltration of the neoplastic cells in the liver, accompanied by fatty change of hepatocytes and congestion; D More neoplastic cells accumulated in sinusoidal region.
Assuntos
Infecções por Vírus Epstein-Barr , Linfoma Extranodal de Células T-NK , Humanos , Adulto , Estudos Retrospectivos , Infecções por Vírus Epstein-Barr/complicações , Linfoma Extranodal de Células T-NK/patologia , Asparaginase , Herpesvirus Humano 4 , Células Matadoras Naturais/patologiaRESUMO
Radiation-induced esophageal injury (RIEI) is an adverse reaction of radiation therapy in patients with esophageal cancer, lung cancer and other malignant tumors. Competitive endogenous RNA (ceRNA) network is known to play a significant role in the onset and progression of many diseases, but the exact mechanism of ceRNA in RIEI has not been fully elucidated. In this study, rat esophaguses were obtained after conducting irradiation under different doses (0 Gy, 25 Gy, 35 Gy). Total RNA was extracted and mRNA, lncRNA, circRNA, and miRNA sequencing was performed. Multiple dose-dependent differentially expressed RNAs (dd-DERs), including 870 lncRNAs, 82 miRNAs, 2478 mRNAs, were obtained through the integration of differential expression analysis and dose-dependent screening (35 Gy ≥ 25 Gy > 0 Gy, or 35 Gy ≤ 25 Gy < 0 Gy). Co-expression analysis and prediction of the binding site in dd-DER were conducted and 27 lncRNAs, 20 miRNAs, and 168 mRNAs were selected to construct a ceRNA network. As the immune microenvironment is crucial for RIEI progression, we constructed an immune-related ceRNA network consisting of 11 lncRNAs, 9 miRNAs, and 9 mRNAs. The expression levels of these immune-related RNAs were verified by RT-qPCR. Immune infiltration analysis showed that the RNAs in the immune-related ceRNA network were mainly associated with the proportion of monocytes, M2 macrophages, activated NK cells, and activated CD4+ memory T cells. Drug sensitivity analysis was conducted based on the expression levels of mRNAs in the immune-related ceRNA network, and small molecule drugs with preventive and therapeutic effects on RIEI were identified. In summary, an immune-related ceRNA network associated with RIEI progression was constructed in this study. The findings provide useful information on new potential targets for the prevention and treatment of RIEI.
Assuntos
Neoplasias Esofágicas , MicroRNAs , RNA Longo não Codificante , Ratos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Circular , Redes Reguladoras de Genes , Microambiente TumoralRESUMO
Prostate cancer (PC) is a malignancy with high morbidity and mortality. Bone metastasis is the main driver of short survival time and difficulties in the treatment and prevention of PC. The goal of this study was to explore the biological function of E3 ubiquitin ligase F-box only protein 22 (FBXO22) in PC metastasis and its specific regulation mechanism. According to transcriptome sequencing, FBXO22 was overexpressed in PC tissues (versus adjacent tissues) and bone tissues (versus biopsied bone tissues without bone metastases). Fbxo22 down-regulation reduced bone metastases and macrophage M2 polarization in mice. FBXO22 was down-regulated in macrophages, and polarization was observed by flow cytometry. Macrophages were co-cultured with PC cells and osteoblasts to assess PC cell and osteoblast activity. FBXO22 knockdown restored osteoblast capacity. FBXO22 ubiquitinated and degraded Krüppel-like factor 4 (KLF4), which regulated the nerve growth factor (NGF)/tropomyosin receptor kinase A pathway by repressing NGF transcription. Silencing of KLF4 mitigated the metastasis-suppressing properties of FBXO22 knockdown, whereas NGF reversed the metastasis-suppressing properties of KLF4 in vitro and in vivo. Cumulatively, these data indicate that FBXO22 promotes PC cell activity and osteogenic lesions by stimulating macrophage M2 polarization. It also degrades KLF4 in macrophages and promotes NGF transcription, thereby activating the NGF/tropomyosin receptor kinase A pathway.
Assuntos
Neoplasias Ósseas , Proteínas F-Box , Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Fator de Crescimento Neural/metabolismo , Tropomiosina/metabolismo , Proteínas F-Box/genética , Proteínas F-Box/metabolismo , Neoplasias da Próstata/genética , Transdução de Sinais , Receptores Citoplasmáticos e NuclearesRESUMO
OBJECTIVES: To summarize the clinical features of epilepsy related to DEPDC5, NPRL2, and NPRL3 genes encoding the GATOR1 complex in children and to evaluate the factors affecting the prognosis of these epilepsies. METHODS: In this retrospective study, we reviewed the clinical and genetic characteristics of children with epilepsy related to GATOR1 variants who were admitted to the Peking University First Hospital between January 2016 and December 2021. Potential prognostic factors were assessed by comparing children with and without ongoing seizures. RESULTS: Fifty probands, including 31 boys and 19 girls were recruited. The median age at onset of epilepsy was 4 months, and 64% of patients had early-onset epilepsy (≤1 year). The most frequent epileptic seizure type was focal seizure (86%). Among the 50 patients, only six were with de novo variants. According to the novel classification framework for GATOR1 variants, 36 patients were with pathogenic variants and 14 with likely pathogenic variants. DEPDC5 variants were found in 37 patients, NPRL3 in 9, and NPRL2 in 4. The phenotype was similar among the probands, with variants in DEPDC5, NRPL2, or NPRL3. 76% (38/50) of epilepsy related to GATOR1 variants was neuroimaging positive, including brain MRI positive in 31 patients, and MRI combined F-18-fluorodeoxyglucose positron emission tomography positive in the other seven patients. Twenty-seven patients underwent epilepsy surgery. In total, after initial antiseizure medications alone, 92% (46/50) of patients were drug-resistant epilepsies, only 8% (4/50) of the probands became seizure-free but seizure-free (≥6 m) occurred in 92.6% (25/27) of patients with drug-resistant epilepsy after epilepsy surgery at the last follow-up. Patients undergoing epilepsy surgery had better epilepsy prognosis. SIGNIFICANCE: Epilepsy related to GATOR1 variants had high possibility to be drug-resistant epilepsy and to have positive neuroimaging finding. Epilepsy surgery is the only favorable factor for better seizure prognosis in this kind epilepsy.
Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Estudos Retrospectivos , Mutação , Proteínas Supressoras de Tumor/genética , Epilepsia/genética , Epilepsia/cirurgia , Convulsões/genética , Convulsões/cirurgia , Proteínas Ativadoras de GTPase/genética , Epilepsia Resistente a Medicamentos/genética , Epilepsia Resistente a Medicamentos/cirurgiaRESUMO
Chronic inflammation, through a variety of mechanisms, plays a key role in the occurrence and development of digestive system malignant tumors (DSMTs). In this study, we feature and provide a comprehensive understanding of DSMT prevention strategies based on preventing or controlling chronic inflammation. The development and evaluation of cancer prevention strategies is a longstanding process. Cancer prevention, especially in the early stage of life, should be emphasized throughout the whole life course. Issues such as the time interval for colon cancer screening, the development of direct-acting antiviral drugs for liver cancer, and the Helicobacter pylori vaccine all need to be explored in long-term, large-scale experiments in the future.
RESUMO
Down syndrome (DS) is the most common autosomal aneuploidy caused by trisomy of chromosome 21. Previous studies demonstrated that DS affected mitochondrial functions, which may be associated with the abnormal development of the nervous system in patients with DS. Runt-related transcription factor 1 (RUNX1) is an encoding gene located on chromosome 21. It has been reported that RUNX1 may affect cell apoptosis via the mitochondrial pathway. The present study investigated whether RUNX1 plays a critical role in mitochondrial dysfunction in DS and explored the mechanism by which RUNX1 affects mitochondrial functions. Expression of RUNX1 was detected in induced pluripotent stem cells of patients with DS (DS-iPSCs) and normal iPSCs (N-iPSCs), and the mitochondrial functions were investigated in the current study. Subsequently, RUNX1 was overexpressed in N-iPSCs and inhibited in DS-iPSCs. The mitochondrial functions were investigated thoroughly, including reactive oxygen species levels, mitochondrial membrane potential, ATP content and lysosomal activity. Finally, RNA-sequencing was used to explore the global expression pattern. It was observed that the expression levels of RUNX1 in DS-iPSCs were significantly higher than those in normal controls. Impaired mitochondrial functions were observed in DS-iPSCs. Of note, overexpression of RUNX1 in N-iPSCs resulted in mitochondrial dysfunction, while inhibition of RUNX1 expression could improve the mitochondrial function in DS-iPSCs. Global gene expression analysis indicated that overexpression of RUNX1 may promote the induction of apoptosis in DS-iPSCs by activating the PI3K/Akt signaling pathway. The present findings indicate that abnormal expression of RUNX1 may play a critical role in mitochondrial dysfunction in DS-iPSCs.
Assuntos
Síndrome de Down , Células-Tronco Pluripotentes Induzidas , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Fosfatidilinositol 3-Quinases/metabolismo , Síndrome de Down/metabolismo , Diferenciação Celular/genética , Regulação para Cima , Mitocôndrias/metabolismoRESUMO
AIMS: Diabetic peripheral neuropathy (DPN) is a common diabetic complication. Aberrant mitochondrial function causes neurodegeneration under hyperglycemia-induced metabolic stress, which in turn results in DPN progression. m6A and m6A reader (YTHDC2) are closely related to diabetes and diabetes complications, while the role of YTHDC2 in regulating mitochondrial metabolism in DPN needs to be further probed. METHODS: For HG treatment, Schwann cells (RSC96) were subjected to D-glucose for 72 h. db/db mice were used as the diabetic mouse model. Me-RIP assay was performed to evaluate KDM5B m6A level. RNA degradation assay was conducted to examine KDM5B mRNA stability. In addition, OCR and ECAR were examined by XF96 Analyzer. Moreover, the content of ATP and PDH activity in RSC96 cells were detected using kits, and the level of ROS was detected using MitoSOX staining. RIP, RNA pull-down and dual-luciferase reporter gene assays were carried out to verify the binding relationships between YTHDC2, KDM5B and SIRT3. RESULTS: We first observed that KDM5B expression and KDM5B mRNA stabilization were significantly increased in DPN. The m6A reader YTHDC2 was lowly expressed in DPN. Meanwhile, YTHDC2 over expression decreased KDM5B mRNA stability in an m6A-dependent manner. Our results also revealed that YTHDC2 overexpression resulted in reduced ROS level and increased ATP level, PDH activity, OCR and ECAR in HG-treated Schwann cells, while these effects were reversed by KDM5B overexpression. Additionally, SIRT3 served as the target of YTHDC2/KDM5B axis in regulating mitochondrial metabolism in DPN. CONCLUSIONS: Taken together, YTHDC2 promoted SIRT3 expression by reducing the stabilization of KDM5B to improve mitochondrial metabolic reprogramming in DPN.