Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 13: 1043968, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36544765

RESUMO

Background: To explore the diagnostic performance of interleukin (IL)-6 and IL-10 in discriminating Gram bacteria types and predicting disease severity in intensive care unit (ICU)-hospitalized pediatric sepsis patients. Method: We retrospectively collected Th1/Th2 cytokine profiles of 146 microbiologically documented sepsis patients. Patients were categorized into Gram-positive (G+) or Gram-negative (G-) sepsis groups, and cytokine levels were compared. Subgroup analysis was designed to eliminate the influence of other inflammatory responses on cytokine levels. Results: After propensity score matching, 78 patients were matched and categorized according to Gram bacteria types. Compared with G+ sepsis, IL-6 and IL-10 were significantly elevated in G- sepsis (p < 0.05). Spearman test proved the linear correlation between IL-6 and IL-10 (r = 0.654, p < 0.001), and their combination indicators (ratio and differences) were effective in identifying G- sepsis. In the subgroup analysis, such cytokine elevation was significant regardless of primary infection site. However, for patients with progressively deteriorating organ function [new or progressive multiple organ dysfunction syndrome (NPMODS)], differences in IL-6 and IL-10 levels were less significant between G+ and G- sepsis. In the receiver operating characteristic (ROC) curves of the G- sepsis group, the area under the curve (AUC) value for IL-6 and IL-10 was 0.679 (95% CI 0.561-0.798) and 0.637 (95% CI 0.512-0.762), respectively. The optimal cutoff value for diagnosing G- sepsis was 76.77 pg/ml and 18.90 pg/ml, respectively. While for the NPMODS group, the AUC for IL-6 and IL-10 was 0.834 (95% CI 0.766-0.902) and 0.781 (95% CI 0.701-0.860), respectively. Conclusion: IL-6 and IL-10 are comparably effective in discriminating G+/G- sepsis in pediatric intensive care unit (PICU) patients. The deteriorated organ function observed in ICU patients reveals that complex inflammatory responses might have contributed to the cytokine pattern observed in severe sepsis patients, therefore confounding the discriminating efficacy of Th1/Th2 cytokines in predicting Gram bacteria types.


Assuntos
Interleucina-6 , Sepse , Humanos , Criança , Interleucina-10 , Estudos Retrospectivos , Testes de Diagnóstico Rápido , Sepse/diagnóstico , Citocinas , Unidades de Terapia Intensiva , Bactérias Gram-Negativas , Insuficiência de Múltiplos Órgãos , Gravidade do Paciente
2.
Front Oncol ; 10: 538779, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33194600

RESUMO

BACKGROUND: Asparaginase-associated pancreatitis (AAP) is one of the most common complications occurring in patients with asparaginase-treated acute lymphoblastic leukemia (ALL). Peg-asparaginase (peg-asp), a chemically recombined asparaginase with lower hyposensitivity and better patient tolerance, is now approved as the first line asparaginase formulation in ALL chemotherapy regimens. Due to the differences in pharmacokinetic characteristics and administration procedure between l-asp and peg-asp, this study aimed to investigate the clinical manifestations of peg-asp-associated pancreatitis. METHOD: Patients with peg-asp-associated pancreatitis diagnosed within a 5-year period (July 2014 to July 2019) were identified and retrospectively studied. The clinical manifestations, laboratory findings, and imaging results of patients with AAP were analyzed. AAP patients were further classified into mild/moderate and severe groups based on criteria used in previous studies. Clinical outcomes were compared between groups. RESULTS: A total of 38 patients were enrolled in this study. The underlying disease included ALL (n=35) and lymphoma (n=3). The majority of patients developed AAP during the first phase, called remission induction (n=26, 68.4%), after a median of 2 peg-asp doses (range: 1-11). The DVLP regimen (n=23) is the most common peg-asp regimen used in AAP patients. Abdominal pain occurred after a median of 14.5 days (range: 1-50) from the last peg-asp administration, accompanied by abdominal distension (n=14), nausea (n=17), vomiting (n=21), and fever (n=19). Serum amylase elevation was reported in all AAP patients, of whom 65.8% (n=25) exhibited an elevation in the level of this enzyme three times the upper normal level, fulfilling the Atlanta criteria. The level of serum lipase (median days of elevation=23 days, range: 4-75) was significantly elevated compared with that of serum amylase (median days of elevation=9 days, range: 2-71) and persisted at a markedly high level after the level of serum amylase returned to normal. Common local complications included abdominal ascites (n=10) and peripancreatic fluid collection (n=8). Approximately 42.1% (n=16) of patients with severe AAP experienced systemic complications (septic shock or hypovolemic shock) or severe local complications (pseudocyst), among whom 5 failed to recover. Approximately 84.8% (n=28/33) of the remaining patients resumed chemotherapy; among them, peg-asp formulation in 30.3% (n=10/33) of these patients was adjusted, while asparaginase treatment in 39.4% (n=13/33) was permanently discontinued. Five patients experienced an AAP relapse in later stages of asparaginase treatment. Comparison between mild/moderate and severe AAP patients showed a statistically significant difference in the number of pediatric intensive care unit stays (p=0.047), survival rate (p=0.009), AAP prognosis (p=0.047), and impacts on chemotherapy (p=0.024), revealing a better clinical outcome in mild/moderate AAP patients. CONCLUSION: Early recognition and management of AAP is essential in reversing the severity of AAP. The existing AAP criteria had a low strength in determining the severity of pediatric AAP. A well-defined AAP definition could help distinguish patients with high anticipated risk for redeveloping AAP and ALL relapse, in order to prevent unnecessary withdrawal of asparaginase. Our study could serve as a basis for conducting future large cohort studies and for establishing an accurate definition of pediatric AAP.

3.
Cell Rep ; 29(6): 1539-1554.e7, 2019 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-31693894

RESUMO

Age-related loss of skeletal muscle innervation by motor neurons leads to impaired neuromuscular function and is a well-established clinical phenomenon. However, the underlying pathogenesis remains unclear. Studying mice, we find that the number of motor units (MUs) can be maintained by counteracting neurotoxic microglia in the aged spinal cord. We observe that marked innervation changes, detected by motor unit number estimation (MUNE), occur prior to loss of muscle function in aged mice. This coincides with gene expression changes indicative of neuronal remodeling and microglial activation in aged spinal cord. Voluntary exercise prevents loss of MUs and reverses microglia activation. Depleting microglia by CSF1R inhibition also prevents the age-related decline in MUNE and neuromuscular junction disruption, implying a causal link. Our results suggest that age-related changes in spinal cord microglia contribute to neuromuscular decline in aged mice and demonstrate that removal of aged neurotoxic microglia can prevent or reverse MU loss.


Assuntos
Envelhecimento/metabolismo , Microglia/metabolismo , Neurônios Motores/metabolismo , Condicionamento Físico Animal/fisiologia , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/antagonistas & inibidores , Envelhecimento/patologia , Animais , Linhagem Celular , Bases de Dados Genéticas , Humanos , Células-Tronco Pluripotentes Induzidas , Macrófagos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/enzimologia , Microglia/fisiologia , Neurônios Motores/citologia , Neurônios Motores/patologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatologia , Junção Neuromuscular/metabolismo , Plasticidade Neuronal/genética , RNA-Seq , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/genética , Receptores de Fator Estimulador das Colônias de Granulócitos e Macrófagos/metabolismo , Medula Espinal/enzimologia , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
4.
J Biol Chem ; 293(30): 11837-11849, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-29899111

RESUMO

Facioscapulohumeral muscular dystrophy (FSHD) is among the most prevalent of the adult-onset muscular dystrophies. FSHD causes a loss of muscle mass and function, resulting in severe debilitation and reduction in quality of life. Currently, only the symptoms of FSHD can be treated, and such treatments have minimal benefit. The available options are not curative, and none of the treatments address the underlying cause of FSHD. The genetic, epigenetic, and molecular mechanisms triggering FSHD are now quite well-understood, and it has been shown that expression of the transcriptional regulator double homeobox 4 (DUX4) is necessary for disease onset and is largely thought to be the causative factor in FSHD. Therefore, we sought to identify compounds suppressing DUX4 expression in a phenotypic screen using FSHD patient-derived muscle cells, a zinc finger and SCAN domain-containing 4 (ZSCAN4)-based reporter gene assay for measuring DUX4 activity, and ∼3,000 small molecules. This effort identified molecules that reduce DUX4 gene expression and hence DUX4 activity. Among those, ß2-adrenergic receptor agonists and phosphodiesterase inhibitors, both leading to increased cellular cAMP, effectively decreased DUX4 expression by >75% in cells from individuals with FSHD. Of note, we found that cAMP production reduces DUX4 expression through a protein kinase A-dependent mode of action in FSHD patient myotubes. These findings increase our understanding of how DUX4 expression is regulated in FSHD and point to potential areas of therapeutic intervention.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação para Baixo , Ativação Enzimática , Proteínas de Homeodomínio/genética , Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Facioescapuloumeral/genética , Agonistas Adrenérgicos beta/farmacologia , Células Cultivadas , AMP Cíclico/metabolismo , Regulação para Baixo/efeitos dos fármacos , Descoberta de Drogas , Ativação Enzimática/efeitos dos fármacos , Humanos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Distrofia Muscular Facioescapuloumeral/tratamento farmacológico , Distrofia Muscular Facioescapuloumeral/metabolismo
5.
Blood Adv ; 1(25): 2361-2374, 2017 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-29296886

RESUMO

Despite recent advances in treatment, human precursor B-cell acute lymphoblastic leukemia (B-ALL) remains a challenging clinical entity. Recent genome-wide studies have uncovered frequent genetic alterations involving RAS pathway mutations and loss of the INK4A/ARF locus, suggesting their important role in the pathogenesis, relapse, and chemotherapy resistance of B-ALL. To better understand the oncogenic mechanisms by which these alterations might promote B-ALL and to develop an in vivo preclinical model of relapsed B-ALL, we engineered mouse strains with induced somatic KrasG12D pathway activation and/or loss of Ink4a/Arf during early stages of B-cell development. Although constitutive activation of KrasG12D in B cells induced prominent transcriptional changes that resulted in enhanced proliferation, it was not sufficient by itself to induce development of a high-grade leukemia/lymphoma. Instead, in 40% of mice, these engineered mutations promoted development of a clonal low-grade lymphoproliferative disorder resembling human extranodal marginal-zone lymphoma of mucosa-associated lymphoid tissue or lymphoplasmacytic lymphoma. Interestingly, loss of the Ink4a/Arf locus, apart from reducing the number of apoptotic B cells broadly attenuated KrasG12D-induced transcriptional signatures. However, combined Kras activation and Ink4a/Arf inactivation cooperated functionally to induce a fully penetrant, highly aggressive B-ALL phenotype resembling high-risk subtypes of human B-ALL such as BCR-ABL and CRFL2-rearranged. Ninety percent of examined murine B-ALL tumors showed loss of the wild-type Ink4a/Arf locus without acquisition of highly recurrent cooperating events, underscoring the role of Ink4a/Arf in restraining Kras-driven oncogenesis in the lymphoid compartment. These data highlight the importance of functional cooperation between mutated Kras and Ink4a/Arf loss on B-ALL.

6.
Dev Cell ; 34(2): 181-91, 2015 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-26143994

RESUMO

Increasing evidence suggests that long non-coding RNAs (LncRNAs) represent a new class of regulators of stem cells. However, the roles of LncRNAs in stem cell maintenance and myogenesis remain largely unexamined. For this study, hundreds of intergenic LncRNAs were identified that are expressed in myoblasts and regulated during differentiation. One of these LncRNAs, termed LncMyoD, is encoded next to the Myod gene and is directly activated by MyoD during myoblast differentiation. Knockdown of LncMyoD strongly inhibits terminal muscle differentiation, largely due to a failure to exit the cell cycle. LncMyoD directly binds to IGF2-mRNA-binding protein 2 (IMP2) and negatively regulates IMP2-mediated translation of proliferation genes such as N-Ras and c-Myc. While the RNA sequence of LncMyoD is not well conserved between human and mouse, its locus, gene structure, and function are preserved. The MyoD-LncMyoD-IMP2 pathway elucidates a mechanism as to how MyoD blocks proliferation to create a permissive state for differentiation.


Assuntos
Desenvolvimento Muscular/genética , Proteína MyoD/genética , Mioblastos/citologia , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Animais , Diferenciação Celular/genética , Linhagem Celular , Proliferação de Células/genética , Proteína HMGA2/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Monoméricas de Ligação ao GTP/biossíntese , Músculo Esquelético/embriologia , Músculo Esquelético/crescimento & desenvolvimento , Proteínas Proto-Oncogênicas c-myc/biossíntese , Interferência de RNA , RNA Interferente Pequeno
7.
Cancer Res ; 73(10): 3041-50, 2013 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-23536553

RESUMO

Embryonic rhabdomyosarcoma (ERMS) is the most common soft-tissue tumor in children. Here, we report the identification of the minor groove DNA-binding factor high mobility group AT-hook 2 (HMGA2) as a driver of ERMS development. HMGA2 was highly expressed in normal myoblasts and ERMS cells, where its expression was essential to maintain cell proliferation, survival in vitro, and tumor outgrowth in vivo. Mechanistic investigations revealed that upregulation of the insulin-like growth factor (IGF) mRNA-binding protein IGF2BP2 was critical for HMGA2 action. In particular, IGF2BP2 was essential for mRNA and protein stability of NRAS, a frequently mutated gene in ERMS. shRNA-mediated attenuation of NRAS or pharmacologic inhibition of the MAP-ERK kinase (MEK)/extracellular signal-regulated kinase (ERK) effector pathway showed that NRAS and NRAS-mediated signaling was required for tumor maintenance. Taken together, these findings implicate the HMGA2-IGFBP2-NRAS signaling pathway as a critical oncogenic driver in ERMS.


Assuntos
GTP Fosfo-Hidrolases/fisiologia , Proteína HMGA2/fisiologia , Proteínas de Membrana/fisiologia , Proteínas de Ligação a RNA/fisiologia , Rabdomiossarcoma Embrionário/etiologia , Animais , Linhagem Celular Tumoral , Proliferação de Células , Sobrevivência Celular , Humanos , Camundongos , Mioblastos/química , Rabdomiossarcoma Embrionário/patologia , Transdução de Sinais
8.
Dev Cell ; 23(6): 1176-88, 2012 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-23177649

RESUMO

A group of genes that are highly and specifically expressed in proliferating skeletal myoblasts during myogenesis was identified. Expression of one of these genes, Hmga2, increases coincident with satellite cell activation, and later its expression significantly declines correlating with fusion of myoblasts into myotubes. Hmga2 knockout mice exhibit impaired muscle development and reduced myoblast proliferation, while overexpression of HMGA2 promotes myoblast growth. This perturbation in proliferation can be explained by the finding that HMGA2 directly regulates the RNA-binding protein IGF2BP2. Add-back of IGF2BP2 rescues the phenotype. IGF2BP2 in turn binds to and controls the translation of a set of mRNAs, including c-myc, Sp1, and Igf1r. These data demonstrate that the HMGA2-IGF2BP2 axis functions as a key regulator of satellite cell activation and therefore skeletal muscle development.


Assuntos
Proteína HMGA2/metabolismo , Desenvolvimento Muscular , Músculo Esquelético/citologia , Mioblastos/citologia , Mioblastos/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Regulação para Baixo , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mioblastos/fisiologia , Biossíntese de Proteínas , Proteínas Proto-Oncogênicas c-myc/biossíntese , Receptor IGF Tipo 1/biossíntese , Células Satélites de Músculo Esquelético/metabolismo , Fator de Transcrição Sp1/biossíntese
9.
Zhonghua Xue Ye Xue Za Zhi ; 33(11): 932-7, 2012 Nov.
Artigo em Chinês | MEDLINE | ID: mdl-23363751

RESUMO

OBJECTIVE: To investigate the influence of autophagy on the survival and proliferation of multiple myeloma (MM) cells. METHODS: Multiple myeloma (MM) cell line U266 cell autophagy was induced by serum-free culture condition, and adding rapamycin or 3-MA respectively. The cells proliferation was observed. U266 cells, lymphoma cell Jurket under normal culture condition, and serum-free cultured Jurket cell were used as control group. The proliferation and apoptosis of cells were determined by CCK8 and flow cytometry, respectively. MDC staining were employed to detect the autophagy. The mRNA expression of Mtor and Beclin1 gene of U266 cells were assayed by RT-PCR. Protein LC3I/LCII and LAMP1 was analyzed by western blot. RESULTS: There was low level of autophagy in U266 cells, sera starvation increased the level of autophagy. Rapamycin upregulated autophagy of the U266 cells and stimulated their proliferation. But the autophagy level of sera starvation and rapamycin group declined when culture for 96h.3-MA had the same effects on U266 cells, although it was on 24 h. But rapamycin and 3-MA could inhibit cell proliferation under normal culture condition. Compared with normal culture condition, apoptosis of U266 cells increased significantly after 24h incubation in medium without sera \[(1.33 ± 0.09)% and (17.90 ± 1.46)%, respectively\] (P < 0.01). Rapamycin and 3-MA could inhibit the serum-free induced apoptosis \[(6.23 ± 0.12)% and (6.97 ± 0.03)%, respectively\](P < 0.01), but cell apoptosis was at the same level after 72 hour incubation \[(30.37 ± 0.27)%, (30.13 ± 1.93)% and (28.57 ± 2.83)%, respectively\] (P > 0.05). However, apoptosis of U266 cells decreased to 18.7% and 12.6% after removal of rapamycin and 3-MA. CONCLUSION: There is basically level of autophagy in MM cells which is higher than those in the Jurkat cells. Both Rapamycin and 3-MA can inhibit the cells proliferation under normal culture condition. Up-regulated autophagy promotes survival and proliferation of MM cells under sera deletion. Rapamycin strengthens this effect with limited duration. 3-MA has dual effects on cell autophagy.


Assuntos
Autofagia , Proliferação de Células , Mieloma Múltiplo/metabolismo , Mieloma Múltiplo/patologia , Adenina/análogos & derivados , Adenina/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular Tumoral , Citometria de Fluxo , Humanos , Sirolimo/farmacologia
10.
Blood ; 2010 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-20962322

RESUMO

Multiple myeloma is characterized by frequent chromosomal alterations. Deletion of chr 13, especially band 13q14, is commonly observed in early stages of MM, suggesting the presence of tumor suppressor genes within this region. Here, we functionally validate the role of the microRNAs-15a/16-1 cluster, centered at the deleted region, as TSGs and delineate their downstream target genes in MM. Using "sponge" lentiviral vectors to competitive stably inhibit mature microRNAs in vitro and in vivo, we have documented enhanced proliferative and invasive capacity of cells with stably inhibition of miR-16. Importantly, miR-16 inhibition decreased animal survival in a xenograft model of MM by increasing tumor load and host angiogenesis. Expression profiling analysis of miR-16-deficient cells identified a large number of downstream target genes including FGFR1, PI3KCa, MDM4, VEGFa, as well as secondary affected genes such as JUN and Jag1. We validated designated genes showing binding sites within the conserved 3'-UTR and also within the mRNA coding region as direct miR-16 targets, thus indicating that the miRNAs may have many more targets than anticipated by conventional prediction methods. This loss-of-function system, which mimics the 13q chromosomal deletion, provides a valuable tool to investigate their function in MM pathogenesis and their potential use as therapeutic targets.

11.
J Biol Chem ; 285(29): 22619-29, 2010 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-20418374

RESUMO

Estrogen-related receptor gamma (ERRgamma) regulates the perinatal switch to oxidative metabolism in the myocardium. We wanted to understand the significance of induction of ERRgamma expression in skeletal muscle by exercise. Muscle-specific VP16ERRgamma transgenic mice demonstrated an increase in exercise capacity, mitochondrial enzyme activity, and enlarged mitochondria despite lower muscle weights. Furthermore, peak oxidative capacity was higher in the transgenics as compared with control littermates. In contrast, mice lacking one copy of ERRgamma exhibited decreased exercise capacity and muscle mitochondrial function. Interestingly, we observed that increased ERRgamma in muscle generates a gene expression profile that closely overlays that of red oxidative fiber-type muscle. We further demonstrated that a small molecule agonist of ERRbeta/gamma can increase mitochondrial function in mouse myotubes. Our data indicate that ERRgamma plays an important role in causing a shift toward slow twitch muscle type and, concomitantly, a greater capacity for endurance exercise. Thus, the activation of this nuclear receptor provides a potential node for therapeutic intervention for diseases such as obesity, which is associated with reduced oxidative metabolism and a lower type I fiber content in skeletal muscle.


Assuntos
Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Receptores de Estrogênio/metabolismo , Animais , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Perfilação da Expressão Gênica , Heterozigoto , Hidrazinas/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Mitocôndrias/ultraestrutura , Modelos Biológicos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/ultraestrutura , Fibras Musculares de Contração Lenta/efeitos dos fármacos , Fibras Musculares de Contração Lenta/metabolismo , Fibras Musculares de Contração Lenta/ultraestrutura , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Músculo Esquelético/ultraestrutura , Oxirredução/efeitos dos fármacos , Condicionamento Físico Animal , Receptores de Estrogênio/agonistas , Regulação para Cima/efeitos dos fármacos
12.
Cancer Res ; 69(19): 7577-86, 2009 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-19738061

RESUMO

Several components of the Wnt signaling cascade have been shown to function either as tumor suppressor proteins or as oncogenes in multiple human cancers, underscoring the relevance of this pathway in oncogenesis and the need for further investigation of Wnt signaling components as potential targets for cancer therapy. Here, using expression profiling analysis as well as in vitro and in vivo functional studies, we show that the Wnt pathway component BCL9 is a novel oncogene that is aberrantly expressed in human multiple myeloma as well as colon carcinoma. We show that BCL9 enhances beta-catenin-mediated transcriptional activity regardless of the mutational status of the Wnt signaling components and increases cell proliferation, migration, invasion, and the metastatic potential of tumor cells by promoting loss of epithelial and gain of mesenchymal-like phenotype. Most importantly, BCL9 knockdown significantly increased the survival of xenograft mouse models of cancer by reducing tumor load, metastasis, and host angiogenesis through down-regulation of c-Myc, cyclin D1, CD44, and vascular endothelial growth factor expression by tumor cells. Together, these findings suggest that deregulation of BCL9 is an important contributing factor to tumor progression. The pleiotropic roles of BCL9 reported in this study underscore its value as a drug target for therapeutic intervention in several malignancies associated with aberrant Wnt signaling.


Assuntos
Neoplasias do Colo/metabolismo , Mieloma Múltiplo/metabolismo , Proteínas de Neoplasias/biossíntese , Processos de Crescimento Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Neoplasias do Colo/irrigação sanguínea , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Progressão da Doença , Humanos , Receptores de Hialuronatos/biossíntese , Receptores de Hialuronatos/genética , Mieloma Múltiplo/irrigação sanguínea , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Metástase Neoplásica , Proteínas de Neoplasias/genética , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Neovascularização Patológica/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Fatores de Transcrição , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética , Proteínas Wnt/metabolismo
13.
Blood ; 114(13): 2699-708, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19652203

RESUMO

Multiple myeloma (MM) is a cancer of plasma cells with complex molecular characteristics that evolves from monoclonal gammopathy of undetermined significance, a highly prevalent premalignant condition. MM is the second most frequent hematologic cancer in the United States, and it remains incurable, thereby highlighting the need for new therapeutic approaches, particularly those targeting common molecular pathways involved in disease progression and maintenance, shared across different MM subtypes. Here we report that Wnt/beta-catenin is one such pathway. We document the involvement of beta-catenin in cell-cycle regulation, proliferation, and invasion contributing to enhanced proliferative and metastatic properties of MM. The pleiotropic effects of beta-catenin in MM correlate with its transcriptional function, and we demonstrate regulation of a novel target gene, Aurora kinase A, implicating beta-catenin in G2/M regulation. beta-catenin and Aurora kinase A are present in most MM but not in normal plasma cells and are expressed in a pattern that parallels progression from monoclonal gammopathy of undetermined significance to MM. Our data provide evidence for a novel functional link between beta-catenin and Aurora kinase A, underscoring a critical role of these pathways in MM disease progression.


Assuntos
Mieloma Múltiplo/genética , Proteínas Serina-Treonina Quinases/genética , Proteínas Wnt/fisiologia , beta Catenina/fisiologia , Animais , Aurora Quinase A , Aurora Quinases , Ciclo Celular/genética , Proliferação de Células , Progressão da Doença , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Camundongos Transgênicos , Mieloma Múltiplo/patologia , Proteínas Serina-Treonina Quinases/fisiologia , Transplante Heterólogo , Células Tumorais Cultivadas , Proteínas Wnt/genética , beta Catenina/genética
14.
Proc Natl Acad Sci U S A ; 104(18): 7516-21, 2007 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-17452641

RESUMO

Multiple myeloma (MM) is an invariably fatal form of cancer characterized by clonal proliferation of malignant plasma cells in the bone marrow. The canonical Wnt signaling pathway is activated in MM cells through constitutively active beta-catenin, a messenger molecule relevant to growth, survival, and migration of MM cells. The identification of a number of small molecular compounds, such as PKF115-584, which disrupt the interaction of the transcriptionally active beta-catenin/TCF protein complex, provides valuable new therapeutic tools to target an alternative pathway in MM independent of the proteasome. Here we evaluated the transcriptional, proteomic, signaling changes, and biological sequelae associated with the inhibition of Wnt signaling in MM by PKF115-584. The compound blocks expression of Wnt target genes and induces cytotoxicity in both patient MM cells and MM cell lines without a significant effect in normal plasma cells. In xenograft models of human MM, PKF115-584 inhibits tumor growth and prolongs survival. Taken together, these data demonstrate the efficacy of disrupting the beta-catenin/TCF transcriptional complex to exploit tumor dependence on Wnt signaling as a therapeutic approach in the treatment of MM.


Assuntos
Mieloma Múltiplo/metabolismo , Fatores de Transcrição TCF/metabolismo , Transcrição Gênica/genética , beta Catenina/metabolismo , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Interleucina-6/farmacologia , Camundongos , Camundongos SCID , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Perileno/análogos & derivados , Perileno/farmacologia , Ligação Proteica , Transdução de Sinais , Taxa de Sobrevida , Transcrição Gênica/efeitos dos fármacos , Transplante Heterólogo , Proteínas Wnt/metabolismo , beta Catenina/genética
15.
Cancer Cell ; 9(4): 313-25, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16616336

RESUMO

To identify genetic events underlying the genesis and progression of multiple myeloma (MM), we conducted a high-resolution analysis of recurrent copy number alterations (CNAs) and expression profiles in a collection of MM cell lines and outcome-annotated clinical specimens. Attesting to the molecular heterogeneity of MM, unsupervised classification using nonnegative matrix factorization (NMF) designed for array comparative genomic hybridization (aCGH) analysis uncovered distinct genomic subtypes. Additionally, we defined 87 discrete minimal common regions (MCRs) within recurrent and highly focal CNAs. Further integration with expression data generated a refined list of MM gene candidates residing within these MCRs, thereby providing a genomic framework for dissection of disease pathogenesis, improved clinical management, and initiation of targeted drug discovery for specific MM patients.


Assuntos
Genoma Humano/genética , Genômica , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Cromossomos Humanos/classificação , Cromossomos Humanos/genética , Diploide , Intervalo Livre de Doença , Dosagem de Genes , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Mieloma Múltiplo/classificação , Mieloma Múltiplo/diagnóstico , Prognóstico
16.
Proc Natl Acad Sci U S A ; 102(27): 9625-30, 2005 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-15983384

RESUMO

Lung cancer is the leading cause of cancer mortality worldwide, yet there exists a limited view of the genetic lesions driving this disease. In this study, an integrated high-resolution survey of regional amplifications and deletions, coupled with gene-expression profiling of non-small-cell lung cancer subtypes, adenocarcinoma and squamous-cell carcinoma (SCC), identified 93 focal copy-number alterations, of which 21 span <0.5 megabases and contain a median of five genes. Whereas all known lung cancer genes/loci are contained in the dataset, most of these recurrent copy-number alterations are previously uncharacterized and include high-amplitude amplifications and homozygous deletions. Notably, despite their distinct histopathological phenotypes, adenocarcinoma and SCC genomic profiles showed a nearly complete overlap, with only one clear SCC-specific amplicon. Among the few genes residing within this amplicon and showing consistent overexpression in SCC is p63, a known regulator of squamous-cell differentiation. Furthermore, intersection with the published pancreatic cancer comparative genomic hybridization dataset yielded, among others, two focal amplicons on 8p12 and 20q11 common to both cancer types. Integrated DNA-RNA analyses identified WHSC1L1 and TPX2 as two candidates likely targeted for amplification in both pancreatic ductal adenocarcinoma and non-small-cell lung cancer.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Neoplasias Pulmonares/genética , Mutação/genética , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Proteínas de Ligação a DNA , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Genes Supressores de Tumor , Histona-Lisina N-Metiltransferase , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteínas de Neoplasias/genética , Proteínas Nucleares/genética , Hibridização de Ácido Nucleico , Análise de Sequência com Séries de Oligonucleotídeos , Fosfoproteínas/genética , Transativadores/genética , Fatores de Transcrição , Proteínas Supressoras de Tumor
17.
Cancer Res ; 64(14): 4744-8, 2004 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-15256441

RESUMO

Cancer represents the phenotypic end point of multiple genetic lesions that endow cells with a full range of biological properties required for tumorigenesis. Among the hallmark features of the cancer genome are recurrent regional gains and losses that, upon detailed characterization, have provided highly productive discovery paths for new oncogenes and tumor suppressor genes. In this study, we describe the use of an oligonucleotide-based microarray platform and development of requisite assay conditions and bioinformatic mining tools that permits high-resolution genome-wide array-comparative genome hybridization profiling of human and mouse tumors. Using a commercially available 60-mer oligonucleotide microarray, we demonstrate that this platform provides sufficient sensitivity to detect single-copy difference in gene dosage of full complexity genomic DNA while offering high resolution. The commercial availability of the microarrays and associated reagents, along with the technical protocols and analytical tools described in this report, should provide investigators with the immediate capacity to perform DNA analysis of normal and diseased genomes in a global and detailed manner.


Assuntos
Aberrações Cromossômicas , Biologia Computacional/métodos , Perfilação da Expressão Gênica/métodos , Neoplasias/genética , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Animais , Linhagem Celular Tumoral , DNA de Neoplasias/genética , Feminino , Dosagem de Genes , Humanos , Masculino , Camundongos , Neoplasias Experimentais/genética , Hibridização de Ácido Nucleico , Reação em Cadeia da Polimerase/métodos
18.
Proc Natl Acad Sci U S A ; 101(24): 9067-72, 2004 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-15199222

RESUMO

The pancreatic adenocarcinoma genome harbors multiple amplifications and deletions, pointing to the existence of numerous oncogenes and tumor suppressor genes driving the genesis and progression of this lethal cancer. Here, array comparative genomic hybridization on a cDNA microarray platform and informatics tools have been used to define the copy number alterations in a panel of 24 pancreatic adenocarcinoma cell lines and 13 primary tumor specimens. This high-resolution genomic analysis has identified all known regional gains and losses as well as many previously uncharacterized highly recurrent copy number alterations. A systematic prioritization scheme has selected 64 focal minimal common regions (MCRs) of recurrent copy number change. These MCRs possess a median size of 2.7 megabases (Mb), with 21 (33%) MCRs spanning 1 Mb or less (median of 0.33 Mb) and possessing an average of 15 annotated genes. Furthermore, complementary expression profile analysis of a significant fraction of the genes residing within these 64 prioritized MCRs has enabled the identification of a subset of candidates with statistically significant association between gene dosage and mRNA expression. Thus, the integration of DNA and RNA profiles provides a highly productive entry point for the discovery of genes involved in the pathogenesis of pancreatic adenocarcinoma.


Assuntos
Adenocarcinoma/genética , Neoplasias Pancreáticas/genética , Animais , Linhagem Celular Tumoral , Cromossomos/genética , Cromossomos Humanos Par 17 , Biologia Computacional/métodos , Inibidor p16 de Quinase Dependente de Ciclina/genética , Deleção de Genes , Dosagem de Genes , Expressão Gênica , Genoma , Homozigoto , Humanos , Hibridização de Ácido Nucleico/métodos , Análise de Sequência com Séries de Oligonucleotídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA