Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 275
Filtrar
1.
Biotechnol Bioeng ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711263

RESUMO

Pretreatment is crucial for effective enzymatic saccharification of lignocellulose such as sugarcane bagasse (SCB). In the present study, SCB was pretreated with five kinds of heterogeneous Fenton-like systems (HFSs), respectively, in which α-FeOOH, α-Fe2O3, Fe3O4, and FeS2 worked as four traditional heterogeneous Fenton-like catalysts (HFCs), while FeVO4 worked as a novel HFC. The enzymatic reducing sugar conversion rate was then compared among SCB after different heterogeneous Fenton-like pretreatments (HFPs), and the optimal HFS and pretreatment conditions were determined. The mechanism underlying the difference in saccharification efficiency was elucidated by analyzing the composition and morphology of SCB. Moreover, the ion dissolution characteristics, variation of pH and Eh values, H2O2 and hydroxyl radical (·OH) concentration of FeVO4 and α-Fe2O3 HFSs were compared. The results revealed that the sugar conversion rate of SCB pretreated with FeVO4 HFS reached up to 58.25%, which was obviously higher than that under other HFPs. In addition, the surface morphology and composition of the pretreated SCB with FeVO4 HFS were more conducive to enzymatic saccharification. Compared with α-Fe2O3, FeVO4 could utilize H2O2 more efficiently, since the dissolved Fe3+ and V5+ can both react with H2O2 to produce more ·OH, resulting in a higher hemicellulose and lignin removal rate and a higher enzymatic sugar conversion rate. It can be concluded that FeVO4 HFP is a promising approach for lignocellulose pretreatment.

2.
Lancet Infect Dis ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38663423

RESUMO

BACKGROUND: Growing evidence suggests that symptoms associated with post-COVID-19 condition (also known as long COVID) can affect multiple organs and systems in the human body, but their association with viral persistence is not clear. The aim of this study was to investigate the persistence of SARS-CoV-2 in diverse tissues at three timepoints following recovery from mild COVID-19, as well as its association with long COVID symptoms. METHODS: This single-centre, cross-sectional cohort study was done at China-Japan Friendship Hospital in Beijing, China, following the omicron wave of COVID-19 in December, 2022. Individuals with mild COVID-19 confirmed by PCR or a lateral flow test scheduled to undergo gastroscopy, surgery, or chemotherapy, or scheduled for treatment in hospital for other reasons, at 1 month, 2 months, or 4 months after infection were enrolled in this study. Residual surgical samples, gastroscopy samples, and blood samples were collected approximately 1 month (18-33 days), 2 months (55-84 days), or 4 months (115-134 days) after infection. SARS-CoV-2 was detected by digital droplet PCR and further confirmed through RNA in-situ hybridisation, immunofluorescence, and immunohistochemistry. Telephone follow-up was done at 4 months post-infection to assess the association between the persistence of SARS-CoV-2 RNA and long COVID symptoms. FINDINGS: Between Jan 3 and April 28, 2023, 317 tissue samples were collected from 225 patients, including 201 residual surgical specimens, 59 gastroscopy samples, and 57 blood component samples. Viral RNA was detected in 16 (30%) of 53 solid tissue samples collected at 1 month, 38 (27%) of 141 collected at 2 months, and seven (11%) of 66 collected at 4 months. Viral RNA was distributed across ten different types of solid tissues, including liver, kidney, stomach, intestine, brain, blood vessel, lung, breast, skin, and thyroid. Additionally, subgenomic RNA was detected in 26 (43%) of 61 solid tissue samples tested for subgenomic RNA that also tested positive for viral RNA. At 2 months after infection, viral RNA was detected in the plasma of three (33%), granulocytes of one (11%), and peripheral blood mononuclear cells of two (22%) of nine patients who were immunocompromised, but in none of these blood compartments in ten patients who were immunocompetent. Among 213 patients who completed the telephone questionnaire, 72 (34%) reported at least one long COVID symptom, with fatigue (21%, 44 of 213) being the most frequent symptom. Detection of viral RNA in recovered patients was significantly associated with the development of long COVID symptoms (odds ratio 5·17, 95% CI 2·64-10·13, p<0·0001). Patients with higher virus copy numbers had a higher likelihood of developing long COVID symptoms. INTERPRETATION: Our findings suggest that residual SARS-CoV-2 can persist in patients who have recovered from mild COVID-19 and that there is a significant association between viral persistence and long COVID symptoms. Further research is needed to verify a mechanistic link and identify potential targets to improve long COVID symptoms. FUNDING: National Natural Science Foundation of China, National Key R&D Program of China, Chinese Academy of Medical Sciences Innovation Fund for Medical Sciences, and New Cornerstone Science Foundation. TRANSLATION: For the Chinese translation of the abstract see Supplementary Materials section.

3.
Am J Cancer Res ; 14(2): 655-678, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38455404

RESUMO

Lung cancer stands as the predominant cause of cancer-related mortality globally. Lung adenocarcinoma (LUAD), being the most prevalent subtype, garners extensive attention due to its notable heterogeneity, which significantly influences tumor development and treatment approaches. This research leverages single-cell RNA sequencing (scRNA-seq) datasets to delve into the impact of KRAS/TP53 co-mutation status on LUAD. Moreover, utilizing the TCGA-LUAD dataset, we formulated a novel predictive risk model, comprising seven prognostic genes, through LASSO regression, and subjected it to both internal and external validation sets. The study underscores the profound impact of KRAS/TP53 co-mutational status on the tumor microenvironment (TME) of LUAD. Crucially, KRAS/TP53 co-mutation markedly influences the extent of B cell infiltration and various immune-related pathways within the TME. The newly developed predictive risk model exhibited robust performance across both internal and external validation sets, establishing itself as a viable independent prognostic factor. Additionally, in vitro experiments indicate that MELTF and PLEK2 can modulate the invasion and proliferation of human non-small cell lung cancer cells. In conclusion, we elucidated that KRAS/TP53 co-mutations may modulate TME and patient prognosis by orchestrating B cells and affiliated pathways. Furthermore, we spotlight that MELTF and PLEK2 not only function as prognostic indicators for LUAD, but also lay the foundation for the exploration of innovative therapeutic approaches.

4.
Eur J Radiol ; 175: 111444, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38531223

RESUMO

OBJECTIVE: To assess the prognostic value of pre- and post-therapeutic changes in extracellular volume (ECV) fraction of liver metastases (LMs) for treatment response (TR) and survival outcomes in colorectal cancer liver metastases (CRLM). METHODS: 186 LMs were confirmed by pathology or follow-up (Training: 130; Test: 56). We analyzed the changes in ECV fraction of LMs before and after 2 cycles of chemotherapy combined with bevacizumab. After 12 cycles, we evaluated the TR on LMs based on the RECIST v1.1. Relative changes in ECV fraction and Hounsfield Units (HU), defined as ΔECV and ΔHU, were associated with progression-free survival (PFS), overall survival (OS), and TR. We identified TR predictors with multivariate logistic regression and PFS, OS risk factors with COX analysis. RESULTS: 186 LMs were classified as TR lesions (TR+: 84) and non-TR lesions (TR-:102). ΔECV, ΔHUA-E, and texture could distinguish the TR of LMs in training and test set (P < 0.05). ΔECV [Odds ratio (OR): 1.03; 95% Confidence interval (CI): 1.02-1.05, P < 0.01] was an independent predictor of TR-. Area under the curve (AUC), sensitivity and specificity of TR model in training and test set were 0.87, 0.84, 90.14%, 90.32%, 72.88%, 64.00%, respectively. High CRD_score indicates that patients have shorter PFS [Hazard ratio (HR): 2.01; 95%CI: 1.02-3.98, P = 0.045)] and OS (HR: 1.89, 95%CI: 1.04-3.42, P = 0.038). CONCLUSION: ΔECV can be used as an independent predictor of TR of CRLM chemotherapy combined with bevacizumab.

5.
Open Life Sci ; 19(1): 20220834, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38465343

RESUMO

Parkinson's disease (PD) is a ubiquitous brain cell degeneration disease and presents a significant therapeutic challenge. By injecting 6-hydroxydopamine (6-OHDA) into the left medial forebrain bundle, rats were made to exhibit PD-like symptoms and treated by intranasal administration of a low-dose (2 × 105) or high-dose (1 × 106) human neural stem cells (hNSCs). Apomorphine-induced rotation test, stepping test, and open field test were implemented to evaluate the motor behavior and high-performance liquid chromatography was carried out to detect dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), serotonin, and 5-hydroxyindole-3-acetic acid in the striatum of rats. Animals injected with 6-OHDA showed significant motor function deficits and damaged dopaminergic system compared to the control group, which can be restored by hNSCs treatment. Treatment with hNSCs significantly increased the tyrosine hydroxylase-immunoreactive cell count in the substantia nigra of PD animals. Moreover, the levels of neurotransmitters exhibited a significant decline in the striatum tissue of animals injected with 6-OHDA when compared to that of the control group. However, transplantation of hNSCs significantly elevated the concentration of DA and DOPAC in the injured side of the striatum. Our study offered experimental evidence to support prospects of hNSCs for clinical application as a cell-based therapy for PD.

6.
Foods ; 13(5)2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38472749

RESUMO

Research on the comprehensive utilization of sour jujube and its beneficial properties to human health has attracted extensive attention. This study aims to conduct a bibliometric analysis of the bioactive profile of sour jujube and future trends in applications. The research advancements within this field from 2000 to 2023 were addressed using the Web of Science database and VOSviewer. Among the 322 results, the most frequent keywords of bioactivity are flavonoids, antioxidants, saponins, insomnia, polyphenols, terpenoids and anti-inflammatory; the most studied parts of sour jujube are seeds, fruits and leaves; the published articles with high citations mainly focus on identification, biological effects and different parts distribution of bioactive compounds. The bioactivity of various parts of sour jujube was reviewed considering their application potential. The seeds, rich in flavonoids, saponins and alkaloids, exhibit strong effects on central nervous system diseases and have been well-developed in pharmacology, healthcare products and functional foods. The pulp has antioxidant properties and is used to develop added-value foods (e.g., juice, vinegar, wine). The leaves can be used to make tea and flowers are good sources of honey; their extracts are rich sources of flavonoids and saponins, which show promising medicinal effects. The branches, roots and bark have healing properties in traditional folk medicine. Overall, this study provides a reference for future applications of sour jujube in food and medicine fields.

7.
Health Econ ; 33(6): 1192-1210, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38356048

RESUMO

The Australian government pays $6.7 billion per year in rebates to encourage Australians to purchase private health insurance (PHI) and an additional $6.1 billion to cover services provided in private hospitals. What is the justification for large government subsidies to a private industry when all Australians already have free coverage under Medicare? The government argues that more people buying PHI will relieve the burden on the public system and may reduce waiting times. However, the evidence supporting this is sparse. We use an instrumental variable approach to study the causal effects of higher PHI coverage in the area on waiting times in public hospitals in the same area. The instrument used is area-level average house prices, which correlate with average income and wealth, thus influencing the purchase of PHI due to tax incentives, but not directly affecting waiting times in public hospitals. We use 2014-2018 hospital admission and elective surgery waiting list data linked at the patient level from the Victorian Center for Data Linkage. These data cover all inpatient admissions in all hospitals in Victoria (both public and private hospitals) and those registered on the waiting list for elective surgeries in public hospitals in Victoria. We find that one percentage point increase in PHI coverage leads to about 0.34 days (or 0.5%) reduction in waiting times in public hospitals on average. The effects vary by surgical specialities and age groups. However, the practical significance of this effect is limited, if not negligible, despite its statistical significance. The small effect suggests that raising PHI coverage with the aim to taking the pressure off the public system is not an effective strategy in reducing waiting times in public hospitals. Alternative policies aiming at improving the efficiency of public hospitals and advancing equitable access to care should be a priority for policymakers.


Assuntos
Hospitais Públicos , Seguro Saúde , Listas de Espera , Humanos , Seguro Saúde/estatística & dados numéricos , Pessoa de Meia-Idade , Feminino , Masculino , Adulto , Idoso , Vitória , Setor Privado , Adolescente , Austrália , Acessibilidade aos Serviços de Saúde , Procedimentos Cirúrgicos Eletivos/estatística & dados numéricos
8.
Aging (Albany NY) ; 16(3): 2887-2907, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38345559

RESUMO

Lung adenocarcinoma (LUAD) is a malignant tumor of the respiratory system that has a poor 5-year survival rate. Anoikis, a type of programmed cell death, contributes to tumor development and metastasis. The aim of this study was to develop an anoikis-based stratified model, and a multivariable-based nomogram for guiding clinical therapy for LUAD. Through differentially expressed analysis, univariate Cox, LASSO Cox regression, and random forest algorithm analysis, we established a 4 anoikis-related genes-based stratified model, and a multivariable-based nomogram, which could accurately predict the prognosis of LUAD patients in the TCGA and GEO databases, respectively. The low and high-risk score LUAD patients stratified by the model showed different tumor mutation burden, tumor microenvironment, gemcitabine sensitivity and immune checkpoint expressions. Through immunohistochemical analysis of clinical LUAD samples, we found that the 4 anoikis-related genes (PLK1, SLC2A1, ANGPTL4, CDKN3) were highly expressed in the tumor samples from clinical LUAD patients, and knockdown of these genes in LUAD cells by transfection with small interfering RNAs significantly inhibited LUAD cell proliferation and migration, and promoted anoikis. In conclusion, we developed an anoikis-based stratified model and a multivariable-based nomogram of LUAD, which could predict the survival of LUAD patients and guide clinical treatment.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Anoikis/genética , Adenocarcinoma de Pulmão/genética , Biomarcadores , Biologia Computacional , Neoplasias Pulmonares/genética , Prognóstico , Microambiente Tumoral/genética
9.
BMC Complement Med Ther ; 24(1): 80, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331805

RESUMO

BACKGROUND: Astragalus polysaccharides (APS) have been verified to have antioxidative and antiaging activities in the mouse liver and brain. However, the effect of APS on aortic endothelial senescence in old rats and its underlying mechanism are currently unclear. Here, we aimed to elucidate the effects of APS on rat aortic endothelial oxidative stress and senescence in vitro and in vivo and investigate the potential molecular targets. METHODS: Twenty-month-old natural aging male rats were treated with APS (200 mg/kg, 400 mg/kg, 800 mg/kg daily) for 3 months. Serum parameters were tested using corresponding assay kits. Aortic morphology was observed by staining with hematoxylin and eosin (H&E) and Verhoeff Van Gieson (VVG). Aging-related protein levels were evaluated using immunofluorescence and western blot analysis. Primary rat aortic endothelial cells (RAECs) were isolated by tissue explant method. RAEC mitochondrial function was evaluated by the mitochondrial membrane potential (MMP) measured with the fluorescent lipophilic cationic dye JC­1. Intracellular total antioxidant capacity (T-AOC) was detected by a commercial kit. Cellular senescence was assessed using senescence-associated-ß-galactosidase (SA-ß-Gal) staining. RESULTS: Treatment of APS for three months was found to lessen aortic wall thickness, renovate vascular elastic tissue, improve vascular endothelial function, and reduce oxidative stress levels in 20-month-old rats. Primary mechanism analysis showed that APS treatment enhanced Sirtuin 1 (SIRT-1) protein expression and decreased the levels of the aging marker proteins p53, p21 and p16 in rat aortic tissue. Furthermore, APS abated hydrogen peroxide (H2O2)-induced cell senescence and restored H2O2-induced impairment of the MMP and T-AOC in RAECs. Similarly, APS increased SIRT-1 and decreased p53, p21 and p16 protein levels in senescent RAECs isolated from old rats. Knockdown of SIRT-1 diminished the protective effect of APS against H2O2-induced RAEC senescence and T-AOC loss, increased the levels of the downstream proteins p53 and p21, and abolished the inhibitory effect of APS on the expression of these proteins in RAECs. CONCLUSION: APS may reduce rat aortic endothelial oxidative stress and senescence via the SIRT-1/p53 signaling pathway.


Assuntos
Células Endoteliais , Sirtuína 1 , Camundongos , Masculino , Ratos , Animais , Células Endoteliais/metabolismo , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Peróxido de Hidrogênio/farmacologia , Senescência Celular/fisiologia , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Transdução de Sinais , Polissacarídeos/farmacologia , Polissacarídeos/metabolismo
10.
Front Immunol ; 15: 1329775, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38390331

RESUMO

Objectives: Perform a bibliometric analysis on the role of LAG-3 in the domain of cancer, elucidate the prevailing areas of research, and visually depict the evolutionary trajectory and prospective directions of LAG-3 research over the past twenty-three decades. Materials and methods: Between 2000 and 2023, a comprehensive review of scholarly articles pertaining to LAG-3 research in the context of cancer was carried out using the Web of Science Core Collection (WoSCC) database. Bibliometric analysis can be conducted by taking advantage of VOSviewer (version 1.6.16) and CiteSpace (version 6.2.R4). Create a network diagram to visually represent various authors, countries, and organizations while assessing the publishing years, journals, references, and keywords. Results: In conclusion, 1841 records were identified and published in 587 publications. These records were authored by 12,849 individuals affiliated with 2491 institutes across 74 countries. There has been a substantial surge in publications subsequent to 2013. The USA, China, and Germany gave the majority of records, amounting to 69.69%. American institutions actively engage in collaboration with institutions located in other countries. Triebel, F., Vignali, Dario A. A., Workman, Creg J. Drake, Charles G., and Elkord, Eyad are highly regarded authors in their respective fields. However, it is worth noting that Triebel exhibits limited collaboration with other writers. The examination of the role of LAG-3 in cancer and its potential for use in clinical settings is a discernible trend, as seen by keyword analysis. Conclusion: The scientific interest in and attention towards LAG-3 has experienced a significant rise since 2013. The United States is leading the way, with China following closely behind. Promoting collaboration among writers, nations, and institutions with varied backgrounds is imperative. The discipline of immunotherapy is currently seeing ongoing progress. A thorough investigation of the distinctive cis ligand TCR-CD3 complex of LAG-3 and its signal transduction mechanism is necessary. Additionally, it is worthwhile to explore novel combinations of LAG-3 therapy.


Assuntos
Bibliometria , Neoplasias , Humanos , Estudos Prospectivos , Neoplasias/terapia , Evolução Biológica , China
11.
ACS Appl Mater Interfaces ; 16(6): 6894-6907, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306190

RESUMO

The first-line treatment for advanced hepatocellular carcinoma (HCC) combines immune checkpoint inhibitors and antiangiogenesis agents to prolong patient survival. Nonetheless, this approach has several limitations, including stringent inclusion criteria and suboptimal response rates that stem from the severe off-tumor side effects and the unfavorable pharmacodynamics and pharmacokinetics of different drugs delivered systemically. Herein, we propose a single-agent smart nanomedicine-based approach that mimics the therapeutic schedule in a targeted and biocompatible manner to elicit robust antitumor immunity in advanced HCC. Our strategy employed pH-responsive carriers, poly(ethylene glycol)-poly(ß-amino esters) amphiphilic block copolymer (PEG-PAEs), for delivering apatinib (an angiogenesis inhibitor), that were surface-coated with plasma membrane derived from engineered cells overexpressing PD-1 proteins (an immune checkpoint inhibitor to block PD-L1). In an advanced HCC mouse model with metastasis, these biomimetic responsive nanoconverters induced significant tumor regression (5/9), liver function recovery, and complete suppression of lung metastasis. Examination of the tumor microenvironment revealed an increased infiltration of immune effector cells (CD8+ and CD4+ T cells) and reduced immunosuppressive cells (myeloid-derived suppressor cells and T regulatory cells) in treated tumors. Importantly, our nanomedicine selectively accumulated in both small and large HCC occupying >50% of the liver volume to exert therapeutic effects with minimal systemic side effects. Overall, these findings highlight the potential of such multifunctional nanoconverters to effectively reshape the tumor microenvironment for advanced HCC treatment.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Humanos , Carcinoma Hepatocelular/patologia , Inibidores de Checkpoint Imunológico/farmacologia , Neoplasias Hepáticas/patologia , Biomimética , Imunoterapia , Microambiente Tumoral
12.
Int J Biol Sci ; 20(1): 94-112, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164170

RESUMO

Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) is an RNA-binding protein implicated in various malignancies. However, its role in nasopharyngeal carcinoma (NPC) remains elusive. This study elucidates the potential regulation mechanisms of G3BP1 and its significance in NPC advancement. Through knockdown and overexpression approaches, we validate G3BP1's oncogenic role by promoting proliferation, migration, and invasion in vitro and in vivo. Moreover, G3BP1 emerges as a key regulator of the JAK2/STAT3 signaling pathway, augmenting JAK2 expression via mRNA binding. Notably, epigallocatechin gallate (EGCG), a green tea-derived antioxidant, counteracts G3BP1-mediated pathway activation. Clinical analysis reveals heightened G3BP1, JAK2, and p-STAT3 as powerful prognostic markers, with G3BP1's expression standing as an independent indicator of poorer outcomes for NPC patients. In conclusion, the study unveils the oncogenic prowess of G3BP1, its orchestration of the JAK2/STAT3 signaling pathway, and its pivotal role in NPC progression.


Assuntos
DNA Helicases , Neoplasias Nasofaríngeas , Humanos , Carcinoma Nasofaríngeo/genética , DNA Helicases/metabolismo , RNA Helicases/genética , RNA Helicases/metabolismo , Proteínas de Ligação a Poli-ADP-Ribose/metabolismo , Linhagem Celular Tumoral , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/metabolismo , Transdução de Sinais/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Proliferação de Células/genética , Janus Quinase 2/genética , Janus Quinase 2/metabolismo
13.
Zhongguo Fei Ai Za Zhi ; 27(1): 65-72, 2024 Jan 20.
Artigo em Chinês | MEDLINE | ID: mdl-38296627

RESUMO

Granulocytic myeloid-derived suppressor cells (G-MDSCs) are one of the main subgroups of MDSCs, which are widely enriched in most cancers. It can inhibit the killing function of T-lymphocyte through the expression of arginase-1 (Arg-1) and reactive oxygen species (ROS), reshape the tumor immune microenvironment, and promote the occurrence and development of tumors. In recent years, more and more studies have found that G-MDSCs are significantly correlated with the prognosis and immunotherapy efficacy of patients with non-small cell lung cancer, and the use of drugs specifically targeting the recruitment, differentiation and function of G-MDSCs can effectively inhibit tumor progression. This article reviews the immunosuppressive effect of G-MDSCs in non-small cell lung cancer and the progress of related pathway targeting drugs.
.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Células Supressoras Mieloides , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Linfócitos T , Imunoterapia , Microambiente Tumoral
14.
Adv Healthc Mater ; 13(7): e2302549, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38059737

RESUMO

In this work, we proposed nµPEF, a novel pulse configuration combining nanosecond and microsecond pulses (nµPEF), to enhance tumor ablation in irreversible electroporation (IRE) for oncological therapy. nµPEF demonstrated improved efficacy in inducing immunogenic cell death, positioning it as a potential candidate for next-generation ablative therapy. However, the immune response elicited by nµPEF alone was insufficient to effectively suppress distant tumors. To address this limitation, we developed PPR@CM-PD1, a genetically engineered nanovesicle. PPR@CM-PD1 employed a polyethylene glycol-polylactic acid-glycolic acid (PEG-PLGA) nanoparticle encapsulating the immune adjuvant imiquimod and coated with a genetically engineered cell membrane expressing programmed cell death protein 1 (PD1). This design allowed PPR@CM-PD1 to target both the innate immune system through toll-like receptor 7 (TLR7) agonism and the adaptive immune system through programmed cell death protein 1/programmed cell death-ligand 1 (PD1/PDL1) checkpoint blockade. In turn, nµPEF facilitated intratumoral infiltration of PPR@CM-PD1 by modulating the tumor stroma. The combination of nµPEF and PPR@CM-PD1 generated a potent and systemic antitumor immune response, resulting in remarkable suppression of both nµPEF-treated and untreated distant tumors (abscopal effects). This interdisciplinary approach presents a promising perspective for oncotherapy and holds great potential for future clinical applications.


Assuntos
Neoplasias , Receptor de Morte Celular Programada 1 , Humanos , Imunoterapia/métodos , Imunidade , Adjuvantes Imunológicos , Eletroporação/métodos
15.
Inflammation ; 47(1): 145-158, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37725272

RESUMO

Pyroptosis is closely involved in the pathopoiesis of cerebral ischemia and reperfusion (I/R) injury which seriously dangers human's life. Studies report that tangeretin (TANG), which is enriched in the peel of Citrus reticulata, has neuroprotective effects. Here, we explored whether absent in melanoma 2 (AIM2) inflammasome-mediated pyroptosis is involved in the cerebral I/R injury and the protective mechanism of TANG against cerebral I/R injury. In this study, we found that TANG treatment effectively alleviated I/R-induced brain injury and inhibited neuronal pyroptosis in an in vivo mice model with middle cerebral artery occlusion/reperfusion (MCAO/R) injury and in an in vitro hippocampal HT22 cell model with oxygen-glucose deprivation and reoxygenation (OGD/R) injury. Furthermore, we found TANG inhibited cerebral I/R-induced neuronal AIM2 inflammasome activation in vivo and in vitro via regulating nuclear factor E2-related factor 2 (NRF2). Moreover, administration of ML385, a chemical inhibitor of NRF2, notably blocked the neuroprotective effects of TANG against cerebral I/R injury. In conclusion, TANG attenuates cerebral I/R-induced neuronal pyroptosis by inhibiting AIM2 inflammasome activation via regulating NRF2. These findings indicate TANG is a potential therapeutic agent for cerebral I/R injury.


Assuntos
Isquemia Encefálica , Flavonas , Melanoma , Fármacos Neuroprotetores , Traumatismo por Reperfusão , Camundongos , Humanos , Animais , Piroptose , Inflamassomos/farmacologia , Fator 2 Relacionado a NF-E2 , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Isquemia Encefálica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/prevenção & controle , Infarto da Artéria Cerebral Média/tratamento farmacológico , Reperfusão , Proteínas de Ligação a DNA/farmacologia
16.
Int Immunopharmacol ; 126: 111239, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-37979453

RESUMO

Chimeric antigen receptor (CAR) T cell therapy has demonstrated remarkable clinical efficacy, but challenges related to relapse and CAR-T cell exhaustion persist. One contributing factor to this exhaustion is CAR tonic signaling, where CAR-T cells self-activate without antigen stimulation, leading to reduced persistence and impaired antitumor activity. To address this issue, we conducted a preclinical study evaluating tonic signaling using nanobody-derived CAR-T cells. Our investigation revealed that specific characteristics of the complementary determining regions (CDRs), including low solubility, polarity, positive charge, energy, and area of ionic and positive CDR patches of amino acids, were associated with low antigen-independent tonic signaling. Significantly, we observed that stronger tonic signaling directly impacted CAR-T cell proliferation in vitro, consequently leading to CAR-T cell exhaustion and diminished persistence and effectiveness in vivo. Our findings provide compelling preclinical evidence and lay the foundation for the clinical assessment of CAR-T cells with distinct tonic signaling patterns. Understanding the role of CDRs in modulating tonic signaling holds promise for advancing the development of more efficient and durable CAR-T cell therapies, thereby enhancing the treatment of cancer and addressing the challenges of relapse in CAR-T cell therapy.


Assuntos
Receptores de Antígenos de Linfócitos T , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T , Imunoterapia Adotiva , Recidiva
17.
Br J Cancer ; 130(4): 542-554, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38135712

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is frequently accompanied by perineural invasion (PNI), which is associated with excruciating neuropathic pain and malignant progression. However, the relationship between PNI and tumour stromal cells has not been clarified. METHODS: The dorsal root ganglia or sciatic nerves nerve model was used to observe the paracrine interaction and the activation effect among Schwann cells, tumour-associated macrophages (TAMs), and pancreatic cancer cells in vitro. Next generation sequencing, enzyme-linked immunosorbent assay and chromatin immunoprecipitation were used to explore the specific paracrine signalling between TAMs and Schwann cells. RESULTS: We demonstrated that more macrophages were expressed around nerves that have been infiltrated by pancreatic cancer cells compared with normal nerves in murine and human PNI specimens. In addition, high expression of CD68 or GFAP is associated with an increased incidence of PNI and indicates a poor 5-year survival rate in patients with PDAC. Mechanistically, tumour-associated macrophages (TAMs) activate Schwann cells via the bFGF/PI3K/Akt/c-myc/GFAP pathway. Schwann cells secrete IL-33 to recruit macrophages into the perineural milieu and facilitate the M2 pro-tumourigenic polarisation of macrophages. CONCLUSIONS: Our study demonstrates that the bFGF/IL-33 positive feedback loop between Schwann cells and TAMs is essential in the process of PNI of PDAC. The bFGF/PI3K/Akt/c-myc/GFAP pathway would open potential avenues for targeted therapy of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Interleucina-33 , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Neoplasias Pancreáticas/patologia , Carcinoma Ductal Pancreático/patologia , Células de Schwann/metabolismo , Células de Schwann/patologia , Invasividade Neoplásica
18.
Diagn Interv Imaging ; 2023 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-38072730

RESUMO

PURPOSE: The purpose of this study was to evaluate and compare the performances of whole-lesion iodine map histogram analysis to those of single-slice spectral computed tomography (CT) parameters in discriminating between low-to-moderate grade invasive non-mucinous pulmonary adenocarcinoma (INMA) and high-grade INMA according to the novel International Association for the Study of Lung Cancer grading system of INMA. MATERIALS AND METHODS: Sixty-one patients with INMA (34 with low-to-moderate grade [i.e., grade I and grade II] and 27 with high grade [i.e., grade III]) were evaluated with spectral CT. There were 28 men and 33 women, with a mean age of 56.4 ± 10.5 (standard deviation) years (range: 29-78 years). The whole-lesion iodine map histogram parameters (mean, standard deviation, variance, skewness, kurtosis, entropy, and 1st, 10th, 25th, 50th, 75th, 90th, and 99th percentile) were measured for each INMA. In other sessions, by placing regions of interest at representative levels of the tumor and normalizing them, spectral CT parameters (iodine concentration and normalized iodine concentration) were obtained. Discriminating capabilities of spectral CT and histogram parameters were assessed and compared using area under the ROC curve (AUC) and logistic regression models. RESULTS: The 1st, 10th, and 25th percentiles of the iodine map histogram analysis, and iodine concentration and normalized iodine concentration of single-slice spectral CT parameters were significantly different between high-grade and low-to-moderate grade INMAs (P < 0.001 to P = 0.002). The 1st percentile of histogram parameters (AUC, 0.84; 95% confidence interval [CI]: 0.73-0.92) and iodine concentration (AUC, 0.78; 95% CI: 0.66-0.88) from single-slice spectral CT parameters had the best performance for discriminating between high-grade and low-to-moderate grade INMAs. At ROC curve analysis no significant differences in AUC were found between histogram parameters (AUC = 0.86; 95% CI: 0.74-0.93) and spectral CT parameters (AUC = 0.81; 95% CI: 0.74-0.93) (P = 0.60). CONCLUSION: Both whole-lesion iodine map histogram analysis and single-slice spectral CT parameters help discriminate between low-to-moderate grade and high-grade INMAs according to the novel International Association for the Study of Lung Cancer grading system, with no differences in diagnostic performances.

19.
J Cell Mol Med ; 28(5): e18065, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38116696

RESUMO

Colorectal cancer (CRC) is the most prevalent malignancy of the digestive system. Glucose metabolism plays a crucial role in CRC development. However, the heterogeneity of glucose metabolic patterns in CRC is not well characterized. Here, we classified CRC into specific glucose metabolic subtypes and identified the key regulators. 2228 carbohydrate metabolism-related genes were screened out from the GeneCards database, 202 of them were identified as prognosis genes in the TCGA database. Based on the expression patterns of the 202 genes, three metabolic subtypes were obtained by the non-negative matrix factorization clustering method. The C1 subtype had the worst survival outcome and was characterized with higher immune cell infiltration and more activation in extracellular matrix pathways than the other two subtypes. The C2 subtype was the most prevalent in CRC and was characterized by low immune cell infiltration. The C3 subtype had the smallest number of individuals and had a better prognosis, with higher levels of NRF2 and TP53 pathway expression. Secreted frizzled-related protein 2 (SFRP2) and thrombospondin-2 (THBS2) were confirmed as biomarkers for the C1 subtype. Their expression levels were elevated in high glucose condition, while their knockdown inhibited migration and invasion of HCT 116 cells. The analysis of therapeutic potential found that the C1 subtype was more sensitive to immune and PI3K-Akt pathway inhibitors than the other subtypes. To sum up, this study revealed a novel glucose-related CRC subtype, characterized by SFRP2 and THBS2, with poor prognosis but possible therapeutic benefits from immune and targeted therapies.

20.
Front Pharmacol ; 14: 1326346, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38152688

RESUMO

Hepatocellular carcinoma (HCC) is one of the malignant tumors with high incidence and mortality rates in the world. Isothiocyanates (ITCs), bioactive substances present primarily in the plant order Brassicales, have been proved to be promising candidates for novel anti-HCC drugs with chemopreventive and anticancer activities. Iberverin, a predominant ITC isolated from the seeds of oxheart cabbage, has been discovered with anticancer property in lung cancer cells. However, the roles of iberverin in HCC remain elusive. In the present study, the effect and potential mechanisms of iberverin against human HCC were dissected. We demonstrated that low concentrations of iberverin inhibited cell proliferation, suppressed migration and induced mitochondrial-related apoptosis in vitro, and hampered tumorigenicity in vivo, with no obvious toxicity. Furthermore, we found that iberverin treatment induced DNA damage and G2/M phase arrest. Iberverin treatment also caused increased intracellular reactive oxygen species formation and glutathione depletion. Taken together, these results suggest that iberverin promotes mitochondrial-mediated apoptosis and induces DNA damage and G2/M cell cycle arrest in HCC by enhancing oxidative stress. Our findings provide better understanding of the anti-HCC mechanisms of ITCs and the potential for the natural product iberverin as a promising new anti-HCC biotherapeutic.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA