Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 476: 135167, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39029194

RESUMO

Microplastics (MPs) are emerging contaminants with significant ecological and human health implications. This study examines the abundance, characteristics, and distribution of MPs in the Yangtze River estuary, focusing on seasonal variations, tidal cycles, and anthropogenic influences. Surface samples were collected using the Manta trawl method to ensure consistency with previous marine MP research. The study found an average MP concentration of 1.01 (± 0.65) n m-3, predominantly comprising low-density polymers such as polystyrene (38 %), polypropylene (33 %), and polyethylene (29 %). MPs were mainly fragments (34.9 %) and foam (30.7 %), with a prevalence of white particles. Seasonal analysis indicated significantly higher MP concentrations during flood seasons (1.32 ± 1.09 n m-3), nearly 1.9 times higher than during non-flood seasons (0.70 ± 0.28 n m-3). Tidal cycles also impacted MP distribution, with ebb tides showing increased concentrations (2.44 ± 1.30 n m-3) compared to flood tides (1.48 ± 2.07 n m-3). Furthermore, MP abundance showed a decreasing trend with increasing distance from urban centers, with significant correlations (0.52 < R2 < 0.65, P < 0.001). These findings underscore the necessity for seasonally adjusted monitoring and robust management strategies to combat MP pollution. The study advocates for the integration of diverse sampling methods and the consideration of environmental factors in future MP assessments, laying the groundwork for understanding the MP transport mechanism in the Yangtze River estuary and similar estuarine systems worldwide.

2.
Comput Struct Biotechnol J ; 23: 1144-1153, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38510975

RESUMO

N6 adenosine methylation (m6A), one of the most prevalent internal modifications on mammalian RNAs, regulates RNA transcription, stabilization, and splicing. Growing evidence has focused on the functional role of m6A regulators on acute myeloid leukemia (AML). However, the global m6A levels after azacytidine (AZA) plus venetoclax (VEN) treatment in AML patients remain unclear. In our present study, bone marrow (BM) sample pairs (including pre-treatment [AML] and post-treatment [complete remission (CR)] samples) were harvested from three AML patients who had achieved CR after AZA plus VEN treatment for Nanopore direct RNA sequencing. Notably, the amount of m6A sites and the m6A levels in CR BMs was significantly lower than those in the AML BMs. Such a significant reduction in the m6A levels was also detected in AZA-treated HL-60 cells. Thirteen genes with decreased m6A and expression levels were identified, among which three genes (HPRT1, SNRPC, and ANP32B) were closely related to the prognosis of AML. Finally, we speculated the mechanism via which m6A modifications affected the mRNA stability of these three genes. In conclusion, we illustrated for the first time the global landscape of m6A levels in AZA plus VEN treated AML (CR) patients and revealed that AZA had a significant demethylation effect at the RNA level in AML patients. In addition, we identified new biomarkers for AZA plus VEN-treated AML via Nanopore sequencing technology in RNA epigenetics.

3.
Clin Transl Med ; 13(9): e1393, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37649244

RESUMO

BACKGROUND: Small extrachromosomal circular DNAs (eccDNAs) have the potential to be cancer biomarkers. However, the formation mechanisms and functions of small eccDNAs selected in carcinogenesis are not clear, and whether the small eccDNA profile in the plasma of cancer patients represents that in cancer tissues remains to be elucidated. METHODS: A novel sequencing workflow based on the nanopore sequencing platform was used to sequence naturally existing full-length small eccDNAs in tissues and plasma collected from 25 cancer patients (including prostate cancer, hepatocellular carcinoma and colorectal cancer), and from an independent validation cohort (including 7 cancer plasma and 14 healthy plasma). RESULTS: Compared with those in non-cancer tissues, small eccDNAs detected in cancer tissues had a significantly larger number and size (P = 0.040 and 2.2e-16, respectively), along with more even distribution and different formation mechanisms. Although small eccDNAs had different general characteristics and genomic annotation between cancer tissues and the paired plasma, they had similar formation mechanisms and cancer-related functions. Small eccDNAs originated from some specific genes had great multi-cancer diagnostic value in tissues (AUC ≥ 0.8) and plasma (AUC > 0.9), especially increasing the accuracy of multi-cancer prediction of CEA/CA19-9 levels. The high multi-cancer diagnostic value of small eccDNAs originated from ALK&ETV6 could be extrapolated from tissues (AUC = 0.804) to plasma and showed high positive predictive value (100%) and negative predictive value (82.35%) in a validation cohort. CONCLUSIONS: As independent and stable circular DNA molecules, small eccDNAs in both tissues and plasma can be used as ideal biomarkers for cost-effective multi-cancer diagnosis and monitoring.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Neoplasias da Próstata , Masculino , Humanos , Biomarcadores Tumorais/genética , DNA Circular/genética
4.
Theranostics ; 13(1): 391-402, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36593954

RESUMO

With the surge of the high-throughput sequencing technologies, many genetic variants have been identified in the past decade. The vast majority of these variants are defined as variants of uncertain significance (VUS), as their significance to the function or health of an organism is not known. It is urgently needed to develop intelligent models for the clinical interpretation of VUS. State-of-the-art artificial intelligence (AI)-based variant effect predictors only learn features from primary amino acid sequences, leaving out information about the most important three-dimensional structure that is more related to its function. Methods: We proposed a deep convolutional neural network model named variant effect recognition network for BRCA1 (vERnet-B) to recognize the clinical pathogenicity of missense single-nucleotide variants in the BRCT domain of BRCA1. vERnet-B learned features associated with the pathogenicity from the tertiary protein structures of variants predicted by AlphaFold2. Results: After performing a series of validation and analyses on vERnet-B, we discovered that it exhibited significant advances over previous works. Recognizing the phenotypic consequences of VUS is one of the most daunting challenges in genetic informatics; however, we achieved 85% accuracy in recognizing disease BRCA1 variants with an ideal balance of false-positive and true-positive detection rates. vERnet-B correctly recognized the pathogenicity of variant A1708E, which was poorly predicted by AlphaFold2 as previously described. The vERnet-B web server is freely available from URL: http://ai-lab.bjrz.org.cn/vERnet. Conclusions: We applied protein tertiary structures to successfully recognize the pathogenic missense SNVs, which were difficult to be addressed by classical approaches based on sequences. Our work demonstrated that AlphaFold2-predicted structures were expected to be used for rich feature learning and revealed unique insights into the clinical interpretation of VUS in disease-related genes, using vERnet-B as a discovery tool.


Assuntos
Inteligência Artificial , Predisposição Genética para Doença , Humanos , Virulência , Sequência de Aminoácidos , Proteína BRCA1/genética
5.
FEBS Open Bio ; 12(2): 538-548, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34986524

RESUMO

Endothelial cell apoptosis is an important pathophysiology in many cardiovascular diseases. The gasotransmitter nitric oxide (NO) is known to regulate cell survival and apoptosis. However, the mechanism underlying the effect of NO remains unclear. In this research, by targeting cytosolic copper/zinc superoxide dismutase (SOD1) monomerization, we aimed to explore how NO inhibited endothelial cell apoptosis. We showed that treatment with the NO synthase (NOS) inhibitor nomega-nitro-l-arginine methyl ester hydrochloride (L-NAME) significantly decreased the endogenous NO content of endothelial cells, facilitated the formation of SOD1 monomers, inhibited dismutase activity, and promoted reactive oxygen species (ROS) accumulation in human umbilical vein endothelial cells (HUVECs); by contrast, supplementation with the NO donor sodium nitroprusside (SNP) upregulated NO content, prevented the formation of SOD1 monomers, enhanced dismutase activity, and reduced ROS accumulation in L-NAME-treated HUVECs. Mechanistically, tris(2-carboxyethyl) phosphine hydrochloride (TCEP), a specific reducer of cysteine thiol, increased SOD1 monomer formation, thus preventing the NO-induced increase in dismutase activity and the decrease in ROS. Furthermore, SNP inhibited HUVEC apoptosis caused by the decrease in endogenous NO, whereas TCEP abolished this protective effect of SNP. In summary, our data reveal that NO protects endothelial cells against apoptosis by inhibiting cysteine-dependent SOD1 monomerization to enhance SOD1 activity and inhibit oxidative stress.


Assuntos
Cisteína , Óxido Nítrico , Superóxido Dismutase-1 , Apoptose , Células Cultivadas , Cisteína/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Células Endoteliais da Veia Umbilical Humana/fisiologia , Humanos , Óxido Nítrico/farmacologia , Óxido Nítrico Sintase Tipo III , Superóxido Dismutase , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
6.
Redox Biol ; 41: 101898, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33647858

RESUMO

Sulfur dioxide (SO2) has emerged as a physiological relevant signaling molecule that plays a prominent role in regulating vascular functions. However, molecular mechanisms whereby SO2 influences its upper-stream targets have been elusive. Here we show that SO2 may mediate conversion of hydrogen peroxide (H2O2) to a more potent oxidant, peroxymonosulfite, providing a pathway for activation of H2O2 to convert the thiol group of protein cysteine residues to a sulfenic acid group, aka cysteine sulfenylation. By using site-centric chemoproteomics, we quantified >1000 sulfenylation events in vascular smooth muscle cells in response to exogenous SO2. Notably, ~42% of these sulfenylated cysteines are dynamically regulated by SO2, among which is cysteine-64 of Smad3 (Mothers against decapentaplegic homolog 3), a key transcriptional modulator of transforming growth factor ß signaling. Sulfenylation of Smad3 at cysteine-64 inhibits its DNA binding activity, while mutation of this site attenuates the protective effects of SO2 on angiotensin II-induced vascular remodeling and hypertension. Taken together, our findings highlight the important role of SO2 in vascular pathophysiology through a redox-dependent mechanism.


Assuntos
Peróxido de Hidrogênio , Remodelação Vascular , Humanos , Oxirredução , Transdução de Sinais , Proteína Smad3 , Ácidos Sulfênicos
7.
Cell Mol Neurobiol ; 33(3): 337-46, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23274964

RESUMO

Previous study has shown that there is a functional link between the transient receptor potential vanilloid type 1 (TRPV1) receptor and protease-activated receptor-4 (PAR4) in modulation of inflammation and pain. Capsaicin activation of TRPV1 is involved in enhancement of the expression of TRPV1 in mRNA and protein in dorsal root ganglion (DRG) in vivo. Whether capsaicin could influence expression of PAR4 in primary sensory neurons remains unknown. In the present study, expression of PAR4 in cultured rat DRG neurons was observed using immunofluorescence, real-time PCR and Western blots to examine whether increases in PAR4 mRNA and protein levels are induced by capsaicin treatment with or without pre-treatment of forskolin, a cyclic AMP/protein kinase A (cAMP/PKA) activator or PKA inhibitor fragment 14-22 (PKI14-22), a PKA inhibitor. Capsaicin treatment of cultured DRG neurons significantly increased the expression of PAR4 in mRNA and protein levels. The percentage of PAR4-, TRPV1-immunoreactive neurons and their co-localization in cultured DRG neurons increased significantly in the presence of capsaicin as compared with that in the absence of capsaicin. Compared with capsaicin-only group, pre-incubation with forskolin strongly enhanced the capsaicin-induced increase of PAR4 in mRNA and protein levels. Consistent with the involvement of PKA in the modulation of PAR4 expression, this evoked expression both at mRNA and protein levels was significantly inhibited after PKA was inhibited by pre-incubation with PKI14-22. Taken together, these results provide evidence that TRPV1 activation significantly increases the expression of PAR4 mRNA and protein levels in primary cultures of DRG neurons after capsaicin incubation. Effects of capsaicin on PAR4 expression appear to be mediated by cAMP/PKA signal pathways in DRG neurons.


Assuntos
Capsaicina/farmacologia , Gânglios Espinais/citologia , Neurônios/metabolismo , Receptores de Trombina/genética , Regulação para Cima/efeitos dos fármacos , Animais , Western Blotting , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Imunofluorescência , Masculino , Neurônios/citologia , Neurônios/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Ratos Wistar , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Trombina/metabolismo , Coloração e Rotulagem , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo , Fatores de Tempo , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA