Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 157: 639-654, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36509401

RESUMO

Oral submucous fibrosis (OSF) is a chronic, inflammatory and potentially malignant oral disorder. Its pathophysiology is extremely complex, including excessive collagen deposition, massive inflammatory infiltration, and capillary atrophy. However, the existing clinical treatment methods do not fully take into account all the pathophysiological processes of OSF, so they are generally low effective and have many side effects. In the present study, we developed an injectable sodium hyaluronate/45S5 bioglass composite hydrogel (BG/HA), which significantly relieved mucosal pallor and restricted mouth opening in OSF rats without any obvious side effects. The core mechanism of BG/HA in the treatment of OSF is the release of biologically active silicate ions, which inhibit collagen deposition and inflammation, and promote angiogenesis and epithelial regeneration. Most interestingly, silicate ions can overall regulate the physiological environment of OSF by down-regulating α-smooth muscle actin (α-SMA) and CD68 and up-regulating CD31 expression, as well as regulating the expression of pro-fibrotic factors [transforming growth factor-ß1 (TGF-ß1), interleukin-10 (IL-10), tumor necrosis factor-α (TNF-α) and tissue inhibitors of metalloproteinase-1 (TIMP-1)] and anti-fibrotic factors [interleukin-1ß (IL-1ß)] in macrophage. In conclusion, our study shows that BG/HA has great potential in the clinical treatment of OSF, which provides an important theoretical basis for the subsequent development of new anti-fibrotic clinical preparations. STATEMENT OF SIGNIFICANCE: : Oral submucous fibrosis (OSF) is a chronic, inflammatory and potentially malignant mucosal disease with significant impact on the quality of patients' life. However, the existing clinical treatments have limited efficacy and many side effects. There is an urgent need for development of specific drugs for OSF treatment. In the present study, bioglass (BG) composited with sodium hyaluronate solution (HA) was used to treat OSF in an arecoline-induced rat model. BG/HA can significantly inhibit collagen deposition, regulate inflammatory response, promote angiogenesis and repair damaged mucosal epithelial cells, and thereby mitigate the development of fibrosis in vivo.


Assuntos
Fibrose Oral Submucosa , Ratos , Animais , Fibrose Oral Submucosa/tratamento farmacológico , Fibrose Oral Submucosa/induzido quimicamente , Fibrose Oral Submucosa/metabolismo , Mucosa Bucal , Ácido Hialurônico/farmacologia , Ácido Hialurônico/metabolismo , Hidrogéis/metabolismo , Colágeno/farmacologia , Colágeno/metabolismo
2.
Sci Adv ; 6(32): eabb1311, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32821831

RESUMO

Photothermal therapy (PTT), an emerging tumor treatment technology, has attracted tremendous interest, but excessive heat will cause damage to surrounding healthy tissues. Therefore, in situ temperature monitoring during PTT is of great importance to determine optimal treatment temperature and repair heat-damaged normal tissues. Here, we report the preparation of multifunctional Nd-Ca-Si silicate glasses and glass/alginate composite hydrogels that not only have photothermal property but also emit fluorescence under 808-nm laser irradiation, and its fluorescence intensity is linearly correlated with in situ temperature. With this feature, optimal PTT temperature for effective tumor treatment with minimal normal tissue damage can be obtained. In addition, because of the bioactive silicate components, the composite hydrogel has bioactivity to repair heat damage caused by PTT. This implantable multifunctional material with unique temperature monitoring, photothermal function, and wound healing bioactivity can be used for localized thermal therapy.


Assuntos
Queimaduras , Neoplasias , Termometria , Queimaduras/terapia , Humanos , Hidrogéis , Neoplasias/patologia , Terapia Fototérmica
3.
J Mater Chem B ; 8(34): 7713-7722, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32724972

RESUMO

Stem-cell therapy has been proved as a promising strategy for myocardial infarction (MI) treatment. However, the therapeutic efficacy is mainly limited by the cellular activity of transplanted mesenchymal stem cells (MSCs). In this study, a novel bioglass (BG)/γ-polyglutamic acid (γ-PGA)/chitosan (CS) hydrogel was obtained by in situ adding BG to stimulate the imine bond formation. And the effect of the composite hydrogel on MI therapeutic efficacy was evaluated in a rat acute myocardial infarction (AMI) model in vivo and the possible mechanism of the BG/γ-PGA/CS hydrogel for the stimulation of the intercellular interaction between MSCs and cardiomyocytes (CMs) was explored by a MSC and CM co-culture experiment in vitro. The implantation of the MSC loaded BG/γ-PGA/CS composite hydrogel in the mice AMI model showed a significant improvement in the therapeutic efficacy with improved cardiac function, attenuation of heart remodeling, reduced cardiomyocyte apoptosis and accelerated vascularization. The in vitro cell experiments demonstrated that the BG/γ-PGA/CS hydrogel activated the intercellular interaction between MSCs and CMs, which resulted in reduced cell apoptosis and enhanced angiogenesis. Silicate based bioactive hydrogels activated MSCs and cell-cell interactions in cardiac tissue after AMI and significantly enhanced the efficacy, which suggests that this bioactive hydrogel based approach is an effective way to enhance stem-cell therapy.


Assuntos
Hidrogéis/farmacologia , Transplante de Células-Tronco Mesenquimais , Células-Tronco Mesenquimais/efeitos dos fármacos , Infarto do Miocárdio/terapia , Animais , Apoptose/efeitos dos fármacos , Comunicação Celular/efeitos dos fármacos , Quitosana/química , Vidro/química , Hidrogéis/química , Iminas/química , Células-Tronco Mesenquimais/citologia , Camundongos , Infarto do Miocárdio/patologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/patologia , Ácido Poliglutâmico/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA