RESUMO
Purifying methane (CH4) from natural gas and coal mine methane (CMM) is of great significance but challenging in the chemical industry. Herein, a robust ultramicroporous metal-organic framework (MOF) is reported, which can be synthesized on a gram scale by stirring under room temperature. Single-component adsorption isotherms of gases (CH4, ethane (C2H6), propane (C3H8), nitrogen (N2)) and breakthrough experiments indicate that the MOF can separate CH4 efficiently from CH4/C2H6/C3H8 ternary mixture, with super high purity-CH4 production of 154.7 cm3 g-1. Additionally, the MOF shows higher CH4 capacity than N2, resulting in excellent separation performance for the CH4/N2 mixture. Notably, the binding sites of gases can be precisely determined by single-crystal X-ray data, further confirmed by molecular simulation. It is found that there are multiple hydrogen bonds and CâH···π interactions between the gases and the framework. This work offers an excellent candidate material for CH4 purification with both high capacity and separation efficiency.
RESUMO
OBJECTIVES: We aimed to determine the prevalence of cardiovascular involvement in our Blau syndrome (BS) cohort and provide detailed analysis of their cardiovascular manifestations and outcome. We also tried to find out the risk factors for developing cardiovascular involvement. METHODS: Clinical manifestations, laboratory findings, and treatments were reviewed. Clinical features were compared between children with cardiovascular involvement and those without angiocardiopathy. RESULTS: A total of 38 BS children were eligible for final analysis. Among them, 13 (34.2%) developed Takayasu-like vasculitis and/or cardiopathy. Compared with those without angiocardiopathy, recurrent fever was more frequent in BS patients with cardiovascular involvement (p < 0.001). What is more, tumor necrosis factor alpha antagonists (anti-TNF) were more urgently needed in children with cardiovascular involvement (p = 0.015). BS patients with cardiovascular involvement include 4 with Takayasu-like vasculitis and 9 with cardiopathy. The onset of cardiovascular manifestations ranged from 0.75 to 18.5 years of age, with most cases occurring before school period. Symptoms were elusive and lacked specificity, such as dizziness, short of breath, and edema. Some patients were even identified because of the unexpected hypertension during follow-up. Cardiopathy and vasculitis occurred in patients with different genotypes. Imaging changes were discovered before the presentation of the typical triad in 3/4 patients with Takayasu-like vasculitis. Three children developed left ventricular dysfunction with decreased left ventricular ejection fraction. Combination of glucocorticoids and methotrexate with anti-TNF agents is a common treatment option for these BS patients. In the cohort, BS-related cardiovascular involvement was controlled well, with cardiac structural and functional abnormalities completely recovered and slower progression of vasculitis lesions. CONCLUSION: Cardiovascular manifestations is not rare in BS patients. Because of its insidious onset, a systematic and comprehensive assessment of cardiovascular involvement should be performed in newly diagnosed patients with BS. Aggressive initiation of anti-TNF agents may be beneficial to improve the prognosis. Key Points ⢠About 34.2% patients with Blau syndrome developed Takayasu-like vasculitis and/or cardiopathy. ⢠Compared with those without angiocardiopathy, recurrent fever and application of anti-TNF agents were more frequent in BS patients with cardiovascular involvement (p < 0.001, p = 0.015) ⢠Regular assessment of cardiovascular involvement is extremely necessary because of its insidious onset.
Assuntos
Artrite , Cardiopatias , Sarcoidose , Sinovite , Arterite de Takayasu , Uveíte , Vasculite , Criança , Humanos , Inibidores do Fator de Necrose Tumoral , Volume Sistólico , Função Ventricular Esquerda , Fenótipo , Arterite de Takayasu/complicações , Arterite de Takayasu/tratamento farmacológico , Arterite de Takayasu/diagnósticoRESUMO
One-step adsorptive purification of ethylene (C2H4) from a ternary mixture of acetylene (C2H2), C2H4, and ethane (C2H6) by a single material is of great importance but challenging in the petrochemical industry. Herein, a chemically robust olefin-linked covalent organic framework (COF), NKCOF-62, is designed and synthesized by a melt polymerization method employing tetramethylpyrazine and terephthalaldehyde as cheap monomers. This method avoids most of the disadvantages of classical solvothermal methods, which enable the cost-effective kilogram fabrication of olefin-linked COFs in one pot. Furthermore, NKCOF-62 shows remarkably selective adsorption of C2H2 and C2H6 over C2H4 thanks to its unique pore environments and suitable pore size. Breakthrough experiments demonstrate that polymer-grade C2H4 can be directly obtained from C2H2/C2H6/C2H4 (1/1/1) ternary mixtures through a single separation process. Notably, NKCOF-62 is the first demonstration of the potential to use COFs for C2H2/C2H6/C2H4 separation, which provides a blueprint for the design and construction of robust COFs for industrial gas separations.
RESUMO
The impairment of antibody-mediated immunity is a major factor associated with fatal cases of severe fever with thrombocytopenia syndrome (SFTS). By collating the clinical diagnosis reports of 30 SFTS cases, we discovered the overproliferation of monoclonal plasma cells (MCP cells, CD38+cLambda+cKappa-) in bone marrow, which has only been reported previously in multiple myeloma. The ratio of CD38+cLambda+ versus CD38+cKappa+ in SFTS cases with MCP cells was significantly higher than that in normal cases. MCP cells presented transient expression in the bone marrow, which was distinctly different from multiple myeloma. Moreover, the SFTS patients with MCP cells had higher clinical severity. Further, the overproliferation of MCP cells was also observed in SFTS virus (SFTSV)-infected mice with lethal infectious doses. Together, SFTSV infection induces transient overproliferation of monoclonal lambda-type plasma cells, which have important implications for the study of SFTSV pathogenesis, prognosis, and the rational development of therapeutics.
RESUMO
Herein, we report the crystal structure and guest binding properties of a new two-dimensional (2D) square lattice (sql) topology coordination network, sql-(azpy)(pdia)-Ni, which is comprised of two linker ligands with diazene (azo) moieties, (E)-1,2-di(pyridin-4-yl)diazene(azpy) and (E)-5-(phenyldiazenyl)isophthallate(pdia). sql-(azpy)(pdia)-Ni underwent guest-induced switching between a closed (nonporous) ß phase and several open (porous) α phases, but unlike the clay-like layer expansion to distinct phases previously reported in switching sql networks, a continuum of phases was formed. In effect, sql-(azpy)(pdia)-Ni exhibited elastic-like properties induced by adaptive guest binding. Single-crystal X-ray diffraction (SCXRD) studies of the α phases revealed that the structural transformations were enabled by the pendant phenyldiazenyl moiety on the pdia2- ligand. This moiety functioned as a type of hinge to enable parallel slippage of layers and interlayer expansion for the following guests: N,N-dimethylformamide, water, dichloromethane, para-xylene, and ethylbenzene. The slippage angle (interplanar distances) ranged from 54.133° (4.442 Å) in the ß phase to 69.497° (5.492 Å) in the ethylbenzene-included phase. Insight into the accompanying phase transformations was also gained from variable temperature powder XRD studies. Dynamic water vapor sorption studies revealed a stepped isotherm with little hysteresis that was reversible for at least 100 cycles. The isotherm step occurred at ca. 50% relative humidity (RH), the optimal RH value for humidity control.
RESUMO
Background: Mucopolysaccharidosis Type II (MPS II) is a rare, progressive and ultimately fatal X-linked lysosomal storage disorder caused by mutations in the iduronate-2-sulfatase (IDS) gene. This report conducted a retrospective analysis to investigate the clinical characteristics, genotypes and management strategies in a large cohort of Chinese patients with MPS II. Methods: In this study, we explored 130 Chinese patients with MPS II between September 2008 and April 2022. Clinical manifestations, auxiliary examination, IDS pathogenic gene variants and IDS enzyme activity, surgical history were analysed in the study. Results: A total of 130 patients were enrolled and the mean age at diagnosis was 5 years old. This study found the most common symptoms in our patients were claw-like hands, followed by coarse facial features, birthmarks (Mongolian spot), delayed development, inguinal or umbilical hernia. The most commonly cardiac manifestations were valve abnormalities, which were mitral/tricuspid valve regurgitation (71.9%) and aortic/pulmonary valve regurgitation (36.8%). We had found 43 different IDS pathogenic gene variants in 55 patients, included 16 novel variants. The variants were concentrated in exon 9 (20% = 11/55), exon 3 (20% = 11/55) and exon 8 (15% = 8/55). A total of 50 patients (38.5%) underwent surgical treatment, receiving a total of 63 surgeries. The average age of first surgery was 2.6 years, and the majority of surgery (85.7%, 54/63) was operated before 4 years old. The most common and earliest surgery was hernia repair. Three patients were died of respiratory failure. Conclusion: This study provided additional information on the clinical, cardiac ultrasound and surgical procedure in MPS II patients. Our study expanded the genotype spectrum of MPS II. Based on these data, characterization of MPS II patients group could be used to early diagnosis and treatment of the disease.
RESUMO
Two C2 H6 -selective metal-organic framework (MOF) adsorbents with ultrahigh stability, high surface areas, and suitable pore size have been designed and synthesized for one-step separation of ethane/ethylene (C2 H6 /C2 H4 ) under humid conditions to produce polymer-grade pure C2 H4 . Experimental results reveal that these two MOFs not only adsorb a high amount of C2 H6 but also display good C2 H6 /C2 H4 selectivity verified by fixed bed column breakthrough experiments. Most importantly, the good water stability and hydrophobic pore environments make these two MOFs capable of efficiently separating C2 H6 /C2 H4 under humid conditions, exhibiting the benchmark performance among all reported adsorbents for separation of C2 H6 /C2 H4 under humid conditions. Moreover, the affinity sites and their static adsorption energies were successfully revealed by single crystal data and computation studies. Adsorbents described in this work can be used to address major chemical industrial challenges.
RESUMO
Purpose: Chlamydia psittaci (C. psittaci) has caused sporadic, but recurring, fatal community-acquired pneumonia outbreaks worldwide, posing a serious threat to public health. Our understanding of host inflammatory responses to C. psittaci is limited, and many bronchitis cases of psittaci have rapidly progressed to pneumonia with deterioration. Methods: To clarify the host inflammatory response in psittacosis, we analyzed clinical parameters, and compared transcriptomic data, concentrations of plasma cytokines/chemokines, and changes of immune cell populations in 17 laboratory-confirmed psittacosis cases, namely, 8 pneumonia and 9 bronchitis individuals, in order to assess transcriptomic profiles and pro-inflammatory responses. Results: Psittacosis cases with pneumonia were found to have abnormal routine blood indices, liver damage, and unilateral pulmonary high-attenuation consolidation. Transcriptome sequencing revealed markedly elevated expression of several pro-inflammatory genes, especially interleukins and chemokines. A multiplex-biometric immunoassay showed that pneumonia cases had higher levels of serum cytokines (G-CSF, IL-2, IL-6, IL-10, IL-18, IP-10, MCP-3, and TNF-α) than bronchitis cases. Increases in activated neutrophils and decreases in the number of lymphocytes were also observed in pneumonia cases. Conclusion: We identified a number of plasma biomarkers distinct to C. psittaci pneumonia and a variety of cytokines elevated with immunopathogenic potential likely inducing an inflammatory milieu and acceleration of the disease progression of psittaci pneumonia. This enhances our understanding of inflammatory responses and changes in vascular endothelial markers in psittacosis with heterogeneous symptoms and should prove helpful for developing both preventative and therapeutic strategies.
Assuntos
Bronquite , Chlamydophila psittaci , Pneumonia , Psitacose , Biomarcadores , Quimiocina CXCL10 , Citocinas , Fator Estimulador de Colônias de Granulócitos , Humanos , Interleucina-10 , Interleucina-18 , Interleucina-2 , Interleucina-6 , Fator de Transferência , Fator de Necrose Tumoral alfaRESUMO
Background: Bronchopulmonary dysplasia (BPD) is a devastating form of chronic lung disease that develops in preterm infants. BPD is speculated to arise from abnormal inflammatory responses, which is related to the composition of commensal microbiota, leading us to hypothesize that BPD susceptibility could be influenced by gut microbiota through inflammatory responses. This study is aimed to detect cytokines and the differences in fecal gut microbial composition in the BPD patients. Methods: Between June 2018 and June 2020, preterm infants born at gestational age ≤30 weeks were recruited. The clinical data of infant characteristics were collected. On days 3-7 and 14-28 after birth, fresh stool samples and serum were collected. The gut microbiota composition between the BPD group and controls was detected by 16S rRNA sequencing. On days 3-7 and days 14-28, ten cytokines including IL-1ß, IL-2, IL-4, IL-6, IL-8, IL-10, IL-12p70, IL-13, IFN-γ, and TNF-α were detected in the serum. Results: This study enrolled 38 preterm infants; the number of preterm infants in the BPD group and control group was, respectively, 18 and 20. The gestational age (27.4 ± 1.5 weeks vs. 29.5 ± 0.9 weeks, p = 0.000) and birth weight (971 ± 240 g vs. 1262 ± 335 g, p = 0.000) of the BPD group were lower than those of the control group. The present study found that the BPD group had high levels of IL-1ß, IL-4, IL-6, IL-8, and TNF-α, whereas IL-10 was decreased. The Shannon diversity index of the BPD group was lower. The relative abundances of Proteobacteria in BPD group increased significantly from days 3-7 to days 14-28, while the Firmicutes was decreased. On days 14-28, the relative abundances of Proteobacteria in BPD group were significantly higher than those in the control group, while the Firmicutes was lower. Conclusion: Bronchopulmonary dysplasia could be influenced by gut microbiota through inflammatory responses. More studies are needed to explore the imbalance of cytokines and microbiome in BPD infants and whether it could be reversed by probiotics. This study provided a novel perspective for treating BPD.
RESUMO
Developing cost-/energy-efficient separation techniques for purifying ethylene from an ethylene/ethane mixture is highly important but very challenging in the industrial process. Herein, using a bottom-up [8 + 2] construction approach, we rationally designed and synthesized three three-dimensional covalent organic frameworks (COFs) with 8-connected bcu networks, which can selectively remove ethane from an ethylene/ethane mixture with high efficiency. These COF materials, which are fabricated by the condensation reaction of a customer-designed octatopic aldehyde monomer with linear diamino linkers, possess high crystallinity, good structural robustness, and high porosity. Attributed to the well-organized micro-sized pores with a nonpolar/inert pore environment, these COFs display high ethane adsorption capacity and good selectivity over ethylene, making them among the best ethane-selective adsorbents for ethylene purification. Their excellent ethylene/ethane separation performance is validated by dynamic breakthrough experiments with high-purity ethylene (>99.99%) produced through a single adsorption process. The separation performance surpasses all reported C2H6-selective COFs and even some benchmark metal-organic frameworks. This work provides important guidance for the design of new adsorbents for value-added gas purification.
RESUMO
Gas separation performances are usually degraded under humid conditions for many crystalline porous materials because of the lack of water stability and/or the competition of water vapor toward the interaction sites (e.g., open metal sites). Zeolitic imidazolate frameworks (ZIFs) are suitable candidates for practical applications in gas separation because of their excellent physical/chemical stabilities. However, the limitation of substituent positions in common ZIFs has prevented extensive pore engineering to improve their separation performance. In a type of gyroidal ZIFs with gie topology, the Schiff base moiety provides additional substituent positions, making it possible to modify the spatial arrangement of hydrophobic methyl groups. Herein, a new gyroidal ZIF, ZnBAIm (H2BAIm = 1,2-bis(1-(1H-imidazol-4-yl)ethylidene)hydrazine), is designed, synthesized, and characterized. The spatially modified ZnBAIm exhibits improved thermal/chemical/mechanical stabilities compared to ZnBIm (H2BIm = 1,2-bis((5H-imidazol-4-yl)methylene)hydrazine). ZnBAIm can remain intact up to about 480 °C in a N2 atmosphere and tolerate harsh treatments (e.g., 5 M NaOH aqueous solution at room temperature for 24 h and 190 MPa high pressure in the presence of water). Moreover, the modified pore and window sizes have improved significantly the ethane/ethylene selectivity and separation performance under humid conditions for ZnBAIm. Breakthrough experiments demonstrate efficient separation of a C2H6/C2H4 (50/50, v/v) binary gas mixture under ambient conditions; more importantly, the C2H6/C2H4 separation performance is unaffected under highly humid conditions (up to 80% RH). The separation performance is attributed to combined thermodynamic (stronger dispersion interaction with C2H6 than with C2H4) and kinetic factors (diffusion), determined by density functional theory calculations and kinetic adsorption study, respectively.
RESUMO
AIM: The aim of our work was to determine the utility of DNM1 as a biomarker for the diagnosis and prognosis of colon cancer (CC). METHODS: DNM1 expression variations in CC vs. normal tissues were investigated using The Cancer Genome Atlas (TCGA) database. The association of DNM1 expression levels with the clinicopathological variables in CC prognosis was investigated using logistic regression analyses. Independent prognostic factors for CC were evaluated using univariate and multivariate Cox regression analyses. The correlation between DNM1 expression and immune cell infiltration was estimated using single-sample Gene Set Enrichment Analysis (ssGSEA). RESULTS: DNM1 expression in CC tissues was significantly higher than that in normal tissues. High DNM1 expression was significantly correlated with M stage, N stage, perineural invasion and lymphatic invasion and predicted poor prognosis. The univariate analysis highlighted that DNM1 was an independent CC risk factor. Results of ssGSEA showed that DNM1 was linked to several cancer-related pathways, including the neuroactive ligand-receptor interaction, hypertrophic cardiomyopathy, ECM-receptor interaction, dilated cardiomyopathy, and calcium signaling pathway. Moreover, DNM1 expression was positively correlated with the level of infiltration by Neutrophils, Tregs, NK cells, and Macrophages. CONCLUSION: DNM1 has a significant function and has diagnostic and prognostic potential for CC.
Assuntos
Biomarcadores Tumorais/genética , Neoplasias do Colo/genética , Dinamina I/genética , Idoso , Neoplasias do Colo/patologia , Bases de Dados Genéticas , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genes Neoplásicos/genética , Genoma/genética , Humanos , Masculino , Prognóstico , Transdução de Sinais/genéticaRESUMO
Tumor radioresistance is a major issue in radiotherapy. To address it, a pH-responsive nanoradiosensitizer was synthesized employing a simple method. Initially, chloroplatinic acid was reduced by human serum albumin (HSA) to form HSA-wrapped Pt@HSA nanoparticles (NPs). Subsequently, cinnamicaldehyde (CA) was grafted on Pt@HSA via aldimine condensation to obtain nanoradiosensitizer Pt@HSA/CA NPs. CA would be released in tumor cells (pH = 5.5) to induce the production of reactive oxygen species, including H2O2, ËOH, etc. The increased decomposition of H2O2 catalyzed by the NPs resulted in enhanced production of oxygen, leading to hypoxia relief of the tumor cells, which is beneficial for radiotherapy. Due to the high X-ray attenuation coefficient of Pt, Pt@HSA/CA NPs enhance the energy deposition of radiation. Cytotoxicity assay revealed that Pt@HSA/CA NPs resulted in a cell death rate of 77%, which was 24.4% higher than that of Pt@HSA NPs even under low-dose X-ray irradiation of 4 Gy. Colony formation assay demonstrated that the sensitization enhancement ratio was 1.37, indicating that Pt@HSA/CA NPs displayed remarkable radiosensitizing ability. Notably, in vivo results indicated that the NPs could increase the tumor inhibition rate to 91.2% with negligible side effects to normal tissues. These results demonstrate that Pt@HSA/CA NPs had outstanding tumor curative efficacy and hypotoxicity.
Assuntos
Peróxido de Hidrogênio , Nanopartículas , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Estresse OxidativoRESUMO
As an excellent candidate material for nano-sensitizers, gold nanostructures have shown great potential in radiotherapy. Nevertheless, severe hypoxia and low accumulation of nanomedicine caused by poor perfusion at the tumor site have significantly reduced radiotherapy efficacy. Vascular normalization has gained attention owing to its ability to relieve hypoxia and increase perfusion. The synergistic therapy of tumor vascular normalization and radiotherapy has become a new option to increase anti-cancer efficacy. However, the commonly used strategy of suppressing a single growth factor to induce vascular normalization is limited by tumor compensatory effects. In this work, we developed a strategy to inhibit oxidative stress in tumors by generating chelating agents in response to hydrogen peroxide, thereby inhibiting multi-angiogenic factors simultaneously to normalize blood vessels. Concretely, sodium alginate (SA) reacted with 8-quinoline boric acid (QBA) to form SA-QBA. Then gold nanoparticles (Au NPs) were modified with SA-QBA to obtain Au@SA-QBA. The system was simple in structure and could generate 8HQ in response to H2O2in vitro to inhibit oxidative stress and reduce the expression of VEGF, bFGF, and Ang-2. In vivo, the perfusion unit (PU) increased by 78% after Au@SA-QBA treatment, and the coverage of pericytes increased by 32%, which in turn induced vascular normalization. In addition, blood routine and blood biochemical tests confirmed its good biocompatibility and 8HQ was not detected in the supernatant after homogenization of major organs. More importantly, after the synergistic treatment of vascular normalization and radiotherapy (4 Gy), the tumor growth inhibition rate was increased by 38.6% compared to the Au@SA-treated group with negligible side effects to normal tissues.
Assuntos
Nanopartículas Metálicas , Radiossensibilizantes , Linhagem Celular Tumoral , Ouro , NanomedicinaRESUMO
The method of tumor microenvironment (TME)-responsive aggregation has become a promising approach to enhance treatment effect by improving the accumulation of nanoparticles in tumors. The enzymatic cross-linking strategy has widely attracted attention owing to its good aggregation stability and biocompatibility. However, the enzymes in nontumor tissue can also catalyze the cross-linking reaction and reduce accumulation of nanoparticles in tumor. In this work, a "dual key"-responsive strategy is utilized to construct a transglutaminase (TGase)/pH-responsive radiosensitizer (Au@TAcoGal) with specific aggregation behavior in hepatic tumor cells. Au@TAcoGal can retain its stability in blood circulation (pH 7.4) even in the presence of TGase in plasma. On reaching tumor sites, it can be endocytosed by hepatoma cells by the active targeting of phenylboronic acid (PBA) and aggregated under acidity and overexpression of TGase in cells. Due to its specific accumulation in hepatoma cells, radiotherapy can be operated under a lower dose of X-ray. The results show that the cellular accumulation of Au@TAcoGal increases by 30-70%, and the cell survival rate is less than 25% under X-ray irradiation. The antineoplastic results show that Au@TAcoGal exhibits a higher therapeutic effect, and the tumor inhibition rate can reach 84.21%.
Assuntos
Ouro , Neoplasias Hepáticas , Linhagem Celular Tumoral , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Hepáticas/tratamento farmacológico , Nanopartículas Metálicas , Radiossensibilizantes , Transglutaminases , Microambiente TumoralRESUMO
The development of new techniques and materials that can separate ethylene from ethane is highly relevant in modern applications. Although adsorption-based separation techniques using metal-organic frameworks (MOFs) have gained increasing attention, the relatively low stability (especially water resistance) and unscalable synthesis of MOFs severely limit their application in real industrial scenarios. Addressing these challenges, we rationally designed and synthesized two new C2H6-selective MOF adsorbents (NKMOF-8-Br and -Me) with ultrahigh chemical and thermal stability, including water resistance. Attributed to the nonpolar/hydrophobic pore environments and appropriate pore apertures, the MOFs can capture C2 hydrocarbon gases at ambient conditions even in high humidity. The single-crystal structures of gas@NKMOF-8 realized the direct visualization of adsorption sites of the gases. Both the single-crystal data and simulated data elucidate the mechanism of selective adsorption. Moreover, the NKMOF-8 possesses high C2H6 adsorption capacity and high selectivity, allowing for efficient C2H6/C2H4 separation, as verified by experimental breakthrough tests. Most importantly, NKMOF-8-Br and -Me can be scalably synthesized through stirring at room temperature in minutes, which confers them with great potential for industrial application. This work offers new adsorbents that can address major chemical industrial challenges and provides an in-depth understanding of the gas binding sites in a visual manner.
RESUMO
As a radiotherapy sensitizer, gold-based nanomaterials can significantly enhance radiotherapy efficacy. However, the severe hypoxia and the low accumulation of nanomedicine at the tumor site caused by poor perfusion have seriously affected the effect of radiotherapy. Tumor vascular normalization has emerged as a new strategy for increasing the efficacy of radiotherapy due to its ability to relieve hypoxia and increase perfusion. However, a commonly used approach of blocking a single growth factor to induce vascular normalization is limited by the compensation effect of evasive drug resistance. In this work, we developed a strategy to simultaneously reduce the expression of multi-angiogenic growth factors by suppressing the oxidative stress effects in tumor. Herein, gold nanoparticles (Au NPs) were modified with 8-hydroxyquinoline (HQ) to obtain AuHQ. This system has a simple structure and could inhibit the production of reactive oxygen species in tumor cells by chelating iron ions, and attenuating the expression of angiopoietin-2, vascular endothelial growth factor and basic fibroblast growth factor in human umbilical vein endothelial cells. In vivo, AuHQ treatment increased pericyte coverage, modulated tumor leakage while alleviating tumor hypoxia and increased blood perfusion, thereby inducing tumor vascular normalization. Consequently, Au accumulation of the AuHQ group increased by 1.94 fold compared to that in the control group. Furthermore, the antitumor efficacy of radiotherapy was increased by 38% compared to the Au NPs-treated group. Therefore, AuHQ may be a promising nanomedicine for future cancer treatment.
Assuntos
Ouro/química , Nanopartículas Metálicas/química , Neoplasias/irrigação sanguínea , Oxiquinolina/química , Radiossensibilizantes/farmacologia , Radioterapia/métodos , Animais , Sobrevivência Celular/efeitos dos fármacos , Feminino , Células Hep G2 , Xenoenxertos , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos ICR , Neoplasias/metabolismo , Neoplasias/patologia , Radiossensibilizantes/química , Radioterapia/normas , Espécies Reativas de Oxigênio/metabolismoRESUMO
Gene therapy has entered a new era after decades-long efforts, where the recombinant adeno-associated virus (AAV) has stood out as the most potent vector for in vivo gene transfer and demonstrated excellent efficacy and safety profiles in numerous preclinical and clinical studies. Since the first AAV-derived therapeutics Glybera was approved by the European Medicines Agency (EMA) in 2012, there is an increasing number of AAV-based gene augmentation therapies that have been developed and tested for treating incurable genetic diseases. In the subsequent years, the United States Food and Drug Administration (FDA) approved two additional AAV gene therapy products, Luxturna and Zolgensma, to be launched into the market. Recent breakthroughs in genome editing tools and the combined use with AAV vectors have introduced new therapeutic modalities using somatic gene editing strategies. The promising outcomes from preclinical studies have prompted the continuous evolution of AAV-delivered therapeutics and broadened the scope of treatment options for untreatable diseases. Here, we describe the clinical updates of AAV gene therapies and the latest development using AAV to deliver the CRISPR components as gene editing therapeutics. We also discuss the major challenges and safety concerns associated with AAV delivery and CRISPR therapeutics, and highlight the recent achievement and toxicity issues reported from clinical applications.
Assuntos
Dependovirus/genética , Edição de Genes/métodos , Terapia Genética/métodos , Vetores Genéticos , Animais , Produtos Biológicos/uso terapêutico , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Técnicas de Transferência de Genes , Terapia Genética/efeitos adversos , Humanos , Proteínas Recombinantes de Fusão/uso terapêutico , Resultado do TratamentoRESUMO
Bronchopulmonary dysplasia (BPD) is the most common complication of extremely preterm birth. This study was aimed at detecting cytokine and fractional exhaled nitric oxide (FeNO) levels to evaluate their mechanisms and predicted significance for BPD. Preterm infants born at gestational age ≤ 32 weeks were recruited, and clinical data were collected. We detected ten cytokines, including IFN-γ, IL-10, IL-12p70, IL-13, IL-1ß, IL-2, IL-4, IL-6, IL-8, and TNF-α on Days 1-3, Days 7-14, and Days 21-28 after birth by using the Meso Scale Discovery (MSD) technology. The FeNO levels of infants were measured when they met the discharge criteria. A total of 46 preterm infants were enrolled, consisting of 14 infants in BPD group and 32 infants in the control group. The gestational age (27.5 ± 1.3 vs. 29.9 ± 1.3 weeks) and birth weight (1021 ± 261 g vs. 1489 ± 357 g) were lower in the BPD group. The following were high-risk factors for BPD, as determined by multivariate logistic regression analysis: gestational age < 30 weeks, birth weight < 1000 g, PDA, longer mechanical ventilation, and higher FeNO. The cytokines of IL-6 and IL-8 on Days 7-14 and IL-4, IL-6, IL-8, and TNF-α on Days 21-28 were also high-risk factors for BPD. IL-6 contributed to BPD disease severity. Conclusion. The preterm infants with PDA and prolonged mechanical ventilation tended to develop BPD. The IL-6 and IL-8 were significantly increased on Days 7-14 and were high-risk factors for BPD. Moreover, the IL-6 level was associated with BPD disease severity. We speculated that NO was related to BPD via Th2 cell-mediated inflammatory responses such as IL-4 and IL-6. Cytokines might predict the occurrence of BPD.
Assuntos
Displasia Broncopulmonar , Citocinas/sangue , Óxido Nítrico/análise , Biomarcadores/análise , Testes Respiratórios , Displasia Broncopulmonar/sangue , Displasia Broncopulmonar/epidemiologia , Displasia Broncopulmonar/metabolismo , Feminino , Humanos , Recém-Nascido , Recém-Nascido Prematuro , Masculino , Fatores de RiscoRESUMO
Herein, for the first time, we present the successful synthesis of a novel two-dimensional corrole-based covalent organic framework (COF) by reacting the unusual approximately T-shaped 5,10,15-tris(p-aminophenyl)corrole H3 TPAPC with terephthalaldehyde, which adopts desymmetrized hcb topology and consists of a staggered AB stacking structure with elliptical pores. The resultant corrole-based COF, TPAPC-COF, exhibits high crystallinity and excellent chemical stability. The combination of extended π-conjugated backbone and interlayer noncovalent π-π interactions endows TPAPC-COF with excellent absorption capability in the entire visible-light and even near-infrared regions. Moreover, this work suggests the promise of TPAPC-COF as a new class of photoactive material for efficient singlet-oxygen generation with potential photodynamic therapy application as demonstrated by in vitro anticancer studies.