Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Yi Chuan ; 45(5): 395-408, 2023 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-37194587

RESUMO

STIM1 (stromal interaction molecule 1) is one of the key components of the store operated Ca2+ entry channel (SOCE), which is located on the endoplasmic reticulum membrane and highly expressed in most kinds of tumors. STIM1 promotes tumorigenesis and metastasis by modulating the formation of invadopodia, promoting angiogenesis, mediating inflammatory response, altering the cytoskeleton and cell dynamics. However, the roles and mechanism of STIM1 in different tumors have not been fully elucidated. In this review, we summarize the latest progress and mechanisms of STIM1 in tumorigenesis and metastasis, thereby providing insights and references for the study on STIM1 in the field of cancer biology in the future.


Assuntos
Cálcio , Carcinogênese , Humanos , Molécula 1 de Interação Estromal/genética , Molécula 1 de Interação Estromal/metabolismo , Carcinogênese/genética , Cálcio/metabolismo , Sinalização do Cálcio/fisiologia , Proteínas de Neoplasias/genética
2.
Sci Rep ; 8(1): 16862, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30442988

RESUMO

Electron radiation and γ photon annihilation are two of the major processes in ultra intense lasers (UIL). Understanding their behavior in one coherence interval (CI) is the basis for UIL-matter interaction researches. However, most existing analytic formulae only give the average over many CIs. Present understanding of these two multi-photon processes in one CI usually assume that they emit forward and their spectra have a cutoff at the energy of the electron/γ. Such assumptions ignore the effects of involved laser photons (EILP). We deduced the formulae for these two processes in one CI with EILP included and give the conditions for the EILP to be significant. Strong EILP introduces new behaviors into these two processes in one CI, such as large angle emission and emit particles above the usually assumed cutoff. Simulations show that the EILP would be significant when laser intensity reaches 2 × 1022 W/cm2, which is within the reach of state-of-art lasers.

3.
Electron. j. biotechnol ; 17(6): 304-310, Nov. 2014. ilus, graf, tab
Artigo em Inglês | LILACS | ID: lil-730262

RESUMO

Background Peanut (Arachis hypogaea L.) is an important economic and oilseed crop. Long-term rainless conditions and seasonal droughts can limit peanut yields and were conducive to preharvest aflatoxin contamination. To elucidate the molecular mechanisms by which peanut responds and adapts to water limited conditions, we isolated and characterized several drought-induced genes from peanut roots using a suppression subtractive hybridization (SSH) technique. Results RNA was extracted from peanut roots subjected to a water stress treatment (45% field capacity) and from control plants (75% field capacity), and used to generate an SSH cDNA library. A total of 111 non-redundant sequences were obtained, with 80 unique transcripts showing homology to known genes and 31 clones with no similarity to either hypothetical or known proteins. GO and KEGG analyses of these differentially expressed ESTs indicated that drought-related responses in peanut could mainly be attributed to genes involved in cellular structure and metabolism. In addition, we examined the expression patterns of seven differentially expressed candidate genes using real-time reverse transcription-PCR (qRT-PCR) and confirmed that all were up-regulated in roots in response to drought stress, but to differing extents. Conclusions We successfully constructed an SSH cDNA library in peanut roots and identified several drought-related genes. Our results serve as a foundation for future studies into the elucidation of the drought stress response mechanisms of peanut.


Assuntos
Arachis/genética , Estresse Fisiológico/genética , Secas , RNA/isolamento & purificação , Biblioteca Gênica , Análise de Sequência , DNA Complementar/isolamento & purificação , Raízes de Plantas , Regulação da Expressão Gênica de Plantas , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Desidratação , Hibridização de Ácido Nucleico/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA