Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
1.
Eur J Pharmacol ; 963: 176188, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37951490

RESUMO

A triterpenoid isolated from the plant Hedera helix, hederagenin was discovered to have anti-cancer, anti-inflammatory, anti-depressant and anti-fibrosis properties both in vivo and in vitro. In this study, the relationship between mitochondrial fission and hederagenin-induced apoptosis in ovarian cancer (OC) was investigated and the underlying mechanisms were deciphered. Hederagenin's cytotoxicity on OC cells was analyzed using colony formation and CCK-8 assays. The effect of hederagenin on OC cells was also verified by a mouse xenograft tumor model. Flow cytometric analysis was conducted to examine hederagenin's effects on mitochondrial membrane potential, apoptosis, and cell cycle OC cells. MitoTracker Red (CMXRos) staining was performed to observe the mitochondrial morphology. The protein levels of Bak, Bcl-2, Caspase 3, Caspase 9, Cyclin D1 and Bax were measured by Western blot. This study found that hederagenin could suppress the in vivo and in vitro SKOV3 and A2780 cell proliferation in an effective manner. Besides, hederagenin altered the mitochondrial membrane potential, induced S-phase and G0/G1-phase arrest, mitochondrial morphology changes, and apoptosis in OC cells. Additionally, our findings further demonstrated that hederagenin changed the mitochondrial morphology by suppressing dynamin-related protein 1 (Drp1), a crucial mitochondrial division factor. Moreover, Drp1 overexpression could reverse hederagenin-induced apoptosis, whereas the Drp1 knockdown had the opposite effect. Furthermore, hederagenin may trigger BAX mitochondrial translocation and apoptosis in OC cells. These results provided a novel perspective on the relationship between the modulation of mitochondrial morphology and the suppression of ovarian cancer by hederagenin.


Assuntos
Dinâmica Mitocondrial , Neoplasias Ovarianas , Humanos , Camundongos , Animais , Feminino , Linhagem Celular Tumoral , Proteína X Associada a bcl-2/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Dinaminas , Apoptose , Proteínas Mitocondriais/metabolismo
2.
Life Sci Alliance ; 6(10)2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37507137

RESUMO

Non-small cell lung cancer (NSCLC) is the main subtype of lung cancer. The role of hPCL3 isoforms, hPCL3S and hPCL3L, remains ambiguous. This study examines the functional implications of these isoforms in NSCLC, using lung cancer cell lines A549 and NCI-H226c for in vivo and in vitro analyses. The results indicate that elevated expression of both hPCL3S and hPCL3L correlates with diminished overall survival, although only hPCL3S levels are augmented in clinical NSCLC specimens. Inhibition of either isoform leads to reduced cell proliferation, invasion, and migration, with hPCL3S knockdown displaying superior effectiveness. Moreover, the findings reveal that TRIM21 interacts with both isoforms and mediates hPCL3S degradation through K48-linked ubiquitination in NSCLC cells. Conversely, TRIM21 does not facilitate hPCL3L degradation, despite forming K63-linked polyubiquitin chains. These observations highlight the divergent roles of hPCL3 isoforms in NSCLC and underscore the potential therapeutic value of targeting hPCL3S.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Proliferação de Células/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ubiquitinação
5.
Front Oncol ; 13: 1119886, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36845730

RESUMO

The shift in glucose utilization from oxidative phosphorylation to glycolysis is the hallmark of tumor cells. The overexpression of ENO1, one of the key enzymes in the glycolysis process, has been identified in several cancers, however, its role in pancreatic cancer (PC) is yet unclear. This study identifies ENO1 as an indispensable factor in the progression of PC. Interestingly, ENO1-knockout could inhibit cell invasion and migration and prevent cell proliferation in pancreatic ductal adenocarcinoma (PDAC) cells (PANC-1 and MIA PaCa-2); meanwhile, tumor cell glucose uptake and lactate excretion also decreased significantly. Furthermore, ENO1-knockout reduced colony formation and tumorigenesis in both in vitro and in vivo tests. In total, after ENO1 knockout, 727 differentially expressed genes (DEGs) were identified in PDAC cells by RNA-seq. Gene Ontology enrichment analysis revealed that these DEGs are mainly associated with components such as the 'extracellular matrix' and 'endoplasmic reticulum lumen', and participate in the regulation of signal receptor activity. Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that the identified DEGs are associated with pathways, such as 'fructose and mannose metabolism', 'pentose phosphate pathway, and 'sugar metabolism for amino and nucleotide. Gene Set Enrichment Analysis showed that ENO1 knockout promoted the upregulation of oxidative phosphorylation and lipid metabolism pathways-related genes. Altogether, these results indicated that ENO1-knockout inhibited tumorigenesis by reducing cell glycolysis and activating other metabolic pathways by altering the expression of G6PD, ALDOC, UAP1, as well as other related metabolic genes. Concisely, ENO1, which plays a vital role in the abnormal glucose metabolism in PC, can be exploited as a target to control carcinogenesis by reducing aerobic glycolysis.

6.
BMC Med ; 21(1): 68, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36810084

RESUMO

BACKGROUND: Castration-resistant prostate cancer often metastasizes to the bone, and such bone metastases eventually become resistant to available therapies, leading to the death of patients. Enriched in the bone, TGF-ß plays a pivotal role in bone metastasis development. However, directly targeting TGF-ß or its receptors has been challenging for the treatment of bone metastasis. We previously found that TGF-ß induces and then depends on the acetylation of transcription factor KLF5 at K369 to regulate multiple biological processes, including the induction of EMT, cellular invasiveness, and bone metastasis. Acetylated KLF5 (Ac-KLF5) and its downstream effectors are thus potential therapeutic targets for treating TGF-ß-induced bone metastasis in prostate cancer. METHODS: A spheroid invasion assay was applied to prostate cancer cells expressing KLF5K369Q, which mimics Ac-KLF5, to screen 1987 FDA-approved drugs for invasion suppression. Luciferase- and KLF5K369Q-expressing cells were injected into nude mice via the tail artery to model bone metastasis. Bioluminescence imaging, micro-CT), and histological analyses were applied to monitor and evaluate bone metastases. RNA-sequencing, bioinformatic, and biochemical analyses were used to understand nitazoxanide (NTZ)-regulated genes, signaling pathways, and the underlying mechanisms. The binding of NTZ to KLF5 proteins was evaluated using fluorescence titration, high-performance liquid chromatography (HPLC), and circular dichroism (CD) analysis. RESULTS: NTZ, an anthelmintic agent, was identified as a potent invasion inhibitor in the screening and validation assays. In KLF5K369Q-induced bone metastasis, NTZ exerted a potent inhibitory effect in preventive and therapeutic modes. NTZ also inhibited osteoclast differentiation, a cellular process responsible for bone metastasis induced by KLF5K369Q. NTZ attenuated the function of KLF5K369Q in 127 genes' upregulation and 114 genes' downregulation. Some genes' expression changes were significantly associated with worse overall survival in patients with prostate cancer. One such change was the upregulation of MYBL2, which functionally promotes bone metastasis in prostate cancer. Additional analyses demonstrated that NTZ bound to the KLF5 protein, KLF5K369Q bound to the promoter of MYBL2 to activate its transcription, and NTZ attenuated the binding of KLF5K369Q to the MYBL2 promoter. CONCLUSIONS: NTZ is a potential therapeutic agent for bone metastasis induced by the TGF-ß/Ac-KLF5 signaling axis in prostate cancer and likely other cancers.


Assuntos
Neoplasias da Próstata , Humanos , Masculino , Camundongos , Animais , Camundongos Nus , Neoplasias da Próstata/genética , Fatores de Transcrição , Fator de Crescimento Transformador beta , Linhagem Celular Tumoral , Fatores de Transcrição Kruppel-Like/genética
7.
Bioresour Technol ; 373: 128751, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36805829

RESUMO

To elevate the efficiency of acetone-butanol-ethanol (ABE) fermentation by the wild-type strain WK, an optimal co-utilization system (20 mM Fe3+ and 5 g/L butyrate) was established to bring about a 22.22% increment in the yield of ABE mixtures with a significantly enhanced productivity (0.32 g/L/h). With the heterologous introduction of the secondary alcohol dehydrogenase encoded gene (adh), more than 95% of acetone was eliminated to convert 4.5 g/L isopropanol with corresponding increased butanol and ethanol production by 21.08% and 65.45% in the modified strain WK::adh. Under the optimal condition, strain WK::adh was capable of producing a total of 25.46 g/L IBE biosolvents with an enhanced productivity of 0.35 g/L/h by 45.83% over the original conditions. This work for the first time successfully established a synergetic system of co-utilizing Fe(III) and butyrate to demonstrate a feasible and efficient manner for generating the value-added biofuels through the metabolically engineered solventogenic clostridial strain.


Assuntos
2-Propanol , Butanóis , Fermentação , Compostos Férricos , Acetona , Butiratos , 1-Butanol , Clostridium/genética , Etanol
8.
Mod Rheumatol ; 33(1): 111-121, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-35141748

RESUMO

OBJECTIVE: This study aimed to investigate the linkage of long non-coding RNA (lncRNA) expression profile with etanercept response in rheumatoid arthritis (RA) patients. METHODS: Peripheral blood mononuclear cell (PBMC) samples were collected from 80 RA patients prior to etanercept treatment. Samples from eight responders and eight non-responders at week 24 (W24) were proposed to RNA-sequencing, then 10 candidate lncRNAs were sorted and their PBMC expressions were validated by reverse transcription quantitative chain reaction (RT-qPCR) in 80 RA patients. Subsequently, clinical response by lncRNA (CRLnc) prediction model was established. RESULTS: RNA-sequencing identified 254 up-regulated and 265 down-regulated lncRNAs in W24 responders compared with non-responders, which were enriched in immune or joint related pathways such as B-cell receptor signaling, osteoclast differentiation and T-cell receptor signaling pathways, etc. By reverse transcription quantitative chain reaction (RT-qPCR) validation: Two lncRNAs were correlated with W4 response, three lncRNAs were correlated with W12 response, seven lncRNAs were correlated with W24 response. Subsequently, to construct and validate CRLnc prediction model, 80 RA patients were randomly divided into test set (n = 40) and validation set (n = 40). In the test set, lncRNA RP3-466P17.2 (OR = 9.743, P = .028), RP11-20D14.6 (OR = 10.935, P = .007), RP11-844P9.2 (OR = 0.075, P = .022), and TAS2R64P (OR = 0.044, P = .016) independently related to W24 etanercept response; then CRLnc prediction model integrating these four lncRNAs presented a good value in predicting W24 etanercept response (Area Under Curve (AUC): 0.956, 95%CI: 0.896-1.000). However, in the validation set, the CRLnc prediction model only exhibited a certain value in predicting W24 etanercept response (AUC: 0.753, 95%CI: 0.536-0.969). CONCLUSIONS: CRLnc prediction model is potentially a useful tool to instruct etanercept treatment in RA patients.


Assuntos
Artrite Reumatoide , RNA Longo não Codificante , Humanos , Etanercepte/farmacologia , Etanercepte/uso terapêutico , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , RNA Longo não Codificante/uso terapêutico , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Leucócitos Mononucleares/metabolismo , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética
9.
Cell Mol Gastroenterol Hepatol ; 15(2): 373-392, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36244646

RESUMO

BACKGROUND & AIMS: Tumor-initiating cells (TICs) drive pancreatic cancer tumorigenesis, therapeutic resistance, and metastasis. However, TICs are highly plastic and heterogenous, which impede the robust identification and targeted therapy of such a population. The aim of this study is to identify the surface marker and therapeutic target for pancreatic TICs. METHODS: We isolated voltage-gated calcium channel α2δ1 subunit (isoform 5)-positive subpopulation from pancreatic cancer cell lines and freshly resected primary tissues by fluorescence-activated cell sorting and evaluated their TIC properties by spheroid formation and tumorigenic assays. Coimmunoprecipitation was used to identify the direct substrate of CaMKⅡδ. RESULTS: We demonstrate that the voltage-gated calcium channel α2δ1 subunit (isoform 5) marks a subpopulation of pancreatic TICs with the highest TIC frequency among the known pancreatic TIC markers tested. Furthermore, α2δ1 is functionally sufficient and indispensable to promote TIC properties by mediating Ca2+ influx, which activates CaMKⅡδ to directly phosphorylate PKM2 at T454 that results in subsequent phosphorylation at Y105 to translocate into nucleus, enhancing the stem-like properties. Interestingly, blocking α2δ1 with its specific antibody has remarkably therapeutic effects on pancreatic cancer xenografts by reducing TICs. CONCLUSIONS: α2δ1 promotes pancreatic TIC properties through sequential phosphorylation of PKM2 mediated by CaMKⅡδ, and targeting α2δ1 provides a therapeutic strategy against TICs for pancreatic cancer.


Assuntos
Canais de Cálcio , Neoplasias Pancreáticas , Humanos , Canais de Cálcio/metabolismo , Fosforilação , Linhagem Celular Tumoral , Proliferação de Células , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas
10.
Oxid Med Cell Longev ; 2022: 2896049, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36062197

RESUMO

Background: Compound fuling granule (CFG) is a traditional Chinese medicine formula that is used for more than twenty years to treat ovarian cancer (OC) in China. However, the underlying processes have yet to be completely understood. This research is aimed at uncovering its molecular mechanism and identifying possible therapeutic targets. Methods: Significant genes were collected from Therapeutic Target Database and Database of Gene-Disease Associations. The components of CFG were analyzed by LC-MS/MS, and the active components of CFG were screened according to their oral bioavailability and drug-likeness index. The validated targets were extracted from PharmMapper and PubChem databases. Venn diagram and STRING website diagrams were used to identify intersection targets, and a protein-protein interaction network was prepared using STRING. The ingredient-target network was established using Cytoscape. Molecular docking was performed to visualize the molecule-protein interactions using PyMOL 2.3. Enrichment and pathway analyses were performed using FunRich software and Reactome pathway, respectively. Experimental validations, including CCK-8 assay, wound-scratch assay, flow cytometry, western blot assay, histopathological examination, and immunohistochemistry, were conducted to verify the effects of CFG on OC cells. Results: A total of 56 bioactive ingredients of CFG and 185 CFG-OC-related targets were screened by network pharmacology analysis. The potential therapeutic targets included moesin, glutathione S-transferase kappa 1, ribonuclease III (DICER1), mucin1 (MUC1), cyclin-dependent kinase 2 (CDK2), E1A binding protein p300, and transcription activator BRG1. Reactome analysis showed 51 signaling pathways (P < 0.05), and FunRich revealed 44 signaling pathways that might play an important role in CFG against OC. Molecular docking of CDK2 and five active compounds (baicalin, ignavine, lactiflorin, neokadsuranic acid B, and deoxyaconitine) showed that baicalin had the highest affinity to CDK2. Experimental approaches confirmed that CFG could apparently inhibit OC cell proliferation and migration in vitro; increase apoptosis; decrease the protein expression of MUC1, DICER1, and CDK2; and suppress the progression and distant metastasis of OC in vivo. DICER1, a tumor suppressor, is essential for microRNA synthesis. Our findings suggest that CFG may impair the production of miRNAs in OC cells. Conclusion: Based on network pharmacology, molecular docking, and experimental validation, the potential mechanism underlying the function of CFG in OC was explored, which supplies the theoretical groundwork for additional pharmacological investigation.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias Ovarianas , Wolfiporia , Carcinoma Epitelial do Ovário/tratamento farmacológico , Cromatografia Líquida , RNA Helicases DEAD-box , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Feminino , Humanos , Simulação de Acoplamento Molecular , Farmacologia em Rede , Neoplasias Ovarianas/tratamento farmacológico , Ribonuclease III , Espectrometria de Massas em Tandem
11.
Front Immunol ; 13: 880288, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35572559

RESUMO

Hepatocellular carcinoma (HCC) is a common malignancy with higher mortality, and means are urgently needed to improve the prognosis. T cell exclusion (TCE) plays a pivotal role in immune evasion, and lncRNAs represent a large group of tumor development and progression modulators. Using the TCGA HCC dataset (n=374), we identified 2752 differentially expressed and 702 TCE-associated lncRNAs, of which 336 were in both groups. As identified using the univariate Cox regression analysis, those associated with overall survival (OS) were subjected to the LASSO-COX regression analysis to develop a prognosis signature. The model, which consisted of 11 lncRNAs and was named 11LNCPS for 11-lncRNA prognosis signature, was validated and performed better than two previous models. In addition to OS and TCE, higher 11LNCPS scores had a significant correlation with reduced infiltrations of CD8+ T cells and dendritic cells (DCs) and decreased infiltrations of Th1, Th2, and pro B cells. As expected, these infiltration alterations were significantly associated with worse OS in HCC. Analysis of published data indicates that HCCs with higher 11LNCPS scores were transcriptomically similar to those that responded better to PDL1 inhibitor. Of the 11LNCPS lncRNAs, LINC01134 and AC116025.2 seem more crucial, as their upregulations affected more immune cell types' infiltrations and were significantly associated with TCE, worse OS, and compromised immune responses in HCC. LncRNAs in the 11LNCPS impacted many cancer-associated biological processes and signaling pathways, particularly those involved in immune function and metabolism. The 11LNCPS should be useful for predicting prognosis and immune responses in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA Longo não Codificante , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/patologia , Humanos , Imunidade , Neoplasias Hepáticas/patologia , Prognóstico , RNA Longo não Codificante/metabolismo
12.
Carcinogenesis ; 43(8): 766-778, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-35436337

RESUMO

Accumulating evidence has shown that the traits of tumor-initiating cells (TICs) are controlled by the microenvironment niches (MENs), but the composition and remodeling mechanisms of the MENs of TICs are poorly defined. Here, we report that the voltage-gated calcium channel α2δ1 subunit-positive TICs of hepatocellular carcinoma (HCC) specifically secret lysyl oxidase (LOX), which leads to the cross-linking of collagen, forming a stiff extracellular matrix (ECM) that is sufficient to drive the formation of TICs with a stiff mechanical trait and is subsequently required for the maintenance the properties of HCC TICs. Furthermore, the cross-linked collagen results in the upregulation of integrin α7 (ITGA7), increased phosphorylation of FAK and extracellular signal-regulated kinase 1/2 (ERK1/2). Inhibition of ITGA7 abolishes all the effects of cross-linked collagen mediated by LOX. Hence, the α2δ1+ HCC TICs initiate ECM remodeling by secreting LOX to create a stiff MEN of TIC with cross-linked collagen, which drives the acquisition and subsequent maintenance of the properties of HCC TICs through ITGA7-FAK-ERK1/2 signaling pathway.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Canais de Cálcio/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Colágeno/metabolismo , Humanos , Neoplasias Hepáticas/patologia , Proteína Quinase 3 Ativada por Mitógeno/genética , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Células-Tronco Neoplásicas/patologia , Proteína-Lisina 6-Oxidase/genética , Nicho de Células-Tronco , Microambiente Tumoral
13.
J Cell Mol Med ; 26(3): 800-812, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34953044

RESUMO

Both androgen receptor (AR) and the ZFHX3 transcription factor modulate prostate development. While AR drives prostatic carcinogenesis, ZFHX3 is a tumour suppressor whose loss activates the PI3K/AKT signalling in advanced prostate cancer (PCa). However, it is unknown whether ZFHX3 and AR are functionally related in PCa cells and, if so, how. Here, we report that in AR-positive LNCaP and C4-2B PCa cells, androgen upregulates ZFHX3 transcription via androgen-induced AR binding to the androgen-responsive elements (AREs) of the ZFHX3 promoter. Androgen also upregulated ZFHX3 transcription in vivo, as castration dramatically reduced Zfhx3 mRNA and protein levels in mouse prostates, and ZFHX3 mRNA levels correlated with AR activities in human PCa. Interestingly, the binding of AR to one ARE occurred in the absence of androgen, and the binding repressed ZFHX3 transcription as this repressive binding was interrupted by androgen treatment. The enzalutamide antiandrogen prevented androgen from inducing ZFHX3 transcription and caused excess ZFHX3 protein degradation. In human PCa, ZFHX3 was downregulated and the downregulation correlated with worse patient survival. These findings establish a regulatory relationship between AR and ZFHX3, suggest a role of ZFHX3 in AR function and implicate ZFHX3 loss in the antiandrogen therapies of PCa.


Assuntos
Proteínas de Homeodomínio , Neoplasias da Próstata , Receptores Androgênicos , Androgênios/metabolismo , Animais , Linhagem Celular Tumoral , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Fosfatidilinositol 3-Quinases/metabolismo , Próstata/metabolismo , Neoplasias da Próstata/patologia , Receptores Androgênicos/genética , Receptores Androgênicos/metabolismo
14.
Sheng Wu Gong Cheng Xue Bao ; 37(11): 4124-4133, 2021 Nov 25.
Artigo em Chinês | MEDLINE | ID: mdl-34841812

RESUMO

The existence of cancer stem cells is regarded as the major cause for therapeutic resistance and relapse of a variety of cancer types including hepatocellular carcinoma (HCC). However, the tracing of such a subpopulation in vivo has been challenging. We have previously demonstrated that the isoform 5 of the voltage-gated calcium channel α2δ1 subunit, which can be recognized specifically by a monoclonal antibody 1B50-1, is a bona fide surface marker for HCC stem cells. Here we developed a strategy for optical imaging of α2δ1-positive cells by using a fusion protein containing the single chain variable fragment (scFv) of Mab1B50-1 and the luciferase NanoLuc which was tagged with Flag in the C-terminal. The scFv of Mab1B50-1 was fused to the N-terminal of NanoLucFlag using overlap PCR, and the recombinant fragment, which was named as 1B50-1scFv-NanoLucFlag, was subsequently cloned into a eukaryotic expression vector. The resulting construct was transfected into FreeStyle 293F cells in suspension using PEI reagent. The expression of the fusion protein was identified as a protein with molecular weight about 50 kDa by Western blotting. After purification by ANTI-FLAG® M2 affinity chromatography, 1B50-1scFv-NanoLucFlag was demonstrated to bind to α2δ1 positive cells specifically with a Kd value of (18.62±1.84) nmol/L. Furthermore, a strong luciferase activity of 1B50-1scFv-NanoLucFlag was detected in α2δ1 positive cells following incubation with the fusion protein, indicating that the presence of α2δ1 could be quantified using this fusion protein. Hence, 1B50-1scFv-NanoLucFlag provides a potential tool for optical imaging of α2δ1 positive cancer stem cells both in vitro and in vivo.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Anticorpos de Cadeia Única , Humanos , Células-Tronco Neoplásicas , Proteínas Recombinantes/genética , Anticorpos de Cadeia Única/genética
15.
Cancers (Basel) ; 13(22)2021 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-34830961

RESUMO

Prostate cancer (PCa) is a leading cause of cancer-related deaths among men worldwide, and novel therapies for advanced PCa are urgently needed. Cardiac glycosides represent an attractive group of candidates for anticancer repurposing, but the cardiac glycoside deslanoside has not been tested for potential anticancer activity so far. We found that deslanoside effectively inhibited colony formation in vitro and tumor growth in nude mice of PCa cell lines 22Rv1, PC-3, and DU 145. Such an anticancer activity was mediated by both the cell cycle arrest at G2/M and the induction of apoptosis, as demonstrated by different functional assays and the expression status of regulatory proteins of cell cycle and apoptosis in cultured cells. Moreover, deslanoside suppressed the invasion and migration of PCa cell lines. Genome-wide expression profiling and bioinformatic analyses revealed that 130 genes were either upregulated or downregulated by deslanoside in both 22Rv1 and PC-3 cell lines. These genes enriched multiple cellular processes, such as response to steroid hormones, regulation of lipid metabolism, epithelial cell proliferation and its regulation, and negative regulation of cell migration. They also enriched multiple signaling pathways, such as necroptosis, MAPK, NOD-like receptor, and focal adhesion. Survival analyses of the 130 genes in the TCGA PCa database revealed that 10 of the deslanoside-downregulated genes (ITG2B, CNIH2, FBF1, PABPC1L, MMP11, DUSP9, TMEM121, SOX18, CMPK2, and MAMDC4) inversely correlated, while one deslanoside-upregulated gene (RASD1) positively correlated, with disease-free survival in PCa patients. In addition, one deslanoside-downregulated gene (ENG) inversely correlated, while three upregulated genes (JUN, MXD1, and AQP3) positively correlated with overall survival in PCa patients. Some of the 15 genes have not been implicated in cancer before. These findings provide another candidate for repurposing cardiac glycosides for anticancer drugs. They also suggest that a diverse range of molecular events underlie deslanoside's anticancer activity in PCa cells.

16.
Oncoimmunology ; 10(1): 1912472, 2021 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-33948392

RESUMO

Although all murine MDSCs are defined as Gr1+CD11b+, their true immunophenotype remains elusive. In this study, we found murine Gr1+CD11b+ cells can be divided into two subsets: Gr1+CD11b+B220- and Gr1+CD11b+B220+, especially in the spleen tissues. Unlike the dominant B220- subset, the B220+ subpopulation was not induced by tumor in vivo. Moreover, Gr1+CD11b+B220+ cells from tumor-bearing mice spleens were unable to induce arginase 1 and inducible nitric oxide synthase expression, inhibit T cell proliferation, or promote tumor growth in primary tumor site. Nevertheless, these cells suppressed tumor metastasis in vivo and reduced cancer cell motility in vitro, while Gr1+CD11b+B220- cells from tumor-bearing mice spleens promoted tumor metastasis and enhanced cancer cell motility. Furthermore, both the polymorphonuclear (PMN-MDSCs) and monocytic MDSCs (Mo-MDSCs) could be further divided into B220- and B220+ subsets; interestingly, tumor only induced the expansion of B220- PMN-MDSCs and B220- Mo-MDSCs, but not the B220+ counterparts. Compared with B220- PMN-MDSCs and B220- Mo-MDSCs, the Ly6G+Ly6C-CD11b+B220+ and Ly6G-Ly6C+CD11b+B220+ cells from tumor-bearing mice spleens exhibited a more mature phenotype without immunosuppressive activity. Additionally, IL-6 deficiency attenuated the tumor-induced accumulation of MDSCs, B220- MDSCs and B220- PMN-MDSCs but increased the percentages of Gr1+CD11b+B220+, Ly6G+Ly6C-CD11b+B220+, and Ly6G-Ly6C+CD11b+B220+ cells, indicating the opposing roles of the IL-6 signaling pathway in the expansion of B220- MDSCs and their B220+ counterparts. Taken together, our findings indicate that the B220+ subset is a distinct subset of Gr1+CD11b+ cells functionally different from the B220- subpopulation during tumorigenesis and induction of MDSCs to B220+ cells may be helpful for cancer therapy.


Assuntos
Células Mieloides , Células Supressoras Mieloides , Animais , Carcinogênese , Proliferação de Células , Camundongos , Camundongos Endogâmicos C57BL
17.
Front Immunol ; 12: 631483, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732253

RESUMO

Treatment options for rare tumors are limited, and comprehensive genomic profiling may provide useful information for novel treatment strategies and improving outcomes. The aim of this study is to explore the treatment opportunities of patients with rare tumors using immune checkpoint inhibitors (ICIs) that have already been approved for routine treatment of common tumors. We collected immunotherapy-related indicators data from a total of 852 rare tumor patients from across China, including 136 programmed cell death ligand-1 (PD-L1) expression, 821 tumors mutational burden (TMB), 705 microsatellite instability (MSI) and 355 human leukocyte antigen class I (HLA-I) heterozygosity reports. We calculated the positive rates of these indicators and analyzed the consistency relationship between TMB and PD-L1, TMB and MSI, and HLA-I and PD-L1. The prevalence of PD-L1 positive, TMB-H, MSI-, and HLA-I -heterozygous was 47.8%, 15.5%, 7.4%, and 78.9%, respectively. The consistency ratio of TMB and PD-L1, TMB and MSI, and HLA-I and PD-L1 was 54.8% (78/135), 87.3% (598/685), and 47.4% (54/114), respectively. The prevalence of the four indicators varied widely across tumors systems and subtypes. The probability that neuroendocrine tumors (NETs) and biliary tumors may benefit from immunotherapy is high, since the proportion of TMB-H is as high as 50% and 25.4% respectively. The rates of PD-L1 positivity, TMB-H and MSI-H in carcinoma of unknown primary (CUP) were relatively high, while the rates of TMB-H and MSI-H in soft tissue tumors were both relatively low. Our study revealed the distribution of immunotherapeutic indicators in patients with rare tumors in China. Comprehensive genomic profiling may offer novel therapeutic modalities for patients with rare tumors to solve the dilemma of limited treatment options.


Assuntos
Perfilação da Expressão Gênica/métodos , Genômica/métodos , Imunoterapia/métodos , Neoplasias/genética , Neoplasias/patologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Criança , Pré-Escolar , China , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Lactente , Masculino , Pessoa de Meia-Idade , Mutação , Doenças Raras , Adulto Jovem
18.
Cell Death Dis ; 12(3): 257, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707423

RESUMO

It is hypothesized that tumor-initiating cells (TICs) with stem cell-like properties constitute a sustaining force to drive tumor growth and renew fully established malignancy. However, the identification of such a population in non-small cell lung carcinoma (NSCLC) has been hindered by the lacking of reliable surface markers, and very few of the currently available surface markers are of functional significance. Here, we demonstrate that a subpopulation of TICs could be specifically defined by the voltage-gated calcium channel α2δ1 subunit from non-small cell lung carcinoma (NSCLC) cell lines and clinical specimens. The α2δ1+ NSCLC TICs are refractory to conventional chemotherapy, and own stem cell-like properties such as self-renewal, and the ability to generate heterogeneous tumors in NOD/SCID mice. Moreover, α2δ1+ NSCLC cells are more enriched for TICs than CD133+, or CD166+ cells. Interestingly, α2δ1 is functionally sufficient and indispensable to promote TIC properties by mediating Ca2+ influx into cells, which subsequently activate Calcineurin/NFATc2 signaling that directly activates the expression of NOTCH3, ABCG2. Importantly, a specific antibody against α2δ1 has remarkably therapeutic effects on NSCLC xenografts by eradicating TICs. Hence, targeting α2δ1 to prevent calcium influx provides a novel strategy for targeted therapy against TICs of NSCLC.


Assuntos
Biomarcadores Tumorais/metabolismo , Canais de Cálcio/metabolismo , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Células-Tronco Neoplásicas/metabolismo , Células A549 , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Biomarcadores Tumorais/genética , Calcineurina/metabolismo , Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/genética , Sinalização do Cálcio , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Proliferação de Células , Autorrenovação Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , Fatores de Transcrição NFATC/genética , Fatores de Transcrição NFATC/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Receptor Notch3/genética , Receptor Notch3/metabolismo , Carga Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Cancers (Basel) ; 13(4)2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671634

RESUMO

Molecular signatures predictive of recurrence-free survival (RFS) and castration resistance are critical for treatment decision-making in prostate cancer (PCa), but the robustness of current signatures is limited. Here, we applied the Robust Rank Aggregation (RRA) method to PCa transcriptome profiles and identified 287 genes differentially expressed between localized castration-resistant PCa (CRPC) and hormone-sensitive PCa (HSPC). Least absolute shrinkage and selection operator (LASSO) and stepwise Cox regression analyses of the 287 genes developed a 6-gene signature predictive of RFS in PCa. This signature included NPEPL1, VWF, LMO7, ALDH2, NUAK1, and TPT1, and was named CRPC-derived prognosis signature (CRPCPS). Interestingly, three of these 6 genes constituted another signature capable of distinguishing CRPC from HSPC. The CRPCPS predicted RFS in 5/9 cohorts in the multivariate analysis and remained valid in patients stratified by tumor stage, Gleason score, and lymph node status. The signature also predicted overall survival and metastasis-free survival. The signature's robustness was demonstrated by the C-index (0.55-0.74) and the calibration plot in all nine cohorts and the 3-, 5-, and 8-year area under the receiver operating characteristic curve (0.67-0.77) in three cohorts. The nomogram analyses demonstrated CRPCPS' clinical applicability. The CRPCPS thus appears useful for RFS prediction in PCa.

20.
Nat Commun ; 12(1): 1736, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33741957

RESUMO

Metastasis is the leading cause of cancer-related death. Despite the recent advancements in cancer treatment, there is currently no approved therapy for metastasis. The present study reveals a potent and selective activity of PRAK in the regulation of tumor metastasis. While showing no apparent effect on the growth of primary breast cancers or subcutaneously inoculated tumor lines, Prak deficiency abrogates lung metastases in PyMT mice or mice receiving intravenous injection of tumor cells. Consistently, PRAK expression is closely associated with metastatic risk in human cancers. Further analysis indicates that loss of function of PRAK leads to a pronounced inhibition of HIF-1α protein synthesis, possibly due to reduced mTORC1 activities. Notably, pharmacological inactivation of PRAK with a clinically relevant inhibitor recapitulates the anti-metastatic effect of Prak depletion, highlighting the therapeutic potential of targeting PRAK in the control of metastasis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Metástase Neoplásica , Neoplasias/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Neoplasias da Mama , Linhagem Celular Tumoral , Feminino , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Pulmonares , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos SCID , Neoplasias/terapia , Proteínas Serina-Treonina Quinases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA