Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38896367

RESUMO

Biodegradation effectiveness of S. maltophilia DHHJ is determined by its ability to attach to the hydrolyzed feather keratin monomers. This binding capacity can be influenced by many components in the culture medium. Keratin monomers from feathers or those produced by gene overexpression can induce keratinase production in S. maltophilia DHHJ, and several proteases lack the ability to degrade keratin fragments and cysteines. In this study, we co-incubated FITC-labelled keratin monomers with S. maltophilia DHHJ cells in the presence of BSA, DNA, ATP, and several metal ions, and measured fluorescence values and keratinase activity. BSA was found to compete with keratins for cell binding sites, resulting in less keratinase production. DNA did not interfere with cellular binding to keratins revealing unchanged keratinase level. ATP, along with metal ions, enhanced the cellular binding capacity to keratins and increased the production of keratinase by S. maltophilia DHHJ. Fragments of keratin monomers degraded by proteases reduced the ability of cells to bind to keratin and affected enzyme production. Cysteine, a characteristic amino acid of feather keratin, did not have an effect on cellular binding to keratin monomer or on keratinase production. This study will facilitate the tweaking of catalytic parameters to improve feather biodegradation by S. maltophilia DHHJ.

2.
Nat Biotechnol ; 36(1): 103-112, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29176613

RESUMO

Bacterial cell envelope protein (CEP) complexes mediate a range of processes, including membrane assembly, antibiotic resistance and metabolic coordination. However, only limited characterization of relevant macromolecules has been reported to date. Here we present a proteomic survey of 1,347 CEPs encompassing 90% inner- and outer-membrane and periplasmic proteins of Escherichia coli. After extraction with non-denaturing detergents, we affinity-purified 785 endogenously tagged CEPs and identified stably associated polypeptides by precision mass spectrometry. The resulting high-quality physical interaction network, comprising 77% of targeted CEPs, revealed many previously uncharacterized heteromeric complexes. We found that the secretion of autotransporters requires translocation and the assembly module TamB to nucleate proper folding from periplasm to cell surface through a cooperative mechanism involving the ß-barrel assembly machinery. We also establish that an ABC transporter of unknown function, YadH, together with the Mla system preserves outer membrane lipid asymmetry. This E. coli CEP 'interactome' provides insights into the functional landscape governing CE systems essential to bacterial growth, metabolism and drug resistance.


Assuntos
Membrana Celular/genética , Escherichia coli/genética , Complexos Multiproteicos/genética , Proteômica , Membrana Celular/química , Proteínas de Membrana/química , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Complexos Multiproteicos/química , Complexos Multiproteicos/classificação
3.
Mutat Res ; 793-794: 22-31, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27810619

RESUMO

Escherichia coli cells deleted for the cyclic AMP (cAMP) receptor protein (Crp) gene (Δcrp) cannot utilize glycerol because cAMP-Crp is a required activator of the glycerol utilization operon, glpFK. We have previously shown that a transposon, Insertion Sequence 5 (IS5), can insert into the upstream regulatory region of the operon to activate the glpFK promoter and enable glycerol utilization. GlpR, which represses glpFK transcription, binds to the glpFK upstream region near the site of IS5 insertion and inhibits insertion. By adding cAMP to the culture medium in ΔcyaA cells, we here show that the cAMP-Crp complex, which also binds to the glpFK upstream regulatory region, inhibits IS5 hopping into the activating site. Control experiments showed that the frequencies of mutations in response to cAMP were independent of parental cell growth rate and the selection procedure. These findings led to the prediction that glpFK-activating IS5 insertions can also occur in wild-type (Crp+) cells under conditions that limit cAMP production. Accordingly, we found that IS5 insertion into the activating site in wild-type cells is elevated in the presence of glycerol and a non-metabolizable sugar analogue that lowers cytoplasmic cAMP concentrations. The resultant IS5 insertion mutants arising in this minimal medium become dominant constituents of the population after prolonged periods of growth. The results show that DNA binding transcription factors can reversibly mask a favored transposon target site, rendering a hot spot for insertion less favored. Such mechanisms could have evolved by natural selection to overcome environmental adversity.


Assuntos
Elementos de DNA Transponíveis/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Óperon/genética , Sítios de Ligação/genética , AMP Cíclico/metabolismo , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas/genética
4.
Nature ; 528(7580): 99-104, 2015 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-26632588

RESUMO

Overflow metabolism refers to the seemingly wasteful strategy in which cells use fermentation instead of the more efficient respiration to generate energy, despite the availability of oxygen. Known as the Warburg effect in the context of cancer growth, this phenomenon occurs ubiquitously for fast-growing cells, including bacteria, fungi and mammalian cells, but its origin has remained unclear despite decades of research. Here we study metabolic overflow in Escherichia coli, and show that it is a global physiological response used to cope with changing proteomic demands of energy biogenesis and biomass synthesis under different growth conditions. A simple model of proteomic resource allocation can quantitatively account for all of the observed behaviours, and accurately predict responses to new perturbations. The key hypothesis of the model, that the proteome cost of energy biogenesis by respiration exceeds that by fermentation, is quantitatively confirmed by direct measurement of protein abundances via quantitative mass spectrometry.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteoma/metabolismo , Ácido Acético/metabolismo , Biomassa , Respiração Celular , Metabolismo Energético , Escherichia coli/crescimento & desenvolvimento , Fermentação , Espectrometria de Massas , Modelos Biológicos , Neoplasias/metabolismo , Neoplasias/patologia , Oxigênio/metabolismo , Proteômica
5.
Appl Biochem Biotechnol ; 176(5): 1482-97, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25957275

RESUMO

A gene coding for lipase (Tm1350) from the hyperthermophilic bacterium Thermotoga maritima MSB8 was cloned and overexpressed by Escherichia coli. The enzyme can degrade substrates with both short and long acyl chain lengths. The apparent Km and Vmax values for p-nitrophenyl butyrate were 8 mM and 333 U/mg, respectively. The enzyme displayed optimal activity at pH 7.5 and 70 °C, maintained 66 % of the original activity after 8 h of incubation, and its half-lives at pHs 9 and 10 were 8 and 1 h. The activity of Tm1350 was stimulated up to 131 or 151 % of the original activity by incubating with 4 M urea or 20 % (v/v) methanol, and 90.1 or 70.2 % of the activity was maintained after 8 h incubation of the enzyme in 20 or 75 % (v/v) of the methanol, showing potential for biodiesel production. The activity of the enzyme without cysteine residue was stimulated up to 618 and 550 % of the original activity by incubating with dithiothreitol (DTT) and reduced glutathione (GSH) at a concentration of 1 mM. However, the circular dichroism spectra of the enzyme have no obvious change after DTT treatment. It is speculated that DTT interacts with potential residues in some key active sites without influence of structure.


Assuntos
Álcalis/farmacologia , Lipase/metabolismo , Temperatura , Thermotoga maritima/enzimologia , Sequência de Aminoácidos , Dicroísmo Circular , Ditiotreitol/farmacologia , Ácido Edético/farmacologia , Eletroforese em Gel de Poliacrilamida , Estabilidade Enzimática/efeitos dos fármacos , Glutationa/farmacologia , Concentração de Íons de Hidrogênio , Íons , Lipase/química , Lipase/isolamento & purificação , Metais/farmacologia , Metanol/farmacologia , Dados de Sequência Molecular , Conformação Proteica , Substâncias Redutoras/farmacologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Solventes/farmacologia , Tensoativos/farmacologia
6.
Nature ; 500(7462): 301-6, 2013 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-23925119

RESUMO

The cyclic AMP (cAMP)-dependent catabolite repression effect in Escherichia coli is among the most intensely studied regulatory processes in biology. However, the physiological function(s) of cAMP signalling and its molecular triggers remain elusive. Here we use a quantitative physiological approach to show that cAMP signalling tightly coordinates the expression of catabolic proteins with biosynthetic and ribosomal proteins, in accordance with the cellular metabolic needs during exponential growth. The expression of carbon catabolic genes increased linearly with decreasing growth rates upon limitation of carbon influx, but decreased linearly with decreasing growth rate upon limitation of nitrogen or sulphur influx. In contrast, the expression of biosynthetic genes showed the opposite linear growth-rate dependence as the catabolic genes. A coarse-grained mathematical model provides a quantitative framework for understanding and predicting gene expression responses to catabolic and anabolic limitations. A scheme of integral feedback control featuring the inhibition of cAMP signalling by metabolic precursors is proposed and validated. These results reveal a key physiological role of cAMP-dependent catabolite repression: to ensure that proteomic resources are spent on distinct metabolic sectors as needed in different nutrient environments. Our findings underscore the power of quantitative physiology in unravelling the underlying functions of complex molecular signalling networks.


Assuntos
AMP Cíclico/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteoma , Transdução de Sinais , Modelos Biológicos
7.
J Bacteriol ; 187(3): 980-90, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15659676

RESUMO

In Escherichia coli, the ferric uptake regulator (Fur) controls expression of the iron regulon in response to iron availability while the cyclic AMP receptor protein (Crp) regulates expression of the carbon regulon in response to carbon availability. We here identify genes subject to significant changes in expression level in response to the loss of both Fur and Crp. Many iron transport genes and several carbon metabolic genes are subject to dual control, being repressed by the loss of Crp and activated by the loss of Fur. However, the sodB gene, encoding superoxide dismutase, and the aceBAK operon, encoding the glyoxalate shunt enzymes, show the opposite responses, being activated by the loss of Crp and repressed by the loss of Fur. Several other genes including the sdhA-D, sucA-D, and fumA genes, encoding key constituents of the Krebs cycle, proved to be repressed by the loss of both transcription factors. Finally, the loss of both Crp and Fur activated a heterogeneous group of genes under sigmaS control encoding, for example, the cyclopropane fatty acid synthase, Cfa, the glycogen synthesis protein, GlgS, the 30S ribosomal protein, S22, and the mechanosensitive channel protein, YggB. Many genes appeared to be regulated by the two transcription factors in an apparently additive fashion, but apparent positive or negative cooperativity characterized several putative Crp/Fur interactions. Relevant published data were evaluated, putative Crp and Fur binding sites were identified, and representative results were confirmed by real-time PCR. Molecular explanations for some, but not all, of these effects are provided.


Assuntos
Proteínas de Bactérias/metabolismo , Carbono/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Ferro/metabolismo , Receptores de Superfície Celular/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Proteínas de Bactérias/genética , Sequência de Bases , Sítios de Ligação , Proteína Receptora de AMP Cíclico , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Bacteriano/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Glucose/metabolismo , Cinética , Hibridização de Ácido Nucleico , Fenótipo , Reação em Cadeia da Polimerase , RNA Bacteriano/genética , RNA Bacteriano/isolamento & purificação , Receptores de Superfície Celular/genética , Sequências Reguladoras de Ácido Nucleico , Proteínas Repressoras/genética , Fatores de Transcrição/genética
8.
J Biol Chem ; 280(12): 12028-34, 2005 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-15661733

RESUMO

The transfer of phospholipids across membrane bilayers is protein-mediated, and most of the established transporters catalyze the energy-dependent efflux of phospholipids from cells. This work identifies and characterizes a lysophospholipid transporter gene (lplT, formally ygeD) in Escherichia coli that is an integral component in the 2-acylglycerophosphoethanolamine (2-acyl-GPE) metabolic cycle for membrane protein acylation. The lplT gene is adjacent to and in the same operon as the aas gene, which encodes the bifunctional enzyme 2-acyl-GPE acyltransferase/acyl-acyl carrier protein synthetase. In some bacteria, acyltransferase/acyl-ACP synthetase (Aas) and LplT homologues are fused in a single polypeptide chain. 2-Acyl-GPE transport to the inside of the cell was assessed by measuring the Aas-dependent formation of phosphatidylethanolamine. The Aas-dependent incorporation of [3H]palmitate into phosphatidylethanolamine was significantly diminished in deltalplT mutants, and the LplT-Aas transport/acylation activity was independent of the proton motive force. The deltalplT mutants accumulated acyl-GPE in vivo and had a diminished capacity to transport exogenous 2-acylglycerophosphocholine into the cell. Spheroplasts prepared from wild-type E. coli transported and acylated fluorescent 2-acyl-GPE with an apparent K(d) of 7.5 microM, whereas this high-affinity process was absent in deltalplT mutants. Thus, LplT catalyzes the transbilayer movement of lysophospholipids and is the first example of a phospholipid flippase that belongs to the major facilitator superfamily.


Assuntos
Carbono-Enxofre Ligases/fisiologia , Proteínas de Escherichia coli/fisiologia , Escherichia coli/metabolismo , Bicamadas Lipídicas/metabolismo , Lisofosfolipídeos/metabolismo , Proteínas de Transferência de Fosfolipídeos/fisiologia , Catálise , Membrana Celular/metabolismo , Ácidos Graxos/metabolismo
9.
J Nat Prod ; 66(12): 1567-73, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14695798

RESUMO

A novel cyclopentenedione, asterredione (1), two new terrecyclic acid A derivatives, (+)-5(6)-dihydro-6-methoxyterrecyclic acid A (2) and (+)-5(6)-dihydro-6-hydroxyterrecyclic acid A (3), and five known compounds, (+)-terrecyclic acid A (4), (-)-quadrone (5), betulinan A (6), asterriquinone D (7), and asterriquinone C-1 (8), were isolated from Aspergillus terreus occurring in the rhizosphere of Opuntia versicolor, using bioassay-guided fractionation. Acid-catalyzed reaction of 2 under mild conditions afforded 4, whereas under harsh conditions 2 yielded 5 and (-)-isoquadrone (9). Catalytic hydrogenation and methylation of 4 afforded 5(6)-dihydro-terrecyclic acid A (10) and (+)-terrecyclic acid A methyl ester (11), respectively. The structures of 1-11 were elucidated by spectroscopic methods. All compounds were evaluated for cytotoxicity in a panel of three sentinel cancer cell lines, NCI-H460 (non-small cell lung cancer), MCF-7 (breast cancer), and SF-268 (CNS glioma), and were found to be moderately active. Cell cycle analysis of 2, 4, and 5 using the NCI-H460 cell line indicated that 4 is capable of disrupting the cell cycle through an apparent arrest to progression at the G(1) and G(2)/M phases in this p53 competent cell line. A pathway for the biosynthetic origin of asterredione (1) from asterriquinone D (7) is proposed.


Assuntos
Antineoplásicos/isolamento & purificação , Aspergillus/química , Ciclopentanos/isolamento & purificação , Indóis/isolamento & purificação , Antineoplásicos/farmacologia , Arizona , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ciclopentanos/química , Ciclopentanos/farmacologia , Clima Desértico , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Indóis/química , Indóis/farmacologia , Estrutura Molecular , Neoplasias do Sistema Nervoso , Ressonância Magnética Nuclear Biomolecular , Opuntia , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA