Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
2.
Cell Rep ; 43(2): 113600, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38261514

RESUMO

Emerging data suggest that induction of viral mimicry responses through activation of double-stranded RNA (dsRNA) sensors in cancer cells is a promising therapeutic strategy. One approach to induce viral mimicry is to target molecular regulators of dsRNA sensing pathways. Here, we show that the exoribonuclease XRN1 is a negative regulator of the dsRNA sensor protein kinase R (PKR) in cancer cells with high interferon-stimulated gene expression. XRN1 deletion causes PKR pathway activation and consequent cancer cell lethality. Disruption of interferon signaling with the JAK1/2 inhibitor ruxolitinib can decrease cellular PKR levels and rescue sensitivity to XRN1 deletion. Conversely, interferon-ß stimulation can increase PKR levels and induce sensitivity to XRN1 inactivation. Lastly, XRN1 deletion causes accumulation of endogenous complementary sense/anti-sense RNAs, which may represent candidate PKR ligands. Our data demonstrate how XRN1 regulates PKR and how this interaction creates a vulnerability in cancer cells with an activated interferon cell state.


Assuntos
Interferons , Neoplasias , Interferon beta , Exorribonucleases/metabolismo , Proteínas Quinases , Neoplasias/genética
3.
bioRxiv ; 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37577567

RESUMO

Emerging data suggest that induction of viral mimicry responses through activation of double-stranded RNA (dsRNA) sensors in cancer cells is a promising therapeutic strategy. One approach to induce viral mimicry is to target molecular regulators of dsRNA sensing pathways. Here, we show that the exoribonuclease XRN1 is a negative regulator of the dsRNA sensor protein kinase R (PKR) in cancer cells with high interferon-stimulated gene (ISG) expression. XRN1 deletion causes PKR activation and consequent cancer cell lethality. Disruption of interferon signaling with the JAK1/2 inhibitor ruxolitinib can decrease cellular PKR levels and rescue sensitivity to XRN1 deletion. Conversely, interferon-ß stimulation can increase PKR levels and induce sensitivity to XRN1 inactivation. Lastly, XRN1 deletion causes accumulation of endogenous complementary sense/anti-sense RNAs, which may represent candidate PKR ligands. Our data demonstrate how XRN1 regulates PKR and nominate XRN1 as a potential therapeutic target in cancer cells with an activated interferon cell state.

4.
J Cancer Res Clin Oncol ; 149(10): 8143-8152, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37052632

RESUMO

The search for therapeutic options for lung cancer continues to advance, with rapid advances in the search for therapies to improve patient prognosis. At present, systemic chemotherapy, immune checkpoint inhibitor therapy, antiangiogenic therapy, and targeted therapy for driver gene positivity are available in the clinic. Common clinical treatments fail to achieve desired outcomes due to immunosuppression of the tumor microenvironment (TME). Tumor immune evasion is mediated by cytokines, chemokines, immune cells, and other cells such as vascular endothelial cells within the tumor immune microenvironment. Tumor-associated macrophages (TAMs) are important immune cells in the TME, inducing tumor angiogenesis, encouraging tumor cell proliferation and migration, and suppressing antitumor immune responses. Thus, TAM targeting becomes the key to lung cancer immunotherapy. This review focuses on macrophage phenotype, polarization mechanism, role in lung cancer, and advances in macrophage centric immunotherapies.


Assuntos
Neoplasias Pulmonares , Neoplasias , Humanos , Células Endoteliais/patologia , Imunoterapia , Neoplasias/patologia , Macrófagos , Neoplasias Pulmonares/terapia , Neoplasias Pulmonares/patologia , Tolerância Imunológica , Microambiente Tumoral
5.
Front Immunol ; 13: 1007812, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36439090

RESUMO

Lung cancer is a disease with remarkable heterogeneity. A deep understanding of the tumor microenvironment (TME) offers potential therapeutic strategies against this malignant disease. More and more attention has been paid to the roles of macrophages in the TME. This article briefly summarizes the origin of macrophages, the mutual regulation between anti-tumoral immunity and pro-tumoral statuses derived from macrophage polarization, and the therapeutic opportunities targeting alternately activated macrophages (AAM)-type macrophage polarization. Among them, cellular components including T cells, as well as acellular components represented by IL-4 and IL-13 are key regulators driving the polarization of AAM macrophages. Novel treatments targeting macrophage-associated mechanisms are mainly divided into small molecule inhibitors, monoclonal antibodies, and other therapies to re-acclimate AMM macrophages. Finally, we paid special attention to an immunosuppressive subgroup of macrophages with T cell immunoglobulin and mucin domain-3 (TIM-3) expression. Based on cellular interactions with cancer cells, TIM3+ macrophages facilitate the proliferation and progression of cancer cells, yet this process exposes targets blocking the ligand-receptor recognition. To sum up, this is a systematic review on the mechanism of tumor-associated macrophages (TAM) polarization, therapeutic strategies and the biological functions of Tim-3 positive macrophages that aims to provide new insights into the pathogenesis and treatment of lung cancer.


Assuntos
Receptor Celular 2 do Vírus da Hepatite A , Neoplasias Pulmonares , Microambiente Tumoral , Macrófagos Associados a Tumor , Humanos , Receptor Celular 2 do Vírus da Hepatite A/genética , Receptor Celular 2 do Vírus da Hepatite A/imunologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia , Macrófagos/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Macrófagos Associados a Tumor/imunologia
6.
Front Oncol ; 12: 922332, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36003780

RESUMO

Copper is an essential microelement for the body and a necessary coregulator for enzymatic reactions, yet an unbalanced copper level promotes reactive oxidation and cytotoxicity, which ultimately induces cell death. Several small molecules targeting copper-induced cell death have been investigated, yet few showed promising therapeutic effects in clinical trials. In March 2022, Science first introduced the concept and mechanisms of cuproptosis, suggesting that copper-induced cell death targets the tricarboxylic acid (TCA) cycle via protein lipoylation. Does this novel form of cell death take part in tumorigenesis or tumor progression? Is cuproptosis related to clinical outcomes of diseases? Is there a cuproptosis-related panel for clinical practice in cancer treatment? Herein, based on 942 samples of lung adenocarcinoma (LUAD), we analyzed on gene set level the existence and predictive value of cuproptosis in disease diagnosis and treatment. We screened out and identified the "cupLA" panel which indicates the risk of LUAD occurrence, clinicopathological features of LUAD patients, and could guide clinicians to refine LUAD subtypes and make treatment choices.

7.
Genome Med ; 14(1): 82, 2022 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-35922826

RESUMO

BACKGROUND: Small intestinal neuroendocrine tumors (SI-NETs) are the most common neoplasms of the small bowel. The majority of tumors are located in the distal ileum with a high incidence of multiple synchronous primary tumors. Even though up to 50% of SI-NET patients are diagnosed with multifocal disease, the mechanisms underlying multiple synchronous lesions remain elusive. METHODS: We performed whole genome sequencing of 75 de-identified synchronous primary tumors, 15 metastases, and corresponding normal samples from 13 patients with multifocal ileal NETs to identify recurrent somatic genomic alterations, frequently affected signaling pathways, and shared mutation signatures among multifocal SI-NETs. Additionally, we carried out chromosome mapping of the most recurrent copy-number alterations identified to determine which parental allele had been affected in each tumor and assessed the clonal relationships of the tumors within each patient. RESULTS: Absence of shared somatic variation between the synchronous primary tumors within each patient was observed, indicating that these tumors develop independently. Although recurrent copy-number alterations were identified, additional chromosome mapping revealed that tumors from the same patient can gain or lose different parental alleles. In addition to the previously reported CDKN1B loss-of-function mutations, we observed potential loss-of-function gene alterations in TNRC6B, a candidate tumor suppressor gene in a small subset of ileal NETs. Furthermore, we show that multiple metastases in the same patient can originate from either one or several primary tumors. CONCLUSIONS: Our study demonstrates major genomic diversity among multifocal ileal NETs, highlighting the need to identify and remove all primary tumors, which have the potential to metastasize, and the need for optimized targeted treatments.


Assuntos
Neoplasias Intestinais , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Mutação , Tumores Neuroendócrinos/genética , Proteínas de Ligação a RNA/genética , Neoplasias Gástricas , Sequenciamento Completo do Genoma
9.
Cell Death Discov ; 8(1): 359, 2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-35963868

RESUMO

Lung cancer has been one of the leading causes of cancer-related death worldwide, and non-small-cell lung cancer (NSCLC) accounts for the majority of lung cancer morbidity, yet the pathogenesis of NSCLC has not been fully elucidated. Recently, long-chain non-coding RNA (lncRNA) has attracted widespread attention. LncRNA is a type of non-coding RNA whose transcript length exceeds 200 nucleotides. After constant research, academics updated their understanding of lncRNA, especially its role in the biological processes of cancer cells, including epigenetic regulation, cell proliferation, and cell differentiation. Notably, examination of lncRNAs could serve as potential hallmarks for clinicopathological features, long-term prognosis, and drug sensitivity. Therefore, it is necessary to explore the functions of lncRNA in NSCLC and innovate potential strategies against NSCLC based on lncRNA-related research. Herein, we reviewed the functions of lncRNA in the occurrence, diagnosis, treatment, and prognosis of NSCLC, which not only help promote a comprehensive view of lncRNA in NSCLC, but also shed light on the potential of lncRNA-based diagnosis and treatment of NSCLC.

10.
Cancer Res ; 82(11): 2171-2184, 2022 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-35395071

RESUMO

Cyclin-dependent kinase 4 (CDK4) and CDK6 are key cell-cycle regulators that are frequently dysregulated in human malignancies. CDK4/6 inhibitors are clinically approved for the treatment of hormone receptor-positive, HER2-negative (HR+/HER2-) breast cancer, but improved specificity and reduced toxicity might expand their use to other indications. Through analysis of publicly available genome-wide loss-of-function data combined with single and dual-targeting CRISPR assays, we found differential cell proliferation vulnerability of cell lines to either CDK4 deletion alone, CDK6 deletion alone, combined CDK4/CDK6 deletion, or neither. CDK6 expression was the best single predictor of CDK4 (negatively correlated) and CDK6 (positively correlated) dependencies in the cancer cell lines, with adenocarcinoma cell lines being more sensitive to CDK4 deletion and hematologic and squamous cancer cell lines being more sensitive to CDK6 deletion. RB-E2F signaling was confirmed as a main downstream node of CDK4/6 in these experiments as shown by the survival effects of RB1 deletion. Finally, we show in a subset of cancer cell lines not dependent on CDK4/6 that CDK2-CCNE1 is an important alternative dependency for cell proliferation. Together, our comprehensive data exploration and functional experiments delineate the landscape of pan-cancer CDK4/6 gene dependencies and define unique cancer cell populations that might be sensitive to CDK4-selective or CDK6-selective inhibitors. SIGNIFICANCE: This study provides functional genomic insight toward understanding the scenarios in which cancer cells are differentially sensitive to CDK4 or CDK6 inhibition and their implications in current treatment strategies.


Assuntos
Neoplasias da Mama , Inibidores de Proteínas Quinases , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Feminino , Genômica , Humanos , Inibidores de Proteínas Quinases/farmacologia
11.
Gut ; 71(4): 665-675, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-33789967

RESUMO

OBJECTIVE: Oesophageal squamous cell carcinoma (OSCC), like other squamous carcinomas, harbour highly recurrent cell cycle pathway alterations, especially hyperactivation of the CCND1/CDK4/6 axis, raising the potential for use of existing CDK4/6 inhibitors in these cancers. Although CDK4/6 inhibition has shown striking success when combined with endocrine therapy in oestrogen receptor positive breast cancer, CDK4/6 inhibitor palbociclib monotherapy has not revealed evidence of efficacy to date in OSCC clinical studies. Herein, we sought to elucidate the identification of key dependencies in OSCC as a foundation for the selection of targets whose blockade could be combined with CDK4/6 inhibition. DESIGN: We combined large-scale genomic dependency and pharmaceutical screening datasets with preclinical cell line models, to identified potential combination therapies in squamous cell cancer. RESULTS: We identified sensitivity to inhibitors to the ERBB family of receptor kinases, results clearly extending beyond the previously described minority of tumours with EGFR amplification/dependence, specifically finding a subset of OSCCs with dual dependence on ERBB3 and ERBB2. Subsequently. we demonstrated marked efficacy of combined pan-ERBB and CDK4/6 inhibition in vitro and in vivo. Furthermore, we demonstrated that squamous lineage transcription factor KLF5 facilitated activation of ERBBs in OSCC. CONCLUSION: These results provide clear rationale for development of combined ERBB and CDK4/6 inhibition in these cancers and raises the potential for KLF5 expression as a candidate biomarker to guide the use of these agents. These data suggested that by combining existing Food and Drug Administration (FDA)-approved agents, we have the capacity to improve therapy for OSCC and other squamous cancer.


Assuntos
Carcinoma de Células Escamosas , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Neoplasias Esofágicas/tratamento farmacológico , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/tratamento farmacológico , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
12.
Nat Genet ; 53(6): 881-894, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33972779

RESUMO

Esophageal squamous cell carcinomas (ESCCs) harbor recurrent chromosome 3q amplifications that target the transcription factor SOX2. Beyond its role as an oncogene in ESCC, SOX2 acts in development of the squamous esophagus and maintenance of adult esophageal precursor cells. To compare Sox2 activity in normal and malignant tissue, we developed engineered murine esophageal organoids spanning normal esophagus to Sox2-induced squamous cell carcinoma and mapped Sox2 binding and the epigenetic and transcriptional landscape with evolution from normal to cancer. While oncogenic Sox2 largely maintains actions observed in normal tissue, Sox2 overexpression with p53 and p16 inactivation promotes chromatin remodeling and evolution of the Sox2 cistrome. With Klf5, oncogenic Sox2 acquires new binding sites and enhances activity of oncogenes such as Stat3. Moreover, oncogenic Sox2 activates endogenous retroviruses, inducing expression of double-stranded RNA and dependence on the RNA editing enzyme ADAR1. These data reveal SOX2 functions in ESCC, defining targetable vulnerabilities.


Assuntos
Adenosina Desaminase/metabolismo , Epigenoma , Neoplasias Esofágicas/genética , Carcinoma de Células Escamosas do Esôfago/genética , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Regiões 3' não Traduzidas/genética , Animais , Sequência de Bases , Carcinogênese/genética , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Inibidor p16 de Quinase Dependente de Ciclina/metabolismo , Retrovirus Endógenos/genética , Elementos Facilitadores Genéticos/genética , Regulação Neoplásica da Expressão Gênica , Genoma Humano , Humanos , Interferons/metabolismo , Íntrons/genética , Fatores de Transcrição Kruppel-Like/genética , Camundongos , Organoides/patologia , Ligação Proteica , RNA de Cadeia Dupla/metabolismo , Fatores de Transcrição SOXB1/genética , Proteína Supressora de Tumor p53/metabolismo
13.
Clin Cancer Res ; 27(7): 2087-2099, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33495313

RESUMO

PURPOSE: Abiraterone acetate (AA), an inhibitor of cytochrome P450 17alpha-hydroxylase/17, 20 lyase, is an FDA-approved drug for advanced prostate cancer. However, not all patients respond to AA, and AA resistance ultimately develops in patients who initially respond. We aimed to identify AA resistance mechanisms in prostate cancer cells. EXPERIMENTAL DESIGN: We established several AA-resistant cell lines and performed a comprehensive study on mechanisms involved in AA resistance development. RNA sequencing and phospho-kinase array screenings were performed to discover that the cAMP-response element CRE binding protein 1 (CREB1) was a critical molecule in AA resistance development. RESULTS: The drug-resistant cell lines are phenotypically stable without drug selection, and exhibit permanent global gene expression changes. The phosphorylated CREB1 (pCREB1) is increased in AA-resistant cell lines and is critical in controlling global gene expression. Upregulation of pCREB1 desensitized prostate cancer cells to AA, while blocking CREB1 phosphorylation resensitized AA-resistant cells to AA. AA treatment increases intracellular cyclic AMP (cAMP) levels, induces kinases activity, and leads to the phosphorylation of CREB1, which may subsequently augment the essential role of the CBP/p300 complex in AA-resistant cells because AA-resistant cells exhibit a relatively higher sensitivity to CBP/p300 inhibitors. Further pharmacokinetics studies demonstrated that AA significantly synergizes with CBP/p300 inhibitors in limiting the growth of prostate cancer cells. CONCLUSIONS: Our studies suggest that AA treatment upregulates pCREB1, which enhances CBP/p300 activity, leading to global gene expression alterations, subsequently resulting in drug resistance development. Combining AA with therapies targeting resistance mechanisms may provide a more effective treatment strategy.


Assuntos
Acetato de Abiraterona/uso terapêutico , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Fatores de Transcrição de p300-CBP/fisiologia , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos , Humanos , Masculino , Fosforilação , Neoplasias da Próstata/patologia
14.
Genes Chromosomes Cancer ; 59(9): 535-539, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32291827

RESUMO

Ileal neuroendocrine tumors (NETs) represent the most common neoplasm of the small intestine. Although up to 50% of patients with ileal NETs are diagnosed with multifocal disease, the mechanisms by which multifocal ileal NETs arise are not yet understood. In this study, we analyzed genome-wide sequencing data to examine patterns of copy number variation in 40 synchronous primary ileal NETs derived from three patients. Chromosome (chr) 18 loss of heterozygosity (LOH) was the most frequent copy number alteration identified; however, not all primary tumors from the same patient had evidence of this LOH. Our data revealed three distinct patterns of chr18 allelic loss, indicating that primary tumors from the same patient can present different LOH patterns including retention of either parental allele. In conclusion, our results are consistent with the model that multifocal ileal NETs originate independently. In addition, they suggest that there is no specific germline allele on chr18 that is the target of somatic LOH.


Assuntos
Cromossomos Humanos Par 18/genética , Neoplasias do Íleo/genética , Perda de Heterozigosidade , Tumores Neuroendócrinos/genética , Idoso , Variações do Número de Cópias de DNA , Feminino , Humanos , Neoplasias do Íleo/patologia , Masculino , Pessoa de Meia-Idade , Tumores Neuroendócrinos/patologia
15.
J Clin Pathol ; 69(1): 76-81, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26323944

RESUMO

AIM: Long non-coding RNAs (lncRNAs) are potential biomarkers for breast cancer risk stratification. LncRNA expression has been investigated primarily by RNA sequencing, quantitative reverse transcription PCR or microarray techniques. In this study, six breast cancer-implicated lncRNAs were investigated by chromogenic in situ hybridisation (CISH). METHODS: Invasive breast carcinoma (IBC), ductal carcinoma in situ (DCIS) and normal adjacent (NA) breast tissues from 52 patients were screened by CISH. Staining was graded by modified Allred scoring. RESULTS: HOTAIR, H19 and KCNQ1OT1 had significantly higher expression levels in IBC and DCIS than NA (p<0.05), and HOTAIR and H19 were expressed more strongly in IBC than in DCIS tissues (p<0.05). HOTAIR and KCNQ101T were expressed in tumour cells; H19 and MEG3 were expressed in stromal microenvironment cells; MALAT1 was expressed in all cells strongly and ZFAS1 was negative or weakly expressed in all specimens. CONCLUSION: These data corroborate the involvement of three lncRNAs (HOTAIR, H19 and KCNQ1OT1) in breast tumourigenesis and support lncRNA CISH as a potential clinical assay. Importantly, CISH allows identification of the tissue compartment expressing lncRNA.


Assuntos
Biomarcadores Tumorais/genética , Neoplasias da Mama/genética , Carcinoma Ductal de Mama/genética , Carcinoma Intraductal não Infiltrante/genética , Compostos Cromogênicos , Hibridização In Situ/métodos , RNA Longo não Codificante/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Humanos , Pessoa de Meia-Idade , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase , Valor Preditivo dos Testes
16.
J Clin Pathol ; 67(9): 821-4, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24942799

RESUMO

Further to advancements in instrumentation and fluorescent dye technologies, there has been a resurgence of interest in the flow cytometric assay of formalin-fixed, paraffin-embedded specimens. Here we present a novel, simple and effective alternative to whole block sectioning that allows selective multisampling of tissues within a specimen block and the investigation of intratumoral heterogeneity. Formalin-fixed, paraffin-embedded breast carcinoma specimens were core-punched using 1.0 mm diameter needles and assayed by flow cytometry using a modified Hedley method. Intratumoral heterogeneity for DNA index and per cent S-phase fraction was detected in 10 of 23 (44%) and 11 of 23 (47%) specimens respectively. Macro-level genomic heterogeneity is common in breast cancer even within a single surgical specimen block. Studies investigating the relationship of DNA content heterogeneity to other markers of genomic instability such as mutations, deletions, insertions and translocations are warranted.


Assuntos
Biópsia com Agulha de Grande Calibre , Neoplasias da Mama/genética , Carcinoma/genética , DNA de Neoplasias/análise , Citometria de Fluxo , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Carcinoma/patologia , Estudos de Casos e Controles , Ciclo Celular , Feminino , Formaldeído , Humanos , Pessoa de Meia-Idade , Inclusão em Parafina , Valor Preditivo dos Testes , Fixação de Tecidos/métodos
17.
Int J Clin Exp Med ; 5(1): 72-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22328951

RESUMO

Vitamin D has potent anticancer properties, especially against gastrointestinal cancers. Group-specific component (GC), a key member of vitamin D pathway proteins, could bind to and transport vitamin D to target organs. As a polymorphic protein, two common coding single nucleotide polymorphisms (SNP) [Glu416Asp (rs7041) and Thr420Lys (rs4588)] were identified in its gene. These SNPs have been associated to circulating vitamin D levels and several cancer risks in different populations. However, there is no report on their role in gastrointestinal cancer development among Chinese to date. Therefore, we examined the association between these variants and risk of gastrointestinal cancers in a case-control cohort including 964 patients with four gastrointestinal cancers (hepatocellular carcinoma, esophageal cancer, gastric cancer and colorectal cancer) and 1187 controls. Odds ratios and 95% confidence intervals were estimated by logistic regression. We found that GC Thr420Lys polymorphism has significant impact on the risk of developing gastrointestinal cancers, especially colorectal cancer. Additionally, subjects who carrying GC Asp(416)-Lys(420) haplotype, which contains the at-risk 420Lys allele, also showed significantly increased risk to develop gastrointestinal cancers. In conclusion, our study demonstrated that common genetic variants and haplo-types in GC may influence individual susceptibility to gastrointestinal cancers in Chinese population.

18.
Tumour Biol ; 33(3): 877-84, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22249976

RESUMO

The excision repair cross-complementation group 1 (ERCC1) plays an essential role in DNA repair and has been linked to resistance to platinum-based anticancer drugs among advanced non-small cell lung cancer (NSCLC) patients. We systematically evaluate whether ERCC1 Asn118Asn and C8092A genetic variants are associated with treatment response of platinum chemotherapy. We preformed a meta-analysis using ten eligible cohort studies (including 11 datasets) with a total of 1,252 NSCLC patients to summarize the existing data on the association between the ERCC1 Asn118Asn and C8092A polymorphisms and response to platinum regiments. Odds ratio or hazard ratio with 95% confidence interval were calculated to estimate the correlation. We found that neither ERCC1 C8092A polymorphism nor Asn118Asn variant is associated with different response of platinum-based treatment among advanced NSCLC patients. Additionally, these two genetic variants are not related to treatment response in either Caucasian patients or Asian patients. Our meta-analysis indicates that the ERCC1 Asn118Asn and C8092A polymorphisms may not be good prognostic biomarkers for platinum-based chemotherapy in patients with stage III-IV NSCLC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Variação Genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Platina/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/patologia , Heterogeneidade Genética , Humanos , Neoplasias Pulmonares/patologia , Estadiamento de Neoplasias , Polimorfismo de Nucleotídeo Único , Prognóstico , Viés de Publicação , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA