Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Heliyon ; 9(11): e22186, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38045189

RESUMO

Distiller's grains, byproducts of the brewing process, represent a valuable resource for extracting natural phenolic compounds due to their significant global production. This study presents the first evidence of the protective effects of Moutai distiller's grain polyphenol extract (MDGP) on dextran sulfate sodium (DSS)-induced colitis in mice. These protective effects manifest predominantly through the amelioration of general colitis indices and histopathological improvements. Utilizing liquid chromatography-high-resolution electrospray ionization mass spectrometry (LC-HR-ESI-MS), the main components of MDGP were identified as rutin, quercetin, naringenin, and dihydroquercetin. Moreover, a novel mechanism was elucidated by which rutin, the primary active component of MDGP, alleviates DSS-induced colitis. Assessment of intestinal barrier function, microbial sequencing, fecal transplantation, and antibiotic depletion experiments revealed that rutin suppresses the abundance of pathogenic bacteria (Helicobacter, Klebsiella, and Veillonella) while promoting the proliferation of beneficial bacteria (Ruminococcus_torques_group, Lachnoclostridium, and norank_f__Muribaculaceae). This modulation culminates in elevated butyric acid concentrations within short-chain fatty acids (SCFAs), amplified integrity of tight (ZO-1, occludin) and adherent (E-cadherin, ß-catenin) junctional complexes, fortified intestinal barrier function, and diminished intestinal inflammation.This investigation accentuates the innovative therapeutic potential of MDGP and its main active component, rutin, in assuaging DSS-induced intestinal inflammation and fortifying the intestinal barrier through a mechanism predominantly mediated by the intestinal microbiota. Such insights potentially elevate the prominence of distiller's grains in the realm of functional food development.

2.
Chin J Nat Med ; 20(11): 830-845, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36427917

RESUMO

Atherosclerosis (AS) is an invisible killer among cardiovascular diseases (CVD), which has seriously threatened the life of quality. The complex pathogenesis of AS involves multiple interrelated events and cell types, such as macrophages, endothelial cells, vascular smooth muscle cells and immune cells. Currently, the efficacy of recommended statin treatment is not satisfactory. Natural products (NPs) have attracted increasing attention with regard to their broad structural diversity and biodiversity, which makes them a promising library in the demand for lead compounds with cardiovascular protective bio-activity. NPs can preclude the development of AS by regulating lipid metabolism, ameliorating inflammation, stabilizing plaques, and remodeling the gut microbiota, which lays a foundation for the application of NPs in clinical therapeutics.


Assuntos
Aterosclerose , Produtos Biológicos , Humanos , Produtos Biológicos/farmacologia , Produtos Biológicos/uso terapêutico , Produtos Biológicos/metabolismo , Células Endoteliais/metabolismo , Aterosclerose/tratamento farmacológico , Aterosclerose/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo
3.
Nat Commun ; 13(1): 5968, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36216793

RESUMO

Small cell cervical carcinoma (SCCC) is a rare but aggressive malignancy. Here, we report human papillomavirus features and genomic landscape in SCCC via high-throughput HPV captured sequencing, whole-genome sequencing, whole-transcriptome sequencing, and OncoScan microarrays. HPV18 infections and integrations are commonly detected. Besides MYC family genes (37.9%), we identify SOX (8.4%), NR4A (6.3%), ANKRD (7.4%), and CEA (3.2%) family genes as HPV-integrated hotspots. We construct the genomic local haplotype around HPV-integrated sites, and find tandem duplications and amplified HPV long control regions (LCR). We propose three prominent HPV integration patterns: duplicating oncogenes (MYCN, MYC, and NR4A2), forming fusions (FGFR3-TACC3 and ANKRD12-NDUFV2), and activating genes (MYC) via the cis-regulations of viral LCRs. Moreover, focal CNA amplification peaks harbor canonical cancer genes including the HPV-integrated hotspots within MYC family, SOX2, and others. Our findings may provide potential molecular criteria for the accurate diagnosis and efficacious therapies for this lethal disease.


Assuntos
Alphapapillomavirus , Carcinoma de Células Pequenas , Infecções por Papillomavirus , Neoplasias do Colo do Útero , Feminino , Humanos , Proteínas Associadas aos Microtúbulos/genética , Proteína Proto-Oncogênica N-Myc/genética , Proteínas Nucleares/genética , Papillomaviridae/genética , Neoplasias do Colo do Útero/patologia , Integração Viral/genética
4.
Pharmacol Res ; 180: 106240, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35513225

RESUMO

Promoting angiogenesis in the ischemic penumbra is a well-established method of ischemic stroke treatment. Ginkgolide B (GB) has long been recognized for its neuroprotective properties following stroke. As previously reported, it appears that stroke-induced neurogenesis and angiogenesis interact or are dependent on one another. Although the pharmacodynamic effect of GB on cerebral blood flow (CBF) following ischemic stroke has been reported, the molecular mechanism underlying this effect remains unknown. As such, this study sought to elucidate the pharmacodynamic effects and underlying mechanisms of GB on post-stroke angiogenesis. To begin, GB significantly increased the proliferation, migration, and tube formation capacity of mouse cerebral hemangioendothelioma cells (b.End3) and human umbilical vein endothelial cells (HUVEC). Additionally, GB significantly improved angiogenesis after oxygen-glucose deprivation/reperfusion (OGD/R) in endothelial cells. The dynamics of CBF, brain microvascular neovascularization and reconstruction, and brain endothelial tissue integrity were examined in middle cerebral artery occlusion (MCAO) mice following GB administration. Through label-free target detection techniques, we discovered for the first time that GB can specifically target Creatine Kinase B (CKB) and inhibit its enzymatic activity. Additionally, we demonstrated through network pharmacology and a series of molecular biology experiments that GB inhibited CKB and then promoted angiogenesis via the CCT/TRiC-SK1 axis. These findings shed new light on novel therapeutic strategies for neurological recovery and endothelial repair following ischemic stroke using GB therapy.


Assuntos
Isquemia Encefálica , AVC Isquêmico , Acidente Vascular Cerebral , Animais , Isquemia Encefálica/tratamento farmacológico , Creatina Quinase/farmacologia , Creatina Quinase/uso terapêutico , Células Endoteliais , Ginkgolídeos , Infarto da Artéria Cerebral Média/tratamento farmacológico , Lactonas , Camundongos , Neovascularização Patológica , Neovascularização Fisiológica , Acidente Vascular Cerebral/tratamento farmacológico
5.
Bioorg Med Chem ; 27(8): 1639-1645, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30852077

RESUMO

A new series of glucose-conjugated Pt(IV) complexes that target tumor-specific glucose transporters (GLUTs) was designed, synthesized, and evaluated for their anticancer activities. All six compounds, namely, A1-A6, exhibited increased cytotoxicity that were almost six fold higher than that of oxaliplatin to MCF-7 cells. These Pt(IV) complexes can be reduced to release Pt(II) complexes and cause the death of tumor cells. Simultaneously, the glycosylated Pt(IV) complexes (30.21-91.33 µM) showed lower cytotoxicity that normal LO2 cells compared with cisplatin (5.25 µM) and oxaliplatin (8.34 µM). The intervention of phlorizin as a GLUTs inhibitor increased the IC50 value of the glycosylated Pt(IV) complexes, thereby indicating the potential GLUT transportability. The introduction of glucose moiety to Pt(IV) complexes can effectively enhance the Pt cellular uptake and DNA platination. Results suggested glucose-conjugated Pt(IV) complexes had potential for further study as new anticancer agents.


Assuntos
Antineoplásicos/síntese química , Complexos de Coordenação/química , Desenho de Fármacos , Glucose/química , Platina/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Complexos de Coordenação/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Proteínas Facilitadoras de Transporte de Glucose/antagonistas & inibidores , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Glicosilação , Humanos , Oxaliplatina/farmacologia , Florizina/química , Florizina/metabolismo , Florizina/farmacologia
6.
J Med Chem ; 61(9): 4155-4164, 2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29641204

RESUMO

Metabolic reprogramming of cancer cells is essential for tumorigenesis in which pyruvate kinase M2 (PKM2), the low activity isoform of pyruvate kinase, plays a critical role. Herein, we describe the identification of a nature-product-derived micheliolide (MCL) that selectively activates PKM2 through the covalent binding at residue cysteine424 (C424), which is not contained in PKM1. This interaction promotes more tetramer formation, inhibits the lysine433 (K433) acetylation, and influences the translocation of PKM2 into the nucleus. In addition, the pro-drug dimethylaminomicheliolide (DMAMCL) with similar properties as MCL significantly suppresses the growth of leukemia cells and tumorigenesis in a zebrafish xenograft model. Cell-based assay with knock down PKM2 expression verifies that the effects of MCL are dependent on PKM2 expression. DMAMCL is currently in clinical trials in Australia. Our discovery may provide a valuable pharmacological mechanism for clinical treatment and benefit the development of new anticancer agents.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Transporte/metabolismo , Leucemia/patologia , Proteínas de Membrana/metabolismo , Sesquiterpenos de Guaiano/farmacologia , Hormônios Tireóideos/metabolismo , Acetilação/efeitos dos fármacos , Transporte Ativo do Núcleo Celular/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Carcinogênese/efeitos dos fármacos , Proteínas de Transporte/química , Linhagem Celular Tumoral , Núcleo Celular/efeitos dos fármacos , Núcleo Celular/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Proteínas de Membrana/química , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Multimerização Proteica , Estrutura Quaternária de Proteína , Especificidade por Substrato , Hormônios Tireóideos/química , Ensaios Antitumorais Modelo de Xenoenxerto , Peixe-Zebra , Proteínas de Ligação a Hormônio da Tireoide
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA