Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Thorac Cancer ; 15(19): 1459-1470, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38923346

RESUMO

Early-stage lung cancer is now more commonly identified in the form of ground-glass nodules (GGNs). Presently, the treatment of lung cancer with GGNs mainly depends on surgery; however, issues still exist such as overtreatment and delayed treatment due to the nonuniform standard of follow-up. Therefore, the discovery of a noninvasive treatment could expand the treatment repertoire of ground-glass nodular lung cancer and benefit the prognosis of patients. Immunotherapy has recently emerged as a new promising approach in the field of lung cancer treatment. Thus, this study presents a comprehensive review of the immune microenvironment of lung cancer with GGNs and describes the functions and characteristics of various immune cells involved, aiming to provide guidance for the clinical identification of novel immunotherapeutic targets.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Microambiente Tumoral , Humanos , Microambiente Tumoral/imunologia , Adenocarcinoma de Pulmão/imunologia , Adenocarcinoma de Pulmão/patologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/patologia
2.
Angew Chem Int Ed Engl ; 63(27): e202401373, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38659181

RESUMO

Inorganic solid-state electrolytes (SSEs) play a vital role in high-energy all-solid-state batteries (ASSBs). However, the current method of SSE preparation usually involves high-energy mechanical ball milling and/or a high-temperature annealing process, which is not suitable for practical application. Here, a facile strategy is developed to realize the scalable synthesis of cost-effective aluminum-based oxyhalide SSEs, which involves a self-propagating method by the exothermic reaction of the raw materials. This strategy enables the synthesis of various aluminum-based oxyhalide SSEs with tunable components and high ionic conductivities (over 10-3 S cm-1 at 25 °C) for different cations (Li+, Na+, Ag+). It is elucidated that the amorphous matrix, which mainly consists of various oxidized chloroaluminate species that provide numerous sites for smooth ion migration, is actually the key factor for the achieved high conductivities. Benefit from their easy synthesis, low cost, and low weight, the aluminum-based oxyhalide SSEs synthesized by our approach could further promote practical application of high-energy-density ASSBs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA