Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 19(5): e0301142, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38718088

RESUMO

Steel cord materials were found to have internal porous microstructures and complex fluid flow properties. However, current studies have rarely reported the transport behavior of steel cord materials from a microscopic viewpoint. The computed tomography (CT) scanning technology and lattice Boltzmann method (LBM) were used in this study to reconstruct and compare the real three-dimensional (3D) pore structures and fluid flow in the original and tensile (by loading 800 N force) steel cord samples. The pore-scale LBM results showed that fluid velocities increased as displacement differential pressure increased in both the original and tensile steel cord samples, but with two different critical values of 3.3273 Pa and 2.6122 Pa, respectively. The original steel cord sample had higher maximal and average seepage velocities at the 1/2 sections of 3D construction images than the tensile steel cord sample. These phenomena should be attributed to the fact that when the original steel cord sample was stretched, its porosity decreased, pore radius increased, flow channel connectivity improved, and thus flow velocity increased. Moreover, when the internal porosity of tensile steel cord sample was increased by 1 time, lead the maximum velocity to increase by 1.52 times, and the average velocity was increased by 1.66 times. Furthermore, when the density range was determined to be 0-38, the pore phase showed the best consistency with the segmentation area. Depending on the Zou-He Boundary and Regularized Boundary, the relative error of simulated average velocities was only 0.2602 percent.


Assuntos
Aço , Aço/química , Porosidade , Resistência à Tração , Hidrodinâmica , Tomografia Computadorizada por Raios X
2.
Environ Sci Pollut Res Int ; 31(2): 2079-2089, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38051492

RESUMO

Depleted reservoirs are widely used for underground gas storage due to their advantages of low construction cost and easy development. Under the influence of complex geological conditions and frequent operations, the integrity of the wells in depleted reservoirs is prone to failure, which would potentially lead to gas leakage. In this study, by using a finite element-based computational fluid dynamics model, we have developed evaluation criteria for assessing the severity of the occurred wellbore integrity failure and the risk of the un-occurred wellbore integrity failures respectively to identify hazardous zones potentially prone to wellbore integrity failure. The study results indicate that the gas storage wellbore integrity failure is prone to occur inside the wellbore structure in the direction of the minimum ground stress near the lower boundary of the formation interlayer. The wellbore integrity failure hazardous zones are mainly concentrated at the formation interlayer boundaries. The practical guidelines and solutions derived from current research results can provide an accurate direction for monitoring and protecting work of wellbore integrity and avoid environment pollution problems caused by natural gas leakage.


Assuntos
Monitoramento Ambiental , Gás Natural , Monitoramento Ambiental/métodos , Poluição Ambiental , Poços de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA