Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Neurosurg Case Lessons ; 8(11)2024 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-39250836

RESUMO

BACKGROUND: Robot-assisted techniques are increasingly integrated into the field of spine surgery, with the potential benefits of increased accuracy and reduced radiation exposure. The objective of this study was to describe the technique of minimally invasive robot-assisted direct pars repair with 2 case illustrations. OBSERVATIONS: An 18-year-old male and a 42-year-old male, both with bilateral L5 spondylolysis, underwent successful minimally invasive L5 direct pars repairs with robotic assistance after conservative measures failed, and their cases are presented herein. LESSONS: A robot-assisted direct pars repair is a safe and effective technique for treating bilateral lumbar spondylolysis. The integration of robot-assisted techniques in spine surgery has the potential to improve outcomes, decrease surgical time, and reduce the amount of radiation exposure to operating room staff. https://thejns.org/doi/10.3171/CASE2415.

2.
J Neurosurg Spine ; : 1-16, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35213837

RESUMO

OBJECTIVE: The use of technology-enhanced methods in spine surgery has increased immensely over the past decade. Here, the authors present the largest systematic review and meta-analysis to date that specifically addresses patient-centered outcomes, including the risk of inaccurate screw placement and perioperative outcomes in spinal surgeries using robotic instrumentation and/or augmented reality surgical navigation (ARSN). METHODS: A systematic review of the literature in the PubMed, EMBASE, Web of Science, and Cochrane Library databases spanning the last decade (January 2011-November 2021) was performed to present all clinical studies comparing robot-assisted instrumentation and ARSN with conventional instrumentation techniques in lumbar spine surgery. The authors compared these two technologies as they relate to screw accuracy, estimated blood loss (EBL), intraoperative time, length of stay (LOS), perioperative complications, radiation dose and time, and the rate of reoperation. RESULTS: A total of 64 studies were analyzed that included 11,113 patients receiving 20,547 screws. Robot-assisted instrumentation was associated with less risk of inaccurate screw placement (p < 0.0001) regardless of control arm approach (freehand, fluoroscopy guided, or navigation guided), fewer reoperations (p < 0.0001), fewer perioperative complications (p < 0.0001), lower EBL (p = 0.0005), decreased LOS (p < 0.0001), and increased intraoperative time (p = 0.0003). ARSN was associated with decreased radiation exposure compared with robotic instrumentation (p = 0.0091) and fluoroscopy-guided (p < 0.0001) techniques. CONCLUSIONS: Altogether, the pooled data suggest that technology-enhanced thoracolumbar instrumentation is advantageous for both patients and surgeons. As the technology progresses and indications expand, it remains essential to continue investigations of both robotic instrumentation and ARSN to validate meaningful benefit over conventional instrumentation techniques in spine surgery.

3.
Cureus ; 8(2): e495, 2016 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-27014529

RESUMO

Inadvertent occlusion of the anterior choroidal artery during aneurysm clipping can cause a disabling stroke in minutes. We evaluate the clinical utility of direct cortical motor evoked potential (MEP) monitoring during aneurysm clipping, as a real-time assessment of arterial patency, prior to performing indocyanine green videoangiography.   Direct cortical MEPs were recorded in seven patients undergoing surgery for aneurysms that involved or abutted the anterior choroidal artery. The aneurysms clipped in those seven patients included four anterior choroidal artery aneurysms and six posterior communicating artery aneurysms. Serial MEP recordings were performed during the intradural dissection, aneurysm exposure, and clip placement. A significant change in MEPs after clip placement would prompt immediate inspection and removal or repositioning of the clip. If the clip placement appeared satisfactory and MEP recordings were stable, then an intraoperative indocyanine green videoangiogram was performed to confirm obliteration of the aneurysm and patency of the arteries.  Seven patients underwent successful clipping of anterior choroidal artery aneurysms and posterior communicating artery aneurysms using direct cortical MEP monitoring, with good clinical and radiographic outcomes. In six patients, no changes in MEP amplitudes were observed following permanent clip placement. In one patient, a profound decrease in MEP amplitude occurred 220 seconds after placement of a permanent clip on a large posterior communicating aneurysm. An inspection revealed that the anterior choroidal artery was kinked. The clip was immediately removed, and the MEP signals returned to baseline shortly thereafter. A clip was then optimally placed, and the patient awoke without neurologic deficit.  Direct cortical MEPs are a useful adjunct to standard electrophysiologic monitoring in aneurysm surgery, particularly when the anterior choroidal artery or lenticulostriate arteries are at risk. When these arteries are occluded, infarction may occur before the occlusion is detected by indocyanine green videoangiography or intraoperative angiography. The use of MEPs allows real-time detection of ischemia to subcortical motor pathways.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA