Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Agric Food Chem ; 72(29): 16204-16220, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-38984968

RESUMO

The term type 3 diabetes mellitus (T3DM) has been considered for Alzheimer's disease (AD) due to the common molecular and cellular characteristics found between type 2 diabetes mellitus (T2DM) and cognitive deficits. However, the specific mechanism of T3DM remains elusive, especially the neuroprotective effects of dietary components in hyperglycemic individuals. In this study, a peptide, Leu-Val-Arg-Leu (LVRL), found in walnuts significantly improved memory decline in streptozotocin (STZ)- and high-fat-diet (HFD)-stimulated T2DM mouse models (p < 0.05). The LVRL peptide also mitigated hyperglycemia, enhanced synaptic plasticity, and ameliorated mitochondrial dysfunction, as demonstrated by Morris water maze tests, immunoblotting, immunofluorescence, immunohistochemistry, transmission electron microscopy, and cellular staining. A Wnt3a inhibitor, DKK1, was subsequently used to verify the possible role of the Wnt3a/ß-Catenin/GSK-3ß pathway in glucose-induced insulin resistance in PC12 cells. In vitro LVRL treatment dramatically modulated the protein expression of p-Tau (Ser404), Synapsin-1, and PSD95, elevated the insulin level, increased glucose consumption, and relieved the mitochondrial membrane potential, and MitoSOX (p < 0.05). These data suggested that peptides like LVRL could modulate the relationship between brain insulin and altered cognition status via the Wnt3a/ß-Catenin/GSK-3ß pathway.


Assuntos
Diabetes Mellitus Tipo 2 , Glicogênio Sintase Quinase 3 beta , Juglans , Fármacos Neuroprotetores , Proteína Wnt3A , beta Catenina , Animais , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Masculino , Glicogênio Sintase Quinase 3 beta/metabolismo , Glicogênio Sintase Quinase 3 beta/genética , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/química , beta Catenina/metabolismo , beta Catenina/genética , Humanos , Ratos , Juglans/química , Proteína Wnt3A/metabolismo , Proteína Wnt3A/genética , Hiperglicemia/tratamento farmacológico , Hiperglicemia/metabolismo , Camundongos Endogâmicos C57BL , Peptídeos/química , Peptídeos/farmacologia , Peptídeos/administração & dosagem , Células PC12 , Transdução de Sinais/efeitos dos fármacos
2.
J Agric Food Chem ; 72(22): 12541-12554, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38785039

RESUMO

We investigated the protective effect of walnut peptides and YVPFPLP (YP-7) on scopolamine-induced memory impairment in mice and ß-amyloid (Aß)-induced excitotoxic injury in primary hippocampal neurons, respectively. Additionally, the protective mechanism of YP-7 on neuronal excitotoxicity was explored. Mouse behavioral and hippocampal slice morphology experiments indicate that YP-7 improves the learning and memory abilities of cognitively impaired mice and protects synaptic integrity. Immunofluorescence, western blotting, and electrophysiological experiments on primary hippocampal neurons indicate that YP-7 inhibits neuronal damage caused by excessive excitation of neurons induced by Aß. HT-22 cell treatment with peroxisome proliferator-activated receptor γ (PPARγ) activators and inhibitors showed that YP-7 activates PPARγ expression and maintains normal neuronal function by forming stable complexes with PPARγ to inhibit the extracellular regulated protein kinase pathway. Therefore, YP-7 can ameliorate glutamate-induced excitotoxicity and maintain neuronal signaling. This provides a theoretical basis for active peptides to ameliorate excitotoxicity and the development of functional foods.


Assuntos
Hipocampo , Juglans , Transtornos da Memória , Neurônios , Peptídeos , Animais , Humanos , Masculino , Camundongos , Peptídeos beta-Amiloides/metabolismo , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Juglans/química , Memória/efeitos dos fármacos , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Proteínas de Plantas/química , Proteínas de Plantas/farmacologia , PPAR gama/metabolismo , PPAR gama/genética , Escopolamina
3.
Food Chem ; 441: 138288, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38185052

RESUMO

This study aimed to utilize zinc coordination to promote the hypoglycemic and antioxidant properties of walnut-derived peptides, such as walnut protein hydrolysate (WPH) and Leu-Pro-Leu-Leu-Arg (LPLLR, LP5), of which LP5 was previously identified from WPH. The optimal conditions for the chelation were a peptide-to-zinc ratio of 6:1, pH of 9, duration of 50 min, and temperature of 50 °C. The WPH-Zn and LP5-Zn complexes increased the α-glucosidase inhibition, α-amylase inhibition, and antioxidant activity more than WPH and LP5 (p < 0.05). In particular, the antioxidant activity of WPH-Zn was superior to LP5-Zn. This is attributable to the WPH containing more aromatic amino acids, carboxylate groups and the imidazole groups, which implies its capacity to potentially coordinate with Zn2+ to form the WPH-Zn complex. Moreover, particle size, zeta potential, and scanning electron microscope indicated that the chelation of Zn2+ by peptides led to intramolecular and intermolecular folding and aggregation.


Assuntos
Juglans , Juglans/química , Antioxidantes/farmacologia , Zinco/química , Controle Glicêmico , Peptídeos/farmacologia , Quelantes , Hidrolisados de Proteína/química
4.
J Agric Food Chem ; 71(51): 20453-20478, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38085598

RESUMO

Food-derived peptides, as dietary supplements, have significant effects on promoting brain health and relieving central nervous system (CNS) diseases. However, the blood-brain barrier (BBB) greatly limits their in-brain bioavailability. Thus, overcoming the BBB to target the CNS is a major challenge for bioactive peptides in the prevention and treatment of CNS diseases. This review discusses improvement in the neuroprotective function of food-derived active peptides in CNS diseases, as well as the source of BBB penetrating peptides (BBB-shuttles) and the mechanism of transmembrane transport. Notably, this review also discusses various peptide modification methods to overcome the low permeability and stability of the BBB. Lipification, glycosylation, introduction of disulfide bonds, and cyclization are effective strategies for improving the penetration efficiency of peptides through the BBB. This review provides a new prospective for improving their neuroprotective function and developing treatments to delay or even prevent CNS diseases.


Assuntos
Barreira Hematoencefálica , Doenças do Sistema Nervoso Central , Humanos , Barreira Hematoencefálica/metabolismo , Estudos Prospectivos , Encéfalo/metabolismo , Peptídeos/metabolismo , Doenças do Sistema Nervoso Central/tratamento farmacológico , Doenças do Sistema Nervoso Central/prevenção & controle , Transporte Biológico
5.
J Agric Food Chem ; 71(21): 8252-8263, 2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37202913

RESUMO

Epigenetic mechanisms that dysregulate gene expressions may play a significant role in the development of neurological disorders. However, whether peptides can modulate epigenetic mechanisms remains elusive. This work aimed to investigate the impact of pretreatment with walnut-derived peptides─WHP and YVLLPSPK─on DNA methylation in a low-grade neuroinflammation model. The enriched KEGG pathways included oxidative phosphorylation, riboflavin metabolism, ribosome, and pyrimidine metabolism, which are associated with methylation modification by oral administration of YVLLPSPK in mice with scopolamine-induced cognitive deficits. Furthermore, when THP-1 cells (human acute monocytic leukemia cell line) were exposed to lipopolysaccharide (LPS)-induced inflammation responses, both WHP and YVLLPSPK markedly inhibited the level of Il-6 to 2.05 ± 0.76 and 1.29 ± 0.19 (p < 0.05) and also declined the mRNA expression of Mcp-1 to 1.64 ± 0.02 and 3.29 ± 1.21 (p < 0.01), respectively. Meanwhile, YVLLPSPK decreased the activities of DNA methyltransferases (DNMTs) to 1.03 ± 0.02 and 1.20 ± 0.31 (p < 0.05) based on Dnmt3b and Tet2, respectively. The results indicated that YVLLPSPK modulated DNA methylation in embryonic and neural precursor cells in creating new methylation patterns. Further trials are needed to assess the mechanisms underlying DNA methylation changes through peptides in the pathophysiology of neurological disorders.


Assuntos
Juglans , Células-Tronco Neurais , Humanos , Camundongos , Animais , Juglans/química , Doenças Neuroinflamatórias , Proteômica , Células-Tronco Neurais/metabolismo , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Peptídeos/metabolismo , Metilação de DNA , Epigênese Genética , Hipocampo/metabolismo
6.
J Agric Food Chem ; 71(8): 3751-3765, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36802594

RESUMO

Autophagy flux plays a significant protective role in type 2 diabetes mellitus (T2DM). However, the mechanisms by which autophagy mediates insulin resistance (IR) to ameliorate T2DM remain unclear. This study explored the hypoglycemic effects and mechanisms of walnut-derived peptides (fraction 3-10 kDa and LP5) in streptozotocin and high-fat-diet-induced T2DM mice. Findings revealed that walnut-derived peptides reduced the levels of blood glucose and FINS and ameliorated IR and dyslipidemia. They also increased SOD and GSH-PX activities and inhibited the secretion of TNF-α, IL-6, and IL-1ß. Additionally, they increased the levels of ATP, COX, SDH, and MMP of liver mitochondria. Western blotting indicated that walnut-derived peptides up-regulated LC3-II/LC3-I and Beclin-1 expression, while they down-regulated p62 expression, which may be associated with the activation of the AMPK/mTOR/ULK1 pathway. Finally, the AMPK activator (AICAR) and inhibitor (Compound C) were used to verify that LP5 could activate autophagy through the AMPK/mTOR/ULK1 pathway in IR HepG2 cells.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Hiperglicemia , Juglans , Animais , Camundongos , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Autofagia , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Tipo 2/tratamento farmacológico , Hiperglicemia/tratamento farmacológico , Juglans/metabolismo , Peptídeos/farmacologia , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Proteínas de Plantas/farmacologia , Transdução de Sinais
7.
Food Res Int ; 156: 111311, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651069

RESUMO

This work aimed to explore the underlying mechanisms of memory improvement effects of a walnut derived peptide WNP-10. The morris water maze test, combined with ultrastructural observation, hematoxylin and eosin and Nissl staining showed that WNP-10 significantly improved the learning and memory capability of the scopolamine-injured mice. The four-dimensional label-free quantification proteomics analysis identified 88 differentially expressed proteins in the WNP-10-treated group compared with scopolamine-induced impairment group. Pathway enrichment analysis and western blotting demonstrated that the WNP-10 can regulate the phosphatidylinositol-3-phosphate 5-kinase, cathepsin L, N-acetylgalactosamine 6-sulfate sulfatase and AP-3 complex subunit mu-1 expression to affect inositol phosphate metabolism, thereby maintaining lysosome homeostasis in scopolamine-injured mice. Notably, the results of phosphoproteomics demonstrated that WNP-10 administration resulted in the increased phosphorylation of phosphatidylinositol-3-phosphate 5-kinase. These findings provide novel insights into the underlying mechanism of memory improvement of walnut peptides.


Assuntos
Juglans , Animais , Hipocampo , Juglans/química , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/farmacologia , Fosfatos , Fosfatidilinositóis/metabolismo , Fosfatidilinositóis/farmacologia , Fosforilação , Proteoma/metabolismo , Escopolamina/efeitos adversos , Escopolamina/metabolismo
8.
Food Funct ; 12(17): 8026-8036, 2021 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-34269783

RESUMO

This study aimed to investigate the effects of a pine nut albumin hydrolysate (fraction <3 kDa) and of its short peptide derivative, Trp-Tyr-Pro-Gly-Lys (WYPGK), on synaptic plasticity and memory function in scopolamine-induced memory-impaired mice, as well as the potential underlying mechanism in PC12 cells. In the scopolamine-induced mouse model, the results revealed that the fraction <3 kDa and WYPGK enhanced synaptic plasticity and improved learning and memory function. H&E and Nissl staining analysis showed that the damage in hippocampal neurons was decreased. Golgi staining and transmission electron microscopy further revealed that the enhanced synaptic plasticity was associated with increased dendritic spine abundance and synaptic density. In an H2O2-induced PC12 cell model, treatment with mitochondrial sirtuin 3 (SIRT3) inhibitor and inducer molecules confirmed that the <3 kDa fraction and WYPGK activated SIRT3, leading to the decrease in Ace-SOD2 acetylation and increasing the expression of SYP, SYN-1, SNAP25, and PSD95, thus enhancing synaptic plasticity. The <3 kDa fraction and WYPGK also activated the ERK/CREB pathway and upregulated the expression of brain-derived neurotrophic factor. Our results show that fraction <3 kDa and WYPGK improve learning and memory ability through SIRT3-induced synaptic plasticity in vitro and in vivo.


Assuntos
Antioxidantes/administração & dosagem , Transtornos da Memória/tratamento farmacológico , Memória/efeitos dos fármacos , Plasticidade Neuronal/efeitos dos fármacos , Nozes/química , Peptídeos/administração & dosagem , Pinus/química , Sirtuína 3/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Transtornos da Memória/etiologia , Transtornos da Memória/fisiopatologia , Transtornos da Memória/psicologia , Camundongos , Camundongos Endogâmicos C57BL , Escopolamina/efeitos adversos , Sirtuína 3/genética
9.
J Agric Food Chem ; 68(11): 3638-3648, 2020 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-32090563

RESUMO

Natural-derived peptides are effective substances in attenuating oxidative stress. However, their specific mechanisms have not been fully elucidated, especially in peptide-mediated autophagy. In the present study, TWLPLPR, YVLLPSPK, and KVPPLLY, novel peptides from Juglans mandshurica Maxim, prevented reactive oxygen species (ROS) production, elevated glutathione peroxidase (GSH-Px) activity and adenosine 5'-triphosphate (ATP) levels, and ameliorated apoptosis in Aß25-35 (at a concentration of 50 µM for 24 h)-induced PC12 cells (P < 0.01). Both western blot and immunofluorescence analysis illustrated that the peptides regulated Akt/mTOR signaling through p-Akt (Ser473) and p-mTOR (S2481) and promoted autophagy by increasing the levels of LC3-II/LC3-I and Beclin-1 while lowering p62 expression (P < 0.01). The autophagy inhibitor (3-methyladenine, 3-MA) and inducer (rapamycin, RAPA) were combined used to confirm the contribution of peptide-regulated autophagy in antioxidative effects. Moreover, the peptides increased the levels of LAMP1, LAMP2, and Cathepsin D (P < 0.05) and promoted the fusion with lysosomes to form autolysosomes, accelerating ROS removal. These data suggested that walnut-derived peptides regulated oxidative stress by promoting autophagy in the Aß25-35-induced PC12 cells.


Assuntos
Juglans , Animais , Apoptose , Autofagia , Neuroproteção , Estresse Oxidativo , Células PC12 , Peptídeos/farmacologia , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Espécies Reativas de Oxigênio , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
10.
Food Funct ; 10(6): 3491-3501, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31143910

RESUMO

Amelioration of oxidative stress has been the main approach to improve neurodegenerative disorders. In the present study, a walnut peptide with a strong capacity of scavenging reactive oxygen species (ROS) was purified and identified as EVSGPGLSPN by SEC, RP-HPLC, and HPLC-MS/MS. Treatment with EVSGPGLSPN could significantly (P < 0.05) reduce ROS generation, and increase cell viability, and superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-px) activities in a dose-dependent manner in hydrogen peroxide induced PC12 cells. Western blot and immunofluorescence analysis showed that EVSGPGLSPN suppressed the expression of IKKß and p65 to inhibit NF-κB pathway activation, attenuating the neurotoxic cascade by overexpression of IL-1ß and TNF-α. Moreover, EVSGPGLSPN inhibited apoptosis by suppressing the expression of cytochrome C, caspase-9, caspase-3, and PARP. Additionally, it also up-regulated the expression of p-CREB and synaptophysin in oxidatively damaged PC12 cells. Thus, EVSGPGLSPN may protect against hydrogen peroxide induced neurotoxicity by enhancing the activity of antioxidant enzymes and blocking the NF-κB/caspase pathways.


Assuntos
Peróxido de Hidrogênio/toxicidade , Juglans/química , Neurônios/efeitos dos fármacos , Peptídeos/farmacologia , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Animais , Antioxidantes/metabolismo , Apoptose/efeitos dos fármacos , Caspases/genética , Caspases/metabolismo , Catalase/genética , Catalase/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Células PC12 , Ratos , Espécies Reativas de Oxigênio/metabolismo , Superóxido Dismutase/genética , Superóxido Dismutase/metabolismo
11.
J Sci Food Agric ; 98(13): 5142-5152, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29652442

RESUMO

BACKGROUND: Walnut protein, which is obtained as a by-product of oil expression, has not been used efficiently. Although walnuts are beneficial for cognitive functioning, the potential of their protein composition in strengthening learning and memory functions remains unknown. In this study, the inhibition of memory impairment by the Manchurian walnut hydrolyzed peptide (MWHP) was evaluated. RESULTS: Small-molecular-weight MWHP (<3 kDa) achieved the optimal antioxidative activity. Therefore, MWHP (<3 kDa) was subjected to the following mice trials to evaluate its attenuation effect on memory impairment. In the Morris water maze test, MWHP shortened the total path for searching the platform, reduced the escape latency, and increased the dwelling distance and time in the coverage zone. MWHP also prolonged the latency and diminished errors in the passive avoidance response tests. These behavioral tests demonstrated that MWHP could inhibit scopolamine-induced memory impairment. MWHP improved memory by reducing oxidative stress, inhibiting apoptosis, regulating neurotransmitter functions, maintaining hippocampal CA3 pyramidal neurons, and increasing calmodulin-dependent protein kinase II levels in brain tissues. CONCLUSION: Experimental results proved that MWHP exhibits potential in improving memory and should be used to develop novel functional food. © 2018 Society of Chemical Industry.


Assuntos
Antioxidantes/administração & dosagem , Juglans/química , Transtornos da Memória/tratamento farmacológico , Peptídeos/administração & dosagem , Proteínas de Plantas/química , Escopolamina/efeitos adversos , Animais , Antioxidantes/química , China , Cognição/efeitos dos fármacos , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Humanos , Masculino , Memória/efeitos dos fármacos , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Peptídeos/química , Proteínas de Plantas/administração & dosagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA