Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Phytomedicine ; 123: 155195, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37956635

RESUMO

BACKGROUND: Houttuynia Cordata Thunb. (H. cordata; Saururaceae) is a medicine food homology plant that is grown in many Asian countries. Its main phytochemical constituents are volatile oils, flavonoids, polysaccharides and alkaloids. It has considerable clinical applications and health benefits. PURPOSE: This paper reviews the existing literatures and patents, summarizes the phytochemistry, pharmacological activity, safety and economic botanical applications of H. cordata, and provides a reference for systematic study of the pharmacological effects of H. cordata, improvement of quality standards and further development of its medicinal resources. METHODS: A comprehensive search of literature and patents on H. cordata and its active ingredients published before June 2023 was conducted using PubMed, Google Scholar, Web of Science, and China Knowledge Network. RESULTS: H. cordata is not only edible and medicinal but also used in various aspects of daily life such as fermented beverages, nutraceuticals, feed and cosmetics. The main phytochemical constituents of H. cordata are volatile oils, flavonoids, organic acids and alkaloids. Several in vitro and in vivo studies and clinical trials have found that H. cordata extracts possess antioxidant, anti-inflammatory, antitumor, antibacterial, hepatoprotective and renal, immunomodulatory and potent antiviral effects. The mechanisms of expression of these pharmacological effects are related to the blood-brain barrier, lipophilicity, cAMP signaling and skin permeability, including blocking the MAPK signaling pathway, inhibiting the secretion of inflammatory factors such as TNF-α and IL-1ß, and activating the AMPK pathway. CONCLUSION: This paper provides a comprehensive review of the progress of research on the traditional applications, botany, chemical composition, pharmacological effects and safety of H. cordata and discusses for the first time the economic botanical aspects, which were not explored in the previous reviews. H. cordata has a wide range of bioactive substances whose therapeutic potential has not been fully exploited, and it could provide a new non-toxic approach to many diseases. This traditional medicinal food plant should receive more attention and in-depth research in the future.


Assuntos
Alcaloides , Houttuynia , Óleos Voláteis , Plantas Medicinais , Houttuynia/química , Extratos Vegetais/farmacologia , Compostos Fitoquímicos/farmacologia , Flavonoides/farmacologia , Etnofarmacologia
2.
Molecules ; 28(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38005238

RESUMO

Paclitaxel, a natural secondary metabolite isolated and purified from the bark of the Taxus tree, is considered one of the most successful natural anticancer drugs due to its low toxicity, high potency and broad-spectrum anticancer activity. Taxus trees are scarce and slow-growing, and with extremely low paclitaxel content, the contradiction between supply and demand in the market is becoming more and more intense. Therefore, researchers have tried to obtain paclitaxel by various methods such as chemical synthesis, artificial culture, microbial fermentation and tissue cell culture to meet the clinical demand for this drug. This paper provides a comprehensive overview of paclitaxel extraction, combination therapy, total synthesis, semi-synthesis and biosynthesis in recent years and provides an outlook, aiming to provide a theoretical basis and reference for further research on the production and application of paclitaxel in the future.


Assuntos
Paclitaxel , Taxus , Paclitaxel/química , Fermentação , Taxus/química
3.
Molecules ; 28(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36985850

RESUMO

Dioscorea spp. belongs to the Dioscoreaceae family, known as "yams", and contains approximately 600 species with a wide distribution. It is a major food source for millions of people in tropical and subtropical regions. Dioscorea has great medicinal and therapeutic capabilities and is a potential source of bioactive substances for the prevention and treatment of many diseases. In recent years, increasing attention has been paid to the phytochemicals of Dioscorea, such as steroidal saponins, polyphenols, allantoin, and, in particular, polysaccharides and diosgenin. These bioactive compounds possess anti-inflammatory activity and are protective against a variety of inflammatory diseases, such as enteritis, arthritis, dermatitis, acute pancreatitis, and neuroinflammation. In addition, they play an important role in the prevention and treatment of metabolic diseases, including obesity, dyslipidemia, diabetes, and non-alcoholic fatty liver disease. Their mechanisms of action are related to the modulation of a number of key signaling pathways and molecular targets. This review mainly summarizes recent studies on the bioactive compounds of Dioscorea and its treatment of inflammatory and metabolic diseases, and highlights the underlying molecular mechanisms. In conclusion, Dioscorea is a promising source of bioactive components and has the potential to develop novel natural bioactive compounds for the prevention and treatment of inflammatory and metabolic diseases.


Assuntos
Dioscorea , Doenças Metabólicas , Pancreatite , Saponinas , Humanos , Dioscorea/química , Doença Aguda , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Extratos Vegetais/química , Saponinas/química , Doenças Metabólicas/tratamento farmacológico
4.
Mini Rev Med Chem ; 23(18): 1780-1796, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36825714

RESUMO

Paclitaxel is an anticancer drug first isolated from the bark of the Pacific yew tree. It has been widely used for the treatment of ovarian, breast, uterine and other cancers because of its low toxicity, high efficiency and broad-spectrum anticancer activity, and it is considered to be one of the most successful natural anticancer drugs available. Paclitaxel is a microtubule-targeting drug whose main molecular mechanism is to disrupt microtubule dynamics and induce mitotic arrest and cell death. Despite the many clinical successes of paclitaxel, the extraction of natural paclitaxel from Taxus species has proven to be environmentally unsustainable and economically unviable. As a result, researchers are constantly working to find innovative ways to meet society's need for this drug. Currently, many methods, including artificial cultivation, microbial fermentation, chemical synthesis, and tissue and cell culture, have been explored and developed to obtain paclitaxel. In addition, the poor water solubility of paclitaxel has led to significant limitations in its clinical application. Conventional paclitaxel formulations use Cremophor EL and ethanol to dissolve paclitaxel, which can lead to serious side effects. In recent decades, a series of new nanotechnology-based paclitaxel dosage forms have been developed, including albumin-bound paclitaxel, polymeric micellar paclitaxel, polymer-paclitaxel couples, and liposome-encapsulated paclitaxel. These nanoformulations can significantly reduce the toxicity of paclitaxel and greatly improve its anti-tumor efficiency. This paper reviews the development of the production, dosage form and combination therapy of paclitaxel in recent years and presents an outlook, with the aim of providing a theoretical basis and reference for further research on the production and application of paclitaxel in the future.


Assuntos
Antineoplásicos Fitogênicos , Antineoplásicos , Neoplasias , Humanos , Antineoplásicos Fitogênicos/farmacologia , Antineoplásicos Fitogênicos/uso terapêutico , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Polímeros/química
5.
Mini Rev Med Chem ; 23(7): 804-820, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36237162

RESUMO

Ginseng, the roots and/or rhizomes of Panax spp.(Araliaceae), has been used as a popular herbal medicine in East Asia for at least two millennia. As a functional food and healthenhancing supplement, ginseng has been shown to have a wide range of pharmacological effects on cognition and blood circulation as well as antioxidant, antitumor, and anti-fatigue effects. The main active properties of ginseng are considered to be the triterpene saponins, often referred to as ginsenosides, which are the basis for their wide-ranging pharmacological effects. Four of these glycosides, including protopanaxadiol, protopanaxatriol, ocotillol, and oleanolic acid, are the most common saponins found in ginseng. Compared to other ginsenosides, the C-20 chimeric ginsenosides, including Rg3, Rh2, Rg2, Rh1, PF11, C-20, and C-24, as well as epimeric ocotillol-type saponins and their derivatives exhibit significant, steric differences in biological activity and metabolism. 20(R)-ginseng saponins, one class of important rare ginsenosides, have antitumor, antioxidative, antifatigue, neuroprotective and osteoclastogenesis inhibitory effects. However, 20(R)- ginsenosides are rare in natural products and are usually prepared from 20(S)-isomers through chemical differential isomerization and microbial transformation. The C20 configuration of 20(R)-ginseng saponins is usually determined by 13C NMR and X-ray single-crystal diffraction. There are regular differences in the chemical shift values of some of the carbons of the 20(S)- and 20(R)-epimers, including C-17, C-21, and C-22. Owing to their chemical structure and pharmacological and stereoselective properties, 20(R)-ginseng saponins have attracted a great deal of attention in recent years. Herein, the stereoscopic differences in the identification, bioactivity, and metabolism of C-20 and C-24 epimeric ginseng saponins are summarized.


Assuntos
Ginsenosídeos , Panax , Saponinas , Triterpenos , Saponinas/farmacologia , Saponinas/química , Ginsenosídeos/farmacologia , Ginsenosídeos/química
6.
Front Nutr ; 9: 1036295, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36562043

RESUMO

Sea buckthorn (Hippophae rhamnoides L.), an ancient miraculous plant, is of great interest because of its tenacity, richness in nutritional active substances, and biological activity. Sea buckthorn is a deciduous shrub or tree of the genus Hippophae in the family Elaeagnaceae. It is a pioneer tree species for soil improvement, wind and sand control, and soil and water conservation. Sea buckthorn contains many nutritional active components, such as vitamins, carotenoids, polyphenols, fatty acids, and phytosterols. Moreover, sea buckthorn has many health benefits, such as antioxidant, anticancer, anti-hyperlipidemic, anti-obesity, anti-inflammatory, antimicrobial, antiviral, dermatological, neuroprotective, and hepatoprotective activities. Sea buckthorn not only has great medicinal and therapeutic potential, but also is a promising economic plant. The potential of sea buckthorn in the human food industry has attracted the research interest of researchers and producers. The present review mainly summarizes the phytochemistry, nutrients, health benefits, and food applications of sea buckthorn. Overall, sea buckthorn is a dietary source of bioactive ingredients with the potential to be developed into functional foods or dietary supplements for the prevention and treatment of certain chronic diseases, which deserves further research.

7.
Nutrients ; 14(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36235731

RESUMO

Sesame (Sesamum indicum L.), of the Pedaliaceae family, is one of the first oil crops used in humans. It is widely grown and has a mellow flavor and high nutritional value, making it very popular in the diet. Sesame seeds are rich in protein and lipids and have many health benefits. A number of in vitro and in vivo studies and clinical trials have found sesame seeds to be rich in lignan-like active ingredients. They have antioxidant, cholesterol reduction, blood lipid regulation, liver and kidney protection, cardiovascular system protection, anti-inflammatory, anti-tumor, and other effects, which have great benefits to human health. In addition, the aqueous extract of sesame has been shown to be safe for animals. As an important medicinal and edible homologous food, sesame is used in various aspects of daily life such as food, feed, and cosmetics. The health food applications of sesame are increasing. This paper reviews the progress of research on the nutritional value, chemical composition, pharmacological effects, and processing uses of sesame to support the further development of more functionalities of sesame.


Assuntos
Lignanas , Sesamum , Animais , Anti-Inflamatórios/análise , Antioxidantes/análise , Humanos , Lignanas/farmacologia , Lipídeos/análise , Valor Nutritivo , Compostos Fitoquímicos/análise , Sementes/química , Sesamum/química
8.
Phytomedicine ; 106: 154422, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36087526

RESUMO

BACKGROUND: The traditional Chinese medicine Platycodon grandiflorum (Jacq.) A. DC. (PG, balloon flower) has medicinal and culinary value. It consists of a variety of chemical components including triterpenoid saponins, polysaccharides, flavonoids, polyphenols, polyethylene glycols, volatile oils and mineral components, which have medicinal and edible value. PURPOSE: The ultimate goal of this review is to summarize the phytochemistry, pharmacological activities, safety and uses of PG in local and traditional medicine. METHODS: A comprehensive search of published literature up to March 2022 was conducted using the PubMed, China Knowledge Network and Web of Science databases to identify original research related to PG, its active ingredients and pharmacological activities. RESULTS: Triterpene saponins are the primary bioactive compounds of PG. To date, 76 triterpene saponin compounds have been isolated and identified from PG. In addition, there are other biological components, such as flavonoids, polyacetylene and phenolic acids. These extracts possess antitussive, immunostimulatory, anti-inflammatory, antioxidant, antitumor, antiobesity, antidepressant, and cardiovascular system activities. The mechanisms of expression of these pharmacological effects include inhibition of the expression of proteins such as MDM and p53, inhibition of the activation of enzymes, such as AKT, the secretion of inflammatory factors, such as IFN-γ, TNF-α, IL-2 and IL-1ß, and activation of the AMPK pathway. CONCLUSION: This review summarizes the chemical composition, pharmacological activities, molecular mechanism, toxicity and uses of PG in local and traditional medicine over the last 12 years. PG contains a wide range of chemical components, among which triterpene saponins, especially platycoside D (PD), play a strong role in pharmacological activity, representing a natural phytomedicine with low toxicity that has applications in food, animal feed and cosmetics. Therefore, PG has value for exploitation and is an excellent choice for treating various diseases.


Assuntos
Antitussígenos , Óleos Voláteis , Platycodon , Saponinas , Triterpenos , Proteínas Quinases Ativadas por AMP , Animais , Antioxidantes/farmacologia , Etnofarmacologia , Flavonoides , Interleucina-2 , Medicina Tradicional Chinesa , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Platycodon/química , Polímero Poliacetilênico , Polietilenoglicóis , Proteínas Proto-Oncogênicas c-akt , Saponinas/química , Saponinas/farmacologia , Fator de Necrose Tumoral alfa , Proteína Supressora de Tumor p53
9.
Foods ; 11(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36140986

RESUMO

Hawthorn (Crataegus) is a plant of the Rosaceae family and is widely grown throughout the world as one of the medicinal and edible plants, known as the "nutritious fruit" due to its richness in bioactive substances. Preparations derived from it are used in the formulation of dietary supplements, functional foods, and pharmaceutical products. Rich in amino acids, minerals, pectin, vitamin C, chlorogenic acid, epicatechol, and choline, hawthorn has a high therapeutic and health value. Many studies have shown that hawthorn has antioxidant, anti-inflammatory, anticancer, anti-cardiovascular disease, and digestive enhancing properties. This is related to its bioactive components such as polyphenols (chlorogenic acid, proanthocyanidin B2, epicatechin), flavonoids (proanthocyanidins, mucoxanthin, quercetin, rutin), and pentacyclic triterpenoids (ursolic acid, hawthornic acid, oleanolic acid), which are also its main chemical constituents. This paper briefly reviews the chemical composition, nutritional value, food applications, and the important biological and pharmacological activities of hawthorn. This will contribute to the development of functional foods or nutraceuticals from hawthorn.

10.
Plant Physiol Biochem ; 186: 31-39, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35803089

RESUMO

Exploring novel growth regulators for premature senescence regulation is important for tobacco production. In the present study, chlorine dioxide (ClO2) was explored as a novel plant growth regulator for tobacco growth, particularly its effect on leaf senescence and root development. The results showed that 0.15 µM ClO2 maintained the lushness of detached leaves and whole plants. Also, the leaves of ClO2-treated plants exhibited a chlorophyll content of 58% higher than in CK (control) plants (P < 0.05). Besides, ClO2 treatment increased the biomass of roots and aboveground parts by 54 and 16%, respectively. The ClO2-treated plants also showed enhanced activities of antioxidant enzymes and significantly reduced malondialdehyde contents (P < 0.05). Moreover, ClO2 treatment remarkably alleviated drought-caused premature senescence in the tobacco plants and partly rescued the exogenous ethylene-caused plant dwarfism. The indole-3-acetic acid content in ClO2-treated plants was higher than in non-treated plants (P < 0.05), but ethylene content was significantly lower (P < 0.05). Gene expression analysis showed that ClO2 treatment remarkably suppressed ethylene synthase genes. However, the auxin biosynthesis and transport genes were up-regulated, with NtIAA17 increasing by five folds (P < 0.05). Further, ClO2 remarkably up-regulated the expression of chlorophyll biosynthesis genes, with a >20-fold increase in NtHEMA1 and NtCHLH expressions. These results designate ClO2 as a potential regulator for improving tobacco productivity by retaining higher chlorophyll content and promoting root growth.


Assuntos
Nicotiana , Senescência Vegetal , Compostos Clorados , Clorofila/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Ácidos Indolacéticos/metabolismo , Óxidos , Folhas de Planta/metabolismo , Nicotiana/metabolismo
11.
Future Med Chem ; 14(8): 535-555, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35286228

RESUMO

Aim: Inducible nitric oxide synthase (iNOS) is a validated target for anti-inflammatory treatment. Based on the authors' previous work, novel aza-ursolic acid derivatives were designed and synthesized and their inhibitory activities against lipopolysaccharide (LPS)-induced nitric oxide (NO) release from RAW264.7 cells was evaluated. Materials & results: 16 novel derivatives were screened for their in vitro inhibitory activity against NO release using Griess assays and the cytotoxicity was evaluated using MTT assays. The presence of furoxan joined to the A-ring of ursolic acid and N-methylpiperazine groups in the lead compound was identified for anti-inflammatory activity, and compound 21b showed 94.96% inhibition of NO release at 100 µM with an IC50 value of 8.58 µM. Conclusion: Compound 21b has potential anti-inflammatory activity with low cytotoxicity that warrants further preclinical study and evaluation.


Assuntos
Óxido Nítrico , Triterpenos , Animais , Macrófagos/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Ácido Ursólico
12.
Plant Physiol Biochem ; 177: 1-9, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35219190

RESUMO

High temperature is one of the main abiotic factors limiting agricultural production, particularly for heat-sensitive plant species. Small heat-shock proteins contribute substantially to alleviating damage to plants caused by heat stress. In the present study, the heat shock protein gene PtsHSP17.2 from Pinellia ternata was functionally characterized through promoter analysis and its overexpression in tobacco. Respectively, relative expression using real-time RT-PCR and ex situ promoter activity assay indicated that PtsHSP17.2 is strongly inducible under heat stress, and in silico promoter analysis discovered multiple stress-related cis elements including heat shock element. When overexpressing PtsHSP17.2 in tobacco, the thermotolerance of transgenic plants was markedly enhanced. Furthermore, the transgenic tobacco plants exhibited less variation in chlorophyll content, relative electrolyte leakage, and malondialdehyde content under heat stress compared with wild-type (WT) plants. The activities of antioxidant enzymes and content of proline were significantly enhanced under heat stress in transgenic plants relative to WT plants. Transgenic plants also had enhanced water retention and increased antioxidative capacity. Further, the expression levels of genes encoding antioxidant enzymes were more highly induced by heat stress in transgenic lines than WT. These results enrich the current understanding of thermal adaptation of heat-sensitive plant species and encourage further genetic improvement.


Assuntos
Proteínas de Choque Térmico Pequenas , Pinellia , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Pinellia/genética , Pinellia/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Fisiológico/genética , Nicotiana/genética , Nicotiana/metabolismo
13.
Mini Rev Med Chem ; 22(3): 422-436, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34517797

RESUMO

In vivo and in vitro studies reveal that Ursolic Acid (UA) is able to counteract endogenous and exogenous inflammatory stimuli and has favorable anti-inflammatory effects. The antiinflammatory mechanisms mainly include decreasing the release of histamine in mast cells, suppressing the activities of lipoxygenase, cyclooxygenase and phospholipase, and reducing the production of nitric oxide and reactive oxygen species, blocking the activation of the signal pathway, downregulating the expression of inflammatory factors, and inhibiting the activities of elastase and complement. These mechanisms can open up new avenues for the scientific community to develop or improve novel therapeutic approaches to tackle inflammatory diseases, such as arthritis, atherosclerosis, neuroinflammation, liver diseases, kidney diseases, diabetes, dermatitis, bowel diseases, cancer. The anti-inflammatory activity, the anti-inflammatory mechanism of ursolic acid and its therapeutic applications are reviewed in this paper.


Assuntos
Triterpenos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Triterpenos/farmacologia , Triterpenos/uso terapêutico , Ácido Ursólico
14.
Mini Rev Med Chem ; 22(3): 437-448, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34517798

RESUMO

Ginsenoside Rh2 (3ß-O-Glc-protopanaxadiol), a trace but characteristic pharmacological component of red ginseng, exhibited versatile pharmacological activities, such as antitumor effects, improved cardiac function and fibrosis, anti-inflammatory effects, antibiosis and excellent medicinal potential. In recent years, increased research has been performed on the biocatalytic synthesis of ginsenoside Rh2. In this paper, advances in the biocatalytic synthesis, pharmacological activities, pharmaceutical preparation and metabolism of ginsenoside Rh2 are reviewed.


Assuntos
Ginsenosídeos , Panax , Biocatálise , Ginsenosídeos/farmacologia , Panax/metabolismo , Preparações Farmacêuticas/metabolismo
15.
Food Chem ; 372: 131335, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34818743

RESUMO

Mulberry leaves (MLs) have been used traditionally to raise silkworms and as herbs and herbal drinks. In vitro and in vivo studies as well as some clinical trials provide some evidence of health benefits, mostly for ML extracts. ML extracts showed antioxidant, hypoglycemic, anticholesterol (affecting lipid metabolism), antiobesity, anti-inflammatory, anticancer activities, and so on. These might be linked to strong antioxidant activities, inhibition of α-glucosidase and α-amylase, reduction of foam cell formation, inhibition of fat formation, decrease of NF-κB activity, and the promotion or induction of apoptosis. Phenolic constituents, especially flavonoids, phenolic acids and alkaloids, are likely to contribute to the reported effects. The phytochemistry and pharmacology of MLs confer the traditional and current uses as medicine, food, fodder, and cosmetics. This paper reviews the economic value, chemical composition and pharmacology of MLs to provide a reference for the development and utilization of MLs.


Assuntos
Morus , Frutas , Hipoglicemiantes/farmacologia , Compostos Fitoquímicos , Extratos Vegetais/farmacologia , Folhas de Planta
16.
Future Med Chem ; 13(9): 839-858, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33821673

RESUMO

Microtubules have been a concerning target of cancer chemotherapeutics for decades, and several tubulin-targeted agents, such as paclitaxel, vincristine and vinorelbine, have been approved. The colchicine binding site is one of the primary targets on microtubules and possesses advantages compared with other tubulin-targeted agents, such as inhibitors of tumor vessels and overcoming P-glycoprotein overexpression-mediated multidrug resistance. This study reviews and summarizes colchicine binding site inhibitors reported in recent years with structural studies via the crystal structures of complexes or computer simulations to discover new lead compounds. We are attempting to resolve the challenge of colchicine site agent research.


Assuntos
Antineoplásicos/química , Colchicina/química , Moduladores de Tubulina/química , Tubulina (Proteína)/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Colchicina/farmacologia , Resistência a Medicamentos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Microtúbulos/metabolismo , Simulação de Acoplamento Molecular , Terapia de Alvo Molecular , Mutação , Ligação Proteica , Conformação Proteica , Relação Estrutura-Atividade , Moduladores de Tubulina/farmacologia
17.
Mini Rev Med Chem ; 21(15): 2020-2038, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33573541

RESUMO

Oleanolic acid can inhibit edema and exhibit obvious inhibitory activity to inflammatory by activating of the pituitary-adrenal cortical system, inhibiting the synthesis or release of PGs, inhibiting endotoxin-mediated release of HMGB1 by endothelial cells or regulating MAPK, PI3K/Akt/NF- κB/ICAM-1/JAK/STAT signaling pathways, etc. In recent years, an increased number of interesting research work has been carried out on the anti-inflammatory activity and mechanisms of OA derivatives, such as acyloxyimino derivative, 3-acetylated derivatives, novel 3,5-disubstituted isoxazoles derivatives, acetate, ester derivatives and oximes derivatives. The review summaries and highlights the updated advances on the anti-inflammatory activity and mechanism of OA and its derivatives.


Assuntos
Anti-Inflamatórios/farmacologia , Ácido Oleanólico/análogos & derivados , Ácido Oleanólico/farmacologia , Animais , Células Endoteliais , Humanos , Molécula 1 de Adesão Intercelular , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , NF-kappa B , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt
18.
Mini Rev Med Chem ; 21(1): 79-89, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-32703128

RESUMO

Maslinic acid, a pentacyclic triterpene acid, is mainly isolated from olives. Maslinic acid and its derivatives exhibit a broad range of biological properties, such as anti-inflammatory, anticancer, anti-diabetic, antimicrobial, neuroprotective and hepatoprotective activities. In this minireview, the progress of research on maslinic acid with regard to its bioactivities, extraction, semisynthetic preparation and patents is reported. The relationships between the structure and the activity of maslinic acid and its derivatives are also discussed.


Assuntos
Triterpenos/farmacologia , Anti-Infecciosos/química , Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Antineoplásicos/química , Antineoplásicos/isolamento & purificação , Antineoplásicos/farmacologia , Humanos , Hipoglicemiantes/química , Hipoglicemiantes/isolamento & purificação , Hipoglicemiantes/farmacologia , Conformação Molecular , Fármacos Neuroprotetores/química , Fármacos Neuroprotetores/isolamento & purificação , Fármacos Neuroprotetores/farmacologia , Substâncias Protetoras/química , Substâncias Protetoras/isolamento & purificação , Substâncias Protetoras/farmacologia , Triterpenos/química , Triterpenos/isolamento & purificação
19.
RSC Adv ; 11(2): 1134-1146, 2020 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35423719

RESUMO

The CO2 huff-n-puff process is an effective method to enhance oil recovery; however, its utilization is limited in heterogenous edge-water reservoirs due to the severe water channeling. Accordingly, herein, a stable N2 foam is proposed to assist CO2 huff-n-puff process for enhanced oil recovery. Sodium dodecyl sulfate (SDS) and polyacrylamide (HPAM) were used as the surfactant and stabilizer, respectively, and 0.3 wt% of SDS + 0.3 wt% of HPAM were screened in the laboratory to generate a foam with good foamability and long foam stability. Subsequently, dynamic foam tests using 1D sand packs were conducted at 65 °C and 15 MPa, and a gas/liquid ratio (GLR) of 1 : 1 was optimized to form a strong barrier in high permeable porous media to treat water and gas channeling. 3D heterogeneous models were established in the laboratory, and N2-foam-assisted CO2 huff-n-puff experiments were conducted after edge-water driving. The results showed that an oil recovery of 13.69% was obtained with four cycles of N2-foam-assisted CO2 injection, which is twice that obtained by the CO2 huff-n-puff process. The stable N2 foam could temporarily delay the water and gas channeling, and subsequently, CO2 fully extracted the remaining oil in the low permeable zones around the production well. Pilot tests were conducted in 8 horizontal wells, and a total oil production of 1784 tons with a net price value (NPV) of $240 416.26 was obtained using the N2-foam-assisted CO2 huff-n-puff process, which is a profitable method for enhanced oil recovery in heterogenous reservoirs with edge water.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA