Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Endocrinol (Lausanne) ; 14: 1130211, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37529616

RESUMO

Objective: To determine whether the peak serum estradiol (E2) level during ovarian stimulation affects the cumulative live birth rate (CLBR) and obstetric outcomes in freeze-all cycles. Methods: This retrospective cohort study involved patients who underwent their first cycle of in vitro fertilization followed by a freeze-all strategy and frozen embryo transfer cycles between January 2014 and June 2019 at a tertiary care center. Patients were categorized into four groups according to quartiles of peak serum E2 levels during ovarian stimulation (Q1-Q4). The primary outcome was CLBR. Secondary outcomes included obstetric and neonatal outcomes of singleton and twin pregnancies. Poisson or logistic regression was applied to control for potential confounders for outcome measures, as appropriate. Generalized estimating equations were used to account for multiple cycles from the same patient for the outcome of CLBR. Results: A total of 11237 patients were included in the analysis. Cumulatively, live births occurred in 8410 women (74.8%). The live birth rate (LBR) and CLBR improved as quartiles of peak E2 levels increased (49.7%, 52.1%, 54.9%, and 56.4% for LBR; 65.1%, 74.3%, 78.4%, and 81.6% for CLBR, from the lowest to the highest quartile of estradiol levels, respectively, P<0.001). Such association remained significant for CLBR after accounting for potential confounders in multivariable regression models, whereas the relationship between LBR and peak E2 levels did not reach statistical significance. In addition, no significant differences were noticed in adverse obstetric and neonatal outcomes (gestational diabetes mellitus, pregnancy-induced hypertension, preeclampsia, placental disorders, preterm birth, low birthweight, and small for gestational age) amongst E2 quartiles for either singleton or twin live births, both before and after adjustment. Conclusion: In freeze-all cycles, higher peak serum E2 levels during ovarian stimulation were associated with increased CLBR, without increasing the risks of adverse obstetric and neonatal outcomes.


Assuntos
Nascido Vivo , Nascimento Prematuro , Gravidez , Humanos , Feminino , Recém-Nascido , Nascido Vivo/epidemiologia , Estudos Retrospectivos , Nascimento Prematuro/etiologia , Placenta , Indução da Ovulação , Estradiol
2.
Food Sci Biotechnol ; 32(5): 723-727, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37009039

RESUMO

[This corrects the article DOI: 10.1007/s10068-022-01118-8.].

3.
Endocrinology ; 164(3)2023 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-36652382

RESUMO

Competent endometrial receptivity is a prerequisite for successful embryo implantation. Identification of novel key molecules involved in endometrial receptivity is essential to better interpret human implantation and improve pregnancy rates in assisted reproduction treatment. Isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomics was performed to profile the proteomes of the prereceptive (luteinizing hormone [LH] + 2, n = 4) and receptive (LH + 7, n = 4) endometrial tissues. A total of 173 differentially expressed proteins (DEPs) between LH + 2 and LH + 7 endometrial samples were identified. Integrated analysis of the proteomic data and published transcriptomic data was performed to identify the concordant DEPs with differential expression at both the messenger RNA and protein levels. Protein-protein interaction (PPI) network analysis was performed on concordant DEPs. We first identified 63 novel concordant DEPs and 5 hub proteins (ACSL4, ACSL5, COL1A1, PTGS1, and PLA2G4F) between LH + 2 and LH + 7 endometrial samples. ACSL4 was predominantly expressed in endometrial epithelial cells and its expression was significantly upregulated by progesterone in the LH + 7 endometrium and significantly downregulated in repeated implantation failure patients. Knockdown of ACSL4 in endometrial epithelial cells induced the downregulation of endometrial receptivity markers (HOXA10, COX2, and LIF) and the significant decrease of implantation rate during in vitro implantation analysis. This study provides the first gel-independent quantitative proteomes of the LH + 2 and LH + 7 human endometrium using iTRAQ technology. The identified concordant DEPs and hub proteins open a new avenue for future studies aimed at elucidating the underlying mechanisms governing endometrial receptivity. ACSL4 was identified as a novel regulatory molecule in the establishment of endometrial receptivity and might play important roles during implantation.


Assuntos
Proteoma , Proteômica , Feminino , Humanos , Gravidez , Implantação do Embrião/fisiologia , Endométrio/metabolismo , Hormônio Luteinizante/metabolismo , Proteoma/metabolismo , Reprodução
4.
Food Sci Biotechnol ; 31(10): 1315-1323, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35992325

RESUMO

Radiation-induced liver damage (RILD) is a spiny problem in radiotherapy or other circumstances that exposure to radiation. The need for radioprotective agent is increasing to protect liver tissue. This study aimed to explore the hepatoprotective effect of p-coumaric acid (CA) against RILD. C57BL/6 male mice were exposed to 4 Gy irradiation and administrated with CA for 4 days starting on the same day of irradiation. Mice were sacrificed to obtain blood and liver tissues on day 3.5 or 14 post irradiation, respectively. The blood and liver tissues were collected. As compared with the only irradiated group, CA supplementation improved liver morphology, decreased serum alanine aminotransferase and aspartate aminotransferase, inhibited BCL2-associated X (BAX) protein expression, and improved the mice hematopoietic function. CA at the dose of 100 mg/kg body weight showed better effect compared to the other doses. Thus, CA might possess potential to protect against RILD.

5.
Mol Ther ; 30(4): 1706-1720, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35114391

RESUMO

Endometrial decidualization is a prerequisite for implantation, and impaired decidualization is associated with recurrent implantation failure (RIF). Coding genes of the HOX family have been clarified as critical regulators in endometrial decidualization, but the role of long non-coding RNAs (lncRNAs) in the HOX gene family has yet to be determined. The aim of this study was to clarify the possible roles of lncRNAs in the HOX gene family in decidualization. In this study, we identified that HOXA11-AS was the most reduced lncRNA in the HOX family in the human endometrium during the window of implantation, and it was elevated in RIF patients. Mechanistically, HOXA11-AS negatively regulated decidualization through competitive interaction with PTBP1, an RNA-binding protein. Binding of PTBP1 to HOXA11-AS limited PTBP1 availability to regulate PKM1/2 alternative splicing, resulting in enhanced PKM1 and diminished PKM2 expression, thus attenuating decidualization. The pattern of high HOXA11-AS expression and impaired PKM2 splicing was consistently observed in RIF patients. Collectively, our study indicates that the increase of HOXA11-AS is detrimental to endometrial decidualization, likely contributing to RIF. Our study may shed light on the pathogenesis and treatment of RIF.


Assuntos
Implantação do Embrião , Endométrio , Genes Homeobox , RNA Longo não Codificante , Implantação do Embrião/genética , Endométrio/metabolismo , Feminino , Ribonucleoproteínas Nucleares Heterogêneas/genética , Ribonucleoproteínas Nucleares Heterogêneas/metabolismo , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Proteína de Ligação a Regiões Ricas em Polipirimidinas/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Células Estromais/metabolismo , Fatores de Transcrição/genética
6.
Reprod Biol Endocrinol ; 20(1): 4, 2022 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-34980155

RESUMO

BACKGROUND: Insulin resistance (IR) contributes to ovarian dysfunctions in polycystic ovarian syndrome (PCOS) patients. Serum amyloid A1 (SAA1) is an acute phase protein produced primarily by the liver in response to inflammation. In addition to its role in inflammation, SAA1 may participate in IR development in peripheral tissues. Yet, expressional regulation of SAA1 in the ovary and its role in the pathogenesis of ovarian IR in PCOS remain elusive. METHODS: Follicular fluid, granulosa cells and peripheral venous blood were collected from PCOS and non-PCOS patients with and without IR to measure SAA1 abundance for analysis of its correlation with IR status. The effects of SAA1 on its own expression and insulin signaling pathway were investigated in cultured primary granulosa cells. RESULTS: Ovarian granulosa cells were capable of producing SAA1, which could be induced by SAA1 per se. Moreover, the abundance of SAA1 significantly increased in granulosa cells and follicular fluid in PCOS patients with IR. SAA1 treatment significantly attenuated insulin-stimulated membrane translocation of glucose transporter 4 and glucose uptake in granulosa cells through induction of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression with subsequent inhibition of Akt phosphorylation. These effects of SAA1 could be blocked by inhibitors for toll-like receptors 2/4 (TLR 2/4) and nuclear factor kappa light chain enhancer of activated B (NF-κB). CONCLUSIONS: Human granulosa cells are capable of feedforward production of SAA1, which significantly increased in PCOS patients with IR. Excessive SAA1 reduces insulin sensitivity in granulosa cells via induction of PTEN and subsequent inhibition of Akt phosphorylation upon activation of TLR2/4 and NF-κB pathway. These findings highlight that elevation of SAA1 in the ovary promotes the development of IR in granulosa cells of PCOS patients.


Assuntos
Células da Granulosa/metabolismo , Resistência à Insulina/genética , Síndrome do Ovário Policístico/genética , Proteína Amiloide A Sérica/fisiologia , Adulto , Estudos de Casos e Controles , Células Cultivadas , Feminino , Líquido Folicular/química , Líquido Folicular/metabolismo , Células da Granulosa/efeitos dos fármacos , Humanos , Ovário/efeitos dos fármacos , Ovário/metabolismo , Síndrome do Ovário Policístico/sangue , Síndrome do Ovário Policístico/metabolismo , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Proteína Amiloide A Sérica/farmacologia
7.
Metabolism ; 119: 154749, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33722534

RESUMO

BACKGROUND: Polycystic ovary syndrome (PCOS) is the most common metabolic and endocrine disorder among reproductive-age women, and the leading cause of anovulatory infertility. 11ß-hydroxysteroid dehydrogenases-1 (11ß-HSD1) catalysing the conversion of inactive cortisone to active cortisol plays a crucial role in various metabolic diseases. However, whether 11ß-HSD1 is associated with the pathogenesis of PCOS and whether 11ß-HSD1 can be a treating target of PCOS remain unknown. METHODS: This study was first designed to explore the role of 11ß-HSD1 in PCOS development and the effect of selective 11ß-HSD1 inhibitor administration on PCOS treatment. Follicular fluid and granulosa cells (GCs) were collected from 32 non-PCOS patients and 37 patients with PCOS to measure cortisol and 11ß-HSDs levels. Female Sprague-Dawley rats (3-week-old) were injected with dehydroepiandrosterone (DHEA) to induce PCOS and their ovaries were collected to measure the abundance of corticosterone (CORT) and 11ß-HSDs. To determine the role of 11ß-HSD1 in PCOS development, we overexpressed 11ß-HSD1 in the ovaries of female rats (5-week-old) or knocked down the expression of 11ß-HSD1 in the ovaries from PCOS rats via lentivirus injection. After lentivirus infection, the body weights, ovarian weights, estrous cycles, reproductive hormones and morphology of the ovary were analysed in rats from different experimental groups. Then to figure out the translational potential of the selective 11ß-HSD1 inhibitor in treating PCOS, PCOS rats were treated with BVT.2733, a selective 11ß-HSD1 inhibitor and a cluster of PCOS-like traits were analysed, including insulin sensitivity, ovulatory function and fertility of rats from the Control, PCOS and PCOS+BVT groups. Rat ovarian explants and human GCs were used to explore the effect of CORT or cortisol on ovarian extracellular matrix remodelling. RESULTS: The elevated expression of 11ß-HSD1 contributed to the increased cortisol and corticosterone (CORT) concentrations observed in the ovaries of PCOS patients and PCOS rats respectively. Our results showed that ovarian overexpression of 11ß-HSD1 induced a cluster of PCOS phenotypes in rats including irregular estrous cycles, reproductive hormone dysfunction and polycystic ovaries. While knockdown of ovarian 11ß-HSD1 of PCOS rats reversed these PCOS-like changes. Additionally, the selective 11ß-HSD1 inhibitor BVT.2733 alleviated PCOS symptoms such as insulin resistance (IR), irregular estrous cycles, reproductive hormone dysfunction, polycystic ovaries, ovulatory dysfunction and subfertility. Moreover, we showed that cortisol target ovarian insulin signalling pathway and ovarian extracellular matrix (ECM) remodelling in vivo, in ovarian explants and in GCs. CONCLUSION: Elevated 11ß-HSD1 abundance in ovarian is involved in the pathogenesis of PCOS by impairing insulin signalling pathway and ECM remodelling. Selective inhibition of 11ß-HSD1 ameliorates a cluster of PCOS phenotypes. Our study demonstrates the selective 11ß-HSD1 inhibitor as a novel and promising strategy for the treatment of PCOS.


Assuntos
11-beta-Hidroxiesteroide Desidrogenase Tipo 1/antagonistas & inibidores , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/fisiologia , Piperazinas/uso terapêutico , Síndrome do Ovário Policístico/tratamento farmacológico , Sulfonamidas/uso terapêutico , Tiazóis/uso terapêutico , 11-beta-Hidroxiesteroide Desidrogenase Tipo 1/metabolismo , Animais , Células Cultivadas , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Feminino , Humanos , Infertilidade Feminina/tratamento farmacológico , Infertilidade Feminina/metabolismo , Infertilidade Feminina/patologia , Resistência à Insulina/fisiologia , Ovário/enzimologia , Ovário/metabolismo , Piperazinas/farmacologia , Síndrome do Ovário Policístico/etiologia , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Ratos , Ratos Sprague-Dawley , Sulfonamidas/farmacologia , Tiazóis/farmacologia
8.
Front Cell Dev Biol ; 9: 598364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33585475

RESUMO

Decidualization is driven by differentiation of human endometrial stromal cells (ESCs), and is a prerequisite for successful implantation and establishment of pregnancy. The critical role of impaired decidualization in women suffered recurrent implantation failure (RIF) has been established, while the underlying mechanism is poorly understood. In the present study, we verified the essential role of Sirtuin1 (SIRT1) in regulating differentiation and maintaining reactive oxygen species (ROS) homeostasis of human ESCs during decidualization. The abundance of SIRT1 was decreased in RIF patients both in the endometria during window of implantation phase and in the decidualized ESCs. Downregulation of SIRT1 disrupted the intracellular ROS homeostasis during decidualization of ESC, manifested as the accumulation of intracellular ROS level and the reduction of antioxidant stress molecules. Elimination of ROS with N-acetyl-L-cysteine (NAC) could rescued the decidualization inhibition caused by SIRT1 knockdown. Further, we explored the insufficient expression of SIRT1 in ESC affected the deacetylation of forkhead box O1 (FOXO1), and thus inhibited the transcriptional activity of FOXO1. This could account for the dysregulation of intracellular ROS homeostasis during decidualization and decreased expression of decidual markers. Collectively, our findings provided insight into the role of down-regulated SIRT1 in the poor decidual response of ESCs in RIF patients.

9.
Int J Clin Exp Pathol ; 11(12): 5938-5947, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31949681

RESUMO

OBJECTIVE: Based on estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor (HER-2), and proliferation cell nuclear antigen (Ki-67) status, breast cancer (BC) can be divided into several molecular sub-types. The patterns of these biological receptors may change during the course of progression and metastasis which could lead to new treatment strategies accordingly. METHOD: The present multi-center-based clinical data investigated the discordance patterns of molecular features in Chinese BC patients between primary tumors and distant metastasis. 151 pathologically confirmed BC patients were enrolled. The comparison of the statuses of ER, PR, HER-2, and the Ki-67 index by the IHC and/or FISH method was performed. RESULTS: The discordance rate in one or more molecular markers was 52.4% and varied between primary and metastatic lesions. The most common transformation pattern was the loss of ER and PR. On the other hand, the ER-positive patients have the longest OS. Patients with ER changing from positive to negative have the shortest OS. The patients with PR changing from negative to positive have the longest OS, while PR-negative patients have the shortest OS. The median DFI (disease-free interval) was 54.93 months in this study. ER, PR, and HER-2 transformation rates are common in patients with DFI < 2 years than in patients with DFI ≥ 5 years. For patients with an ER-positive expression in metastatic lesions, a significantly prolonged PFS was observed (P < 0.05) in those receiving endocrine treatment. CONCLUSION: The transformation of molecular subtyping status was identified between primary and corresponding relapse lesions and was used for determining the treatment strategies and prognosis prediction in advanced BC patients.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA