Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Reprod Toxicol ; 129: 108671, 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39038764

RESUMO

Maternal prenatal hypoxia is an important contributor to intrauterine growth restriction (IUGR), which impedes fetal lung maturation and leads to the development of chronic lung diseases. Although evidence suggests the involvement of pyroptosis in IUGR, the molecular mechanism of pyroptosis is still unclear. Nuclear factor erythroid 2-related factor 2 (Nrf2) has been found to potentially interact with gasdermin D (GSDMD), the key protein responsible for pyroptosis, indicating its crucial role in inhibiting pyroptosis. Therefore, we hypothesized that Nrf2 deficiency is a key molecular responsible for lung pyroptosis in maternal hypoxia-induced IUGR offspring mice. Pregnant WT and Nrf2-/- mice were exposed to hypoxia (10.5 % O2) to mimic IUGR model. We assessed body weight, lung histopathology, pulmonary angiogenesis, oxidative stress levels, as well as mRNA and protein expressions related to inflammation in the 2-week-old offspring. Additionally, we conducted a dual-luciferase reporter assay to confirm the targeting relationship between Nrf2 and GSDMD. Our findings revealed that offspring with maternal hypoxia-induced IUGR exhibited reduced birth weight, catch-up growth delay, and pulmonary dysplasia. Furthermore, we observed impaired nuclear translocation of Nrf2 and increased GSDMD-mediated pyroptosis in these offspring with IUGR. Moreover, the dual-luciferase reporter assay demonstrated that Nrf2 could directly inhibit GSDMD transcription; deficiency of Nrf2 exacerbated pyroptosis and pulmonary dysplasia in offspring with maternal hypoxia-induced IUGR. Collectively, our findings suggest that Nrf2 deficiency induces GSDMD-mediated pyroptosis and pulmonary dysplasia in offspring with maternal hypoxia-induced IUGR; thus highlighting the potential therapeutic approach of targeting Nrf2 for treating prenatal hypoxia-induced pulmonary dysplasia in offspring.

2.
Exp Lung Res ; 50(1): 25-41, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38419581

RESUMO

BACKGROUND: The transcriptional repressor B-cell lymphoma 6 (BCL6) has been reported to inhibit inflammation. So far, experimental evidence for the role of BCL6 in bronchopulmonary dysplasia (BPD) is lacking. Our study investigated the roles of BCL6 in the progression of BPD and its downstream mechanisms. METHODS: Hyperoxia or lipopolysaccharide (LPS) was used to mimic the BPD mouse model. To investigate the effects of BCL6 on BPD, recombination adeno-associated virus serotype 9 expressing BCL6 (rAAV9-BCL6) and BCL6 inhibitor FX1 were administered in mice. The pulmonary pathological changes, inflammatory chemokines and NLRP3-related protein were observed. Meanwhile, BCL6 overexpression plasmid was used in human pulmonary microvascular endothelial cells (HPMECs). Cell proliferation, apoptosis, and NLRP3-related protein were detected. RESULTS: Either hyperoxia or LPS suppressed pulmonary BCL6 mRNA expression. rAAV9-BCL6 administration significantly inhibited hyperoxia-induced NLRP3 upregulation and inflammation, attenuated alveolar simplification and dysregulated angiogenesis in BPD mice, which were characterized by decreased mean linear intercept, increased radical alveolar count and alveoli numbers, and the upregulated CD31 expression. Meanwhile, BCL6 overexpression promoted proliferation and angiogenesis, inhibited apoptosis and inflammation in hyperoxia-stimulated HPMECs. Moreover, administration of BCL6 inhibitor FX1 arrested growth and development. FX1-treated BPD mice exhibited exacerbation of alveolar pathological changes and pulmonary vessel permeability, with upregulated mRNA levels of pro-inflammatory cytokines and pro-fibrogenic factors. Furthermore, both rAAV9-BCL6 and FX1 administration exerted a long-lasting effect on hyperoxia-induced lung injury (≥4 wk). CONCLUSIONS: BCL6 inhibits NLRP3-mediated inflammation, attenuates alveolar simplification and dysregulated pulmonary vessel development in hyperoxia-induced BPD mice. Hence, BCL6 may be a target in treating BPD and neonatal diseases.


Assuntos
Displasia Broncopulmonar , Hiperóxia , Lesão Pulmonar , Animais , Humanos , Recém-Nascido , Camundongos , Animais Recém-Nascidos , Displasia Broncopulmonar/etiologia , Displasia Broncopulmonar/metabolismo , Modelos Animais de Doenças , Células Endoteliais/patologia , Hiperóxia/metabolismo , Inflamação/metabolismo , Lipopolissacarídeos/farmacologia , Pulmão/metabolismo , Lesão Pulmonar/tratamento farmacológico , Lesão Pulmonar/etiologia , Lesão Pulmonar/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Proto-Oncogênicas c-bcl-6/metabolismo , RNA Mensageiro/metabolismo
3.
BMC Plant Biol ; 23(1): 455, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37770835

RESUMO

BACKGROUND: Salt stress is one of the key factors limiting rice production. Alginate oligosaccharides (AOS) enhance plant stress resistance. However, the molecular mechanism underlying salt tolerance in rice induced by AOS remains unclear. FL478, which is a salt-tolerant indica recombinant inbred line and IR29, a salt-sensitive rice cultivar, were used to comprehensively analyze the effects of AOS sprayed on leaves in terms of transcriptomic and metabolite profiles of rice seedlings under salt stress. RESULTS: In this experiment, exogenous application of AOS increased SOD, CAT and APX activities, as well as GSH and ASA levels to reduce the damage to leaf membrane, increased rice stem diameter, the number of root tips, aboveground and subterranean biomass, and improved rice salt tolerance. Comparative transcriptomic analyses showed that the regulation of AOS combined with salt treatment induced the differential expression of 305 and 1030 genes in FL478 and IR29. The expressed genes enriched in KEGG pathway analysis were associated with antioxidant levels, photosynthesis, cell wall synthesis, and signal transduction. The genes associated with light-trapping proteins and RLCK receptor cytoplasmic kinases, including CBA, LHCB, and Lhcp genes, were fregulated in response to salt stress. Treatment with AOS combined with salt induced the differential expression of 22 and 50 metabolites in FL478 and IR29. These metabolites were mainly related to the metabolism of amino and nucleotide sugars, tryptophan, histidine, and ß -alanine. The abundance of metabolites associated with antioxidant activity, such as 6-hydroxymelatonin, wedelolactone and L-histidine increased significantly. Combined transcriptomic and metabolomic analyses revealed that dehydroascorbic acid in the glutathione and ascorbic acid cycles plays a vital role in salt tolerance mediated by AOS. CONCLUSION: AOS activate signal transduction, regulate photosynthesis, cell wall formation, and multiple antioxidant pathways in response to salt stress. This study provides a molecular basis for the alleviation of salt stress-induced damage by AOS in rice.


Assuntos
Oryza , Transcriptoma , Plântula/genética , Plântula/metabolismo , Antioxidantes/metabolismo , Oryza/metabolismo , Estresse Salino/genética , Glutationa/metabolismo , Oligossacarídeos/metabolismo , Oligossacarídeos/farmacologia
4.
Zhongguo Gu Shang ; 36(7): 601-6, 2023 Jul 25.
Artigo em Chinês | MEDLINE | ID: mdl-37475621

RESUMO

OBJECTIVE: To explore the effective method of applying Chinese medicine manipulative repositioning Kirschner wire fixation for minimally invasive treatment of fractures of the neck of the fifth metacarpal. METHODS: From January 2018 to November 2021, 90 patients with closed fractures of the neck of the fifth metacarpal bone were treated minimally invasively with closed repositioning Kirschner wires, all fractures AO type was type A. All patients were divided into three groups according to the mode of internal fixation involving 30 cases in the crossed Kirschner's wire group, 30 cases in the transverse Kirschner's wire group, 30 patients in the intramedullary Kirschner's wire group. By comparison, gender, age, disease duration, and preoperative neck-stem angle were not significant. The postoperative fifth metacarpal neck-stem angles, postoperative fifth metacarpophalangeal joint flexion mobility and fifth metacarpophalangeal joint extension hyperextension angles were compared among three groups. The overall clinical efficacy was evaluated according to the patient outcomes of surgery-hand/arm(POS-Hand/Arm) scoring system. RESULTS: All patients had 12-month follow-up and achieved bony union without malunion. There was no significant difference in the 5th metacarpal neck-stem angle, the fifth metacarpophalangeal joint flexion angle and the fifth metacarpophalangeal joint extension hyperextension angles among three groups at 12 months after surgery(P>0.05). There was no significant difference in physical activity and symptom scores in POS-Hand/Arm scores at 12 months after surgery(P>0.05), psychological status and aesthetic score among three groups(P<0.05) and between cross and transverse Kirschner wire groups(P>0.05). The three POS-Hand/Arm total scores were statistically different(P<0.05), between the crossed and transverse(P>0.05), and the intramedullary group had the highest POS-Hand/Arm scores. CONCLUSION: All three techniques of Kristener's wire fixation could achieve minimally invasive treatment, and patients have need for cosmetic and early activity, and the author recommend minimally invasive intramedullary fixation with manipulative repositioned Kristen wires as the preferred procedure.


Assuntos
Fixação Intramedular de Fraturas , Fraturas Ósseas , Traumatismos da Mão , Ossos Metacarpais , Fraturas da Coluna Vertebral , Humanos , Ossos Metacarpais/cirurgia , Ossos Metacarpais/lesões , Fixação Intramedular de Fraturas/métodos , Fraturas Ósseas/cirurgia , Fixação Interna de Fraturas/métodos , Resultado do Tratamento , Traumatismos da Mão/cirurgia , Fios Ortopédicos
5.
Urolithiasis ; 51(1): 57, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36947229

RESUMO

The aim of this study was to investigate the relationship of m6A RNA methylation to CaOX-induced renal tubular injury. Microarray analysis was performed to detect the difference in mRNA expression and m6A methylation between the injurious groups and controls. We established injurious renal tubular epithelial cell model induced by calcium oxalate crystals (CaOX), and we validated that CaOX could increase the overall m6A methylation levels. By microarray analysis, we identified 5967 differentially expressed mRNAs (2444 were up-regulated and 3523 were down-regulated in the injurious groups) and 6853 differentially methylated mRNAs (4055 were in hypermethylation and 3688 were in hypomethylation in the injurious groups). Four clusters (hyper-up, hyper-down, hypo-up and hypo-down) were further identified via conjoint analysis. Functional analysis revealed that m6A methylation played a crucial role in the development of CaOX through participating multiple processes covering inflammation, oxidative stress, apoptosis, crystal-cell adhesion. We delineated the first transcriptome-wide m6A landscape of injurious renal tubular cells in high-CaOX environment. We identified a series of mRNAs of renal tubular epithelial cells with differential expression and m6A methylation between the CaOX-treated groups and controls.


Assuntos
Oxalato de Cálcio , Células Epiteliais , Humanos , Oxalato de Cálcio/metabolismo , Metilação , RNA Mensageiro , Análise em Microsséries , Células Epiteliais/metabolismo
6.
J Nat Prod ; 86(1): 45-51, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36524671

RESUMO

Burkitt's lymphoma (BL) has a particularly extremely poor prognosis and the fastest growth rate among human tumors, and the development of new drugs for the treatment of BL is urgently needed. In this study, the cytotoxic properties of 3,7-bis(3,5-dimethylphenyl)-aaptamine (AP-51), a new semisynthetic alkaloid derived from the marine natural product aapatamine, were investigated using BL cell lines. Our results showed that AP-51 inhibited the proliferation of Daudi and Raji cells with IC50 values of 3.48 and 2.07 µM, respectively. Flow cytometry and Western blot analyses showed that AP-51 initiated G0/G1 phase arrest by modulating the expression of cyclin-dependent kinases (CDKs). AP-51 also induced apoptosis, as demonstrated by nuclear fragmentation, downregulation of BCL-XL and Mcl-1, and upregulation of cleaved caspase-9, cleaved caspase-3, cleaved-PARP, and cytochrome c, the markers of apoptosis regulated via the mitochondrial pathway. When it comes to mitochondria, AP-51 treatment also significantly increased the levels of intracellular mitochondrial superoxide, decreased ATP content, and reduced the expression of ATP synthase, as well as the expression of the mitochondrial respiratory chain complexes. Finally, AP-51 treatment significantly inhibited the PI3K/AKT/mTOR signaling pathway, which was shown to be associated with the induction of apoptosis. Collectively, these findings indicated that AP-51 initiated cell cycle arrest, induced apoptosis, caused mitochondrial dysfunction, and decreased the phosphorylation of PI3K/AKT/mTOR signaling pathway-related proteins and the protein levels of C-MYC, suggesting that AP-51 has therapeutic potential as a possible treatment for Burkitt's lymphoma.


Assuntos
Alcaloides , Antineoplásicos , Linfoma de Burkitt , Poríferos , Animais , Humanos , Trifosfato de Adenosina , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Apoptose , Linfoma de Burkitt/tratamento farmacológico , Linfoma de Burkitt/metabolismo , Linfoma de Burkitt/patologia , Linhagem Celular Tumoral , Proliferação de Células , Mitocôndrias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Poríferos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
7.
Food Funct ; 11(11): 9495-9502, 2020 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-33078805

RESUMO

The aim of this study is to explore the hepatoprotective potential of coix seed protein hydrolysates (CPP) against alcohol-induced liver injury, and investigate the underlying mechanisms. The hepatoprotective activity of CPP at 0, 10, 30, 50 mg per kg BW was demonstrated in vivo by using ICR male mice fed with 40% v/v alcohol (5 ml per kg body weight) daily to induce alcoholic liver injury. CPP could significantly improve the alcohol metabolism in liver as evidenced by the enhanced activity of aspartate aminotransferase (AST) and alanine aminotransferase (ALT). The overexpression of serum tumor necrosis factor-α (TNF-α) and interleukin-ß (IL-ß) by alcohol induced injury was altered by CPP administration. The lipid peroxidation was also retarded by CPP by suppressing malondialdehyde (MDA) level and increasing the activity of liver superoxide dismutase (SOD). The findings from the present study suggested that CPP produced significant hepatoprotection and showed potential to be used as a dietary supplement or the ingredient of functional food.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Coix , Extratos Vegetais/administração & dosagem , Substâncias Protetoras/administração & dosagem , Hidrolisados de Proteína/administração & dosagem , Animais , Antioxidantes/administração & dosagem , Antioxidantes/farmacologia , Modelos Animais de Doenças , Alimento Funcional , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Fitoterapia , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Hidrolisados de Proteína/farmacologia , Sementes
8.
Neuropharmacology ; 170: 108042, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32147454

RESUMO

Alzheimer's disease (AD) is a progressively neurodegenerative disorder, which seriously affects human health and cannot be stopped by current treatments. Type 2 diabetes mellitus (T2DM) is a risk factor for AD. Our recent studies reported the neuroprotective effects of a GLP-1/GIP/Glucagon receptor triagonist (Triagonist), a novel unimolecular anti-diabetic drug, in cognitive and pathological improvements of 3xTg-AD mice. However, the detailed electrophysiological and molecular mechanisms underlying neuroprotection remain unexplored. The present study investigated the underlying electrophysiological and molecular mechanisms further by using whole-cell patch clamp techniques. Our results revealed that chronic Triagonist treatment effectively reduced working memory and reference memory errors of 3xTg-AD mice in a radial maze test. In addition, the Triagonist increased spontaneous excitatory synaptic activities, differentially modulated voltage- and chemically-gated Ca2+ flux, and reduced the over-excitation of pyramidal neurons in hippocampal slices of 3xTg-AD mice. In addition, chronic Triagonist treatment also up-regulated the expression levels of synaptophysin and PSD-95 in the hippocampus of 3xTg-AD mice. These results indicate that the Triagonist could improve memory formation, as well as synaptic transmission, Ca2+ balance, and neuronal excitability in 3xTg-AD mice. These neuroprotective effects of Triagonist may be involved in the up-regulation of synaptophysin and PSD-95. Therefore, the study suggests that multi-receptor agonists might be a novel therapeutic strategy for the treatment of AD.


Assuntos
Sinalização do Cálcio/efeitos dos fármacos , Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Memória de Curto Prazo/efeitos dos fármacos , Receptores dos Hormônios Gastrointestinais/agonistas , Receptores de Glucagon/agonistas , Transmissão Sináptica/efeitos dos fármacos , Precursor de Proteína beta-Amiloide/genética , Animais , Sinalização do Cálcio/fisiologia , Potenciais Pós-Sinápticos Excitadores/efeitos dos fármacos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Receptor do Peptídeo Semelhante ao Glucagon 1/fisiologia , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Hipoglicemiantes/administração & dosagem , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Memória de Curto Prazo/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Técnicas de Cultura de Órgãos , Presenilina-1/genética , Receptores dos Hormônios Gastrointestinais/fisiologia , Receptores de Glucagon/fisiologia , Transmissão Sináptica/fisiologia , Proteínas tau/genética
9.
J Infect Dis ; 217(9): 1491-1503, 2018 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-29373700

RESUMO

Background: KLRG1 is a marker of terminally differentiated CD8+ T cells in viral infection, but its role in human Mycobacterium tuberculosis infection remains elusive. Methods: A set of cohorts of patients with tuberculosis was designed, and the expression profiles and functions of KLRG1+CD4+ T cells were determined with and without antibody blocking. Results: KLRG1 expression on CD4+ T cells was significantly increased in patients with active tuberculosis, compared with healthy controls and patients without tuberculosis. Upon M. tuberculosis-specific stimulation, the ability to secrete interferon γ, interleukin 2, and tumor necrosis factor α was significantly greater in KLRG1-expressing CD4+ T cells than in their KLRG-negative counterparts and was accompanied by a decreased proportion of regulatory T cells and increased Akt signaling. However, KLRG1-expressing CD4+ T cells had a shorter life-span, which was associated with a higher apoptosis rate but a similar proliferative response. Blockade of KLRG1 signaling significantly enhanced interferon γ and interleukin 2 secretion without affecting either cell apoptosis or multiplication. Addition of a specific Akt inhibitor prevented this increased cytokine response, implicating the Akt signaling pathway. Conclusions: Our study delineated the profile of KLRG1+CD4+ T cells in patients with tuberculosis and suggests that M. tuberculosis infection drives CD4+ T cells to acquire increased effector function in a terminally differentiated state, which is restrained by KLRG1 via KLRG1/Akt signaling pathway.


Assuntos
Linfócitos T CD4-Positivos/metabolismo , Regulação da Expressão Gênica/imunologia , Lectinas Tipo C/metabolismo , Transativadores/metabolismo , Tuberculose/imunologia , Tuberculose/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Criança , Pré-Escolar , Feminino , Humanos , Lectinas Tipo C/genética , Masculino , Pessoa de Meia-Idade , Mycobacterium tuberculosis , Receptores Imunológicos , Transativadores/genética , Tuberculose/microbiologia , Adulto Jovem
10.
Mol Reprod Dev ; 82(10): 747-55, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26153379

RESUMO

The ubiquitin-proteasome pathway, involved in genetic recombination and sex-chromosome silencing during meiosis, plays critical roles in the specification of germ-line stem cells and the differentiation of gametes from gonocytes. Zygote-specific proteasome assembly chaperone (ZPAC) is expressed in the early mouse embryo, where it is important for progression of the mouse maternal-to-zygotic transition. The role of ZPAC during spermatogenesis in the adult gonads, however, remains unknown. In this study, rapid amplification of cDNA ends was used to determine the Zpac cDNA sequence, a 1584-bp transcript that includes a putative 1122-bp open reading frame coding for a 373 amino acid protein. Western blot and immunohistochemistry revealed that ZPAC was specifically expressed in gonads. To further dissect the function of ZPAC during spermatogenesis, we employed PiggyBac-based RNA interference vectors for transgenesis combined with cell transplantation to deplete Zpac during spermatogenesis. This RNAi-mediate depletion in Zpac expression disrupted normal spermatogenesis from spermatogonial stem cells. Two independent yeast two-hybrid screens further revealed an interaction between ZPAC and SYCE1. Together, these data suggest that ZPAC is required for normal spermatogenesis in mice.


Assuntos
Chaperonas Moleculares/fisiologia , Proteínas Nucleares/fisiologia , Espermatogênese , Animais , Linhagem Celular , DNA Complementar , Feminino , Técnicas de Silenciamento de Genes , Vetores Genéticos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos DBA , Chaperonas Moleculares/genética , Proteínas Nucleares/genética , Interferência de RNA , Espermatogênese/genética , Técnicas do Sistema de Duplo-Híbrido
11.
Zhonghua Wei Chang Wai Ke Za Zhi ; 14(5): 360-3, 2011 May.
Artigo em Chinês | MEDLINE | ID: mdl-21614692

RESUMO

OBJECTIVE: To establish a colon cancer cell line with stable expression of carcinoembryonic antigen(CEA). METHODS: Recombinant lentivirus conjugated with CEACAM5 cDNA were used to transfect wild CT26 cells. Antibiotics were given for 2 weeks to select CEA positive cells. A single transfected clone was obtained using limiting dilution. The 7th and 14th passages of cells cultured in vitro were detected for CEACAM5 mRNA by RT-PCR, and protein by western blot. The location of CEACAM5 expression was examined using fluorescent microscope and immunocytochemistry. The 14th passage cells were injected subcutaneously into mice to create BALB/c model and CEACAM5 protein was detected by in vivo fluorescence image analysis system and immunohistochemistry. RESULTS: CEACAM5 mRNA and protein were found in the 7th and 14th passages of CT26CEA cells, which were proved to locate in the cytoplasm by fluorescence microscope and immunohistochemistry. Abundant CEACAM5 protein was found in subcutaneous tumors by in vivo fluorescence image analysis system and immunohistochemistry. CONCLUSION: Colon cancer cell line CT26 with stable expression of CEA in vitro and in mice can be used as a suitable tool to facilitate research on the impact and mechanism of CEA on colon cancer under normal immune environment.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/patologia , Animais , Antígeno Carcinoembrionário/genética , Neoplasias do Colo/genética , Neoplasias do Colo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , RNA Mensageiro/genética , Transfecção
12.
Zhonghua Wei Chang Wai Ke Za Zhi ; 13(8): 608-11, 2010 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-20737316

RESUMO

OBJECTIVE: To explore the significance of the expression of carcinoembryonic antigen receptors (CEAR) in digestive organs. METHODS: Specimens were procured from 20 male BALB/c mice including esophagus, small intestine, stomach, colon, pancreas, and liver. Kupffer cells were obtained by density gradient centrifugation following enzymatic digestion of the fresh liver specimen. Immunohistochemistry and immunocytochemistry methods were used to detect CEAR in those organs or Kupffer cells. RESULTS: CEAR was found both in cytoplasm and nuclei of the digestive tract mucosal epithelial cells and pancreas islet cells, but only in the cytoplasm of liver cells, Kupffer cells, and smooth muscle cells of the whole digestive tract. The mean ranks of CEAR expression were 174.33 in the mucosal epithelial cells of colon, 160.70 in epithelial cells of small intestine, 139.18 in Kupffer cells, 137.43 in pancreas islet cells, 131.70 in liver cells, 124.23 in gastric epithelial cells, 77.15 in esophageal epithelial cells and 57.80-71.00 in smooth muscle cells of the entire digestive tract examined. There were significantly differences in the CEAR expression intensity among those positive cells (chi2=99.58, P<0.01) while CEAR was not present in submucosal connective tissue cells, pancreatic exocrine cells, or hepatic sinusoid endothelial cells. CONCLUSION: There are significantly differences in the expression of CEAR in the main digestive organs according to the different tissue and cells, which may play an important role in the carcinogenesis and hepatic metastasis from tumors of the digestive system.


Assuntos
Antígeno Carcinoembrionário/metabolismo , Esôfago/metabolismo , Mucosa Gástrica/metabolismo , Intestino Delgado/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Colo/metabolismo , Células de Kupffer/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pâncreas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA