RESUMO
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is an exceptionally contagious single-stranded RNA virus with a strong positive contagion. The COVID-19 pandemic refers to the swift worldwide dissemination of SARS-CoV-2 infection, which began in late 2019. The COVID-19 epidemic has disrupted many cancer treatments. A few reports indicate that the prevalence of SARS-CoV-2 has disrupted the treatment of breast cancer patients (BCs). However, the role of SARS-CoV-2 in the occurrence and prognosis of BC has not been elucidated. Here, we applied bioinformatics to construct a prognostic signature of SARS-CoV-2-related genes (SCRGs). Specifically, weighted gene co-expression network analysis (WGCNA) was utilized to extract co-expressed genes of differentially expressed genes (DEGs) in breast cancer and SCRGs. Then, we utilized the least absolute shrinkage and selection operator (LASSO) algorithm and univariate regression analysis to screen out three hub genes (DCTPP1, CLIP4 and ANO6) and constructed a risk score model. We further analyzed tumor immune invasion, HLA-related genes, immune checkpoint inhibitors (ICIs), and sensitivity to anticancer drugs in different SARS-CoV-2 related risk subgroups. In addition, we have developed a nomination map to expand clinical applicability. The results of our study indicate that BCs with a high-risk score are linked to negative outcomes, lower immune scores, and reduced responsiveness to anticancer medications. This suggests that the SARS-CoV-2 related signature could be used to guide prognosis assessment and treatment decisions for BCs.
Assuntos
Neoplasias da Mama , COVID-19 , SARS-CoV-2 , Humanos , Neoplasias da Mama/genética , COVID-19/genética , COVID-19/imunologia , COVID-19/virologia , Feminino , Prognóstico , SARS-CoV-2/genética , Regulação Neoplásica da Expressão Gênica , Biologia Computacional/métodos , Redes Reguladoras de Genes , Perfilação da Expressão Gênica , Biomarcadores Tumorais/genéticaRESUMO
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common cancers in the world and a nonnegligible health concern on a worldwide scale. Disulfidptosis is a novel mode of cell death, which is mainly caused by the collapse of the actin skeleton. Although many studies have demonstrated that various types of cell death are associated with cancer treatment, the relationship between disulfidptosis and HCC has not been elucidated. METHODS: Here, we mainly applied bioinformatics methods to construct a disulfidptosis related risk model in HCC patients. Specifically, transcriptome data and clinical information were downloaded from the Gene Expression Omnibus (GEO), International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA) database. A total of 45 co-expressed genes were extracted between the disulfidptosis-related genes (DRGs) and the differential expression genes (DEGs) of liver hepatocellular carcinoma (LIHC) in the TCGA database. The LIHC cohort was divided into two subgroups with different prognosis by k-mean consensus clustering and functional enrichment analysis was performed. Subsequently, three hub genes (CDCA8, SPP2 and RDH16) were screened by Cox regression and LASSO regression analysis. In addition, a risk signature was constructed and the HCC cohort was divided into high risk score and low risk score subgroups to compare the prognosis, clinical features and immune landscape between the two subgroups. Finally, the prognostic model of independent risk factors was constructed and verified. CONCLUSIONS: High DRGs-related risk score in HCC individuals predict poor prognosis and are associated with poor immunotherapy response, which indicates that risk score assessment model can be utilized to guide clinical treatment strategy.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Prognóstico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , ImunoterapiaRESUMO
BACKGROUND: Colorectal cancer (CRC) is one of the three deadliest malignant tumors in the world, posing a severe hazard to human health. Nonetheless, the 5-year survival rate for advanced CRC remains unsatisfactory. Grid2 interacting protein (GRID2IP) is a Purkinje fiber postsynaptic scaffold protein implicated in a number of signal transduction pathways in the nervous system. Previous studies have shown that Grid2 is closely related to the occurrence and prognosis of gastric cancer and many other diseases. Therefore, we aim to identify the relationship between GRID2IP and the occurrence and prognosis of CRC. METHODS: Transcriptome data were retrieved from The Cancer Genome Atlas (TCGA) database to analyze the differential expression of GRID2IP in a variety of malignant tumors and then validate it by quantitative real time polymerase chain reaction(Q-PCR) and Western Blot in HT29 and SW480 cells. "DESeq2" package was used to analyze the differentially expressed genes (DEGs) between the high- and low-GRID2IP subgroups. In relation to DEGs, Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis were performed. In addition, gene set enrichment analysis (GSEA) and single-sample gene set enrichment analysis (ssGSEA) were employed to examine DEGs-associated signaling pathways and GRID2IP-associated immune cell infiltration levels. Besides, overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) were compared between the two subgroups using a Kaplan-Meier analysis. In addition, a prognostic model for GRID2IP and clinical characteristics was developed using the univariate Cox regression method. The "pRRophetic" package was applied to predict the drug sensitivity of different subgroups. Moreover, we also performed single-cell analysis of GRID2IP using the TISCH database. RESULTS: GRID2IP is upregulated in CRC patients. The rise of GRID2IP inhibits the invasion of tumor-associated immune cells resulting in a lower immune score. In addition, high GRID2IP expression was associated with poor prognosis in different clinical subgroups. Analysis of single cells revealed that GRID2IP was predominantly expressed in immune cells, myofibroblasts, and cancerous cells. In terms of chemotherapy drug sensitivity, the subgroup with high GRID2IP expression was less sensitive to gemcitabine. CONCLUSIONS: Our results suggest that rising GRID2IP promotes tumor-associated immune cell infiltration and suggests adverse outcomes in CRC patients, which may be a useful biomarker for determining the prognosis of CRC and a potential target molecule for CRC therapy.
Assuntos
Neoplasias Colorretais , Neoplasias Gástricas , Humanos , Biomarcadores , Western Blotting , Neoplasias Colorretais/genética , PrognósticoRESUMO
Neutrophil extracellular traps (NETs), a network of DNA histone complexes and proteins released by activated neutrophils, have been demonstrated to be associated with inflammation, infection related immune response and tumorigenesis in previous reports. However, the relationship between NETs related genes and breast cancer remains controversial. In the study, we retrieved transcriptome data and clinical information of BRCA patients from The Cancer Genome Atlas (TCGA) database and Gene Expression Omnibus (GEO) datasets. The expression matrix of neutrophil extracellular traps (NETs) related genes was generated and consensus clustering was performed by Partitioning Around Medoid (PAM) to classify BRCA patients into two subgroups (NETs high group and NETs low group). Subsequently, we focus on the differentially expressed genes (DEGs) between the two NETs-related subgroups and further explored NETs enrichment related signaling pathways by Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. In addition, we constructed a risk signature model by LASSO Cox regression analysis to evaluate the association between riskscore and prognosis. Even more, we explored the landscape of the tumor immune microenvironment and the expression of immune checkpoints related genes as well as HLA genes between two NETs subtypes in breast cancer patients. Moreover, we found and validated the correlation of different immune cells with risk score, as well as the response to immunotherapy in different subgroups of patients was detected by Tumor Immune Dysfunction and Exclusion (TIDE) database. Ultimately, a nomogram prognostic prediction model was established to speculate on the prognosis of breast cancer patients. The results suggest that high riskscore is associated with poor immunotherapy response and adverse clinical outcomes in breast cancer patients. In conclusion, we established a NETs-related stratification system that is beneficial for guiding the clinical treatment and predicting prognosis of BRCA.
RESUMO
BACKGROUND: Crocetin is a bioactive ingredient in saffron, derived from the Crocus sativus stigmas of the Iridaceae family. As a chemically carotenoid derivative, crocetin exhibites effects like anti-inflammatory, antioxidant, neuroprotective, etc. However, the protective effect of crocetin on glaucoma and its mechanism remains unclear. The current study assesed the neuroprotective and anti-inflammatory effects of crocetin on retinal neurons in glaucoma rats which were induced by 0.3% carbomer injection into the anterior chamber. METHODS AND RESULTS: The pathological structures on the retina and optic nerve were observed and examined by H&E staining and transmission electron microscopy. Immunohistochemical staining was used to detect the expression of TNF-α, IL-1ß, and IL-6 of the retina and the expression of a brain-derived neurotrophic factor (BDNF) in the primary visual cortex (PVC). Western blot was carried out to detect the expression of PI3K, Akt, and NF-κB in the retina. It was found that crocetin ameliorated the pathological changes of the retina and ON and reduced the number of apoptotic retinal ganglion cells. Immunohistochemical staining showed that crocetin could decrease the contents of TNF-α, IL-1ß, and IL-6 and increase the contents of BDNF. Western blot showed that crocetin was found to suppress the expression of PI3K, Akt, and NF-κB. CONCLUSION: The results obtained in this study have indicated that crocetin showes neuroprotective effects on retinal ganglion cells in glaucoma rats and inhibits retinal dysfunction. Meanwhile, crocetin exerted an anti-inflammatory effect to protect the retina by inhibiting the expression of the PI3K/Akt/NF-κB signaling pathway. This work provides substantial evidence that crocetin may be a potential drug for the treatment of glaucoma.
Assuntos
Glaucoma , NF-kappa B , Ratos , Animais , NF-kappa B/metabolismo , Fator Neurotrófico Derivado do Encéfalo , Neuroproteção , Fator de Necrose Tumoral alfa , Proteínas Proto-Oncogênicas c-akt , Fosfatidilinositol 3-Quinases , Interleucina-6 , Glaucoma/tratamento farmacológico , Anti-Inflamatórios/farmacologiaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Saffron, the dried stigma of Crocus sativus L., has a long history of use in the treatment of depression in traditional Chinese medicine and Islamic medicine. The unique aroma of saffron, primarily derived from its volatile oil, has been widely used by folk to mitigate anxiety and depression via sniffing because the aroma of saffron has a pleasant and invigorating effect. AIM OF THE STUDY: This study aimed to investigate the antidepressant effect and the underlying mechanism of saffron essential oil (SEO) in mice exposed to chronic unpredictable mild stress (CUMS). MATERIALS AND METHODS: In this study, compounds of SEO were identified using gas chromatography-mass spectrometry analysis, while network pharmacology was used to predict potential active compounds, antidepressant targets, and related signaling pathways of SEO. The CUMS depression model was further used to explore the therapeutic effect and possible mechanism of SEO. During the modeling period, mice were regularly administered fluoxetine (3.6 mg/kg, i.g.) or diluted SEO (2%, 4%, and 6% SEO, inhalation). The antidepressant and neuroprotective effects of SEO were evaluated by behavior tests (the open field test, the sucrose preference test, the tail suspension test, and the forced swimming test), hematoxylin-eosin staining, and Nissl staining. The enzyme-linked immunosorbent assay kits were used to measure dopamine (DA), 5-serotonin (5-HT), brain-derived neurotrophic factor (BDNF), and γ-aminobutyric acid (GABA) levels in serum. The relative abundance of Raf1, MEK1, P-ERK1/2/ERK1/2, P-CREB1/CREB1, BDNF, and P-Trk B/Trk B in the hippocampus was determined using western blot (WB). RESULTS: According to the network pharmacology analysis, seven active SEO compounds mediated 113 targets related to depression treatment, most of which were enriched in the 5-HT synapse, calcium signaling pathway, and cAMP signaling pathway. In vivo experiments indicated that fluoxetine and SEO improved depression-like behaviors in depressed mice. The levels of 5-HT, DA, BDNF, and GABA in serum increased significantly. Histopathological examinations revealed that fluoxetine and SEO ameliorated neuronal damage in the hippocampus. WB analysis showed that the relative expressions of Raf1, MEK1, P-ERK1/2/ERK1/2, P-CREB1/CREB1, BDNF, and P-Trk B/Trk B were significantly higher in the fluoxetine and SEO groups than in the CUMS group. CONCLUSION: Overall, these findings suggest that SEO significantly alleviates the depressive symptoms in CUMS exposed mice and partially restores hippocampal neuronal damage. Meanwhile, the best efficacy was observed in 4% SEO. Furthermore, the antidepressant mechanism of SEO is primarily dependent on the regulation of the MAPK-CREB1-BDNF signaling pathway.
Assuntos
Crocus , Fármacos Neuroprotetores , Óleos Voláteis , Animais , Antidepressivos/metabolismo , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Comportamento Animal , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Crocus/metabolismo , Depressão/tratamento farmacológico , Depressão/etiologia , Depressão/metabolismo , Modelos Animais de Doenças , Dopamina/metabolismo , Amarelo de Eosina-(YS)/metabolismo , Amarelo de Eosina-(YS)/farmacologia , Fluoxetina/farmacologia , Hematoxilina/metabolismo , Hematoxilina/farmacologia , Hipocampo , Sistema de Sinalização das MAP Quinases , Camundongos , Fármacos Neuroprotetores/farmacologia , Óleos Voláteis/metabolismo , Óleos Voláteis/farmacologia , Óleos Voláteis/uso terapêutico , Serotonina/metabolismo , Transdução de Sinais , Estresse Fisiológico , Estresse Psicológico/tratamento farmacológico , Sacarose/metabolismo , Sacarose/farmacologia , Ácido gama-Aminobutírico/metabolismoRESUMO
Inflammation is a biological process closely related to different kinds of diseases, such as cancer and metabolic diseases. Therefore, effective control of the occurrence and development of inflammation is of great significance for disease prevention and control. Recently, 2-substituted indoles have gradually become a research hotspot because of their stability and pharmacological activity. Here we synthesized a series of compound containing 2-substituted indoles and investigated XCR-7a's role in inflammatory response. Our data show that XCR-7a can inhibit the production of inflammatory cytokines interleukin-1 beta (IL-1ß), interleukin-6 (IL-6) and inflammatory mediator cyclooxygenase-2 (COX-2) induced by lipopolysaccharide (LPS) in mouse peritoneal macrophages. Also, XCR-7a has a protective effect on LPS-induced inflammatory response in mice. Mechanically, we found that XCR-7a could inhibit the phosphorylation of c-Fos induced by LPS, which suggested that the protective effect of XCR-7a on inflammation was related to its negative regulation to phosphorylation of c-Fos. Briefly, our results demonstrated that XCR-7a could be expected to be a potential drug for controlling inflammation.
Assuntos
Imunidade Inata/efeitos dos fármacos , Indóis , Inflamação/tratamento farmacológico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Animais , Anti-Inflamatórios/síntese química , Anti-Inflamatórios/farmacologia , Células Cultivadas , Modelos Animais de Doenças , Monitoramento de Medicamentos/métodos , Indóis/síntese química , Indóis/farmacologia , Lipopolissacarídeos/imunologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Camundongos , Fosforilação/efeitos dos fármacosRESUMO
BACKGROUND: Isatidis Radix, the root of Isatis indigotica Fort. (Chinese woad) can produce a variety of efficacious compound with medicinal properties. The tetraploid I. indigotica plants exhibit superior phenotypic traits, such as greater yield, higher bioactive compounds accumulation and enhanced stress tolerance. In this study, a comparative transcriptomic and metabolomic study on Isatidis Radix autotetraploid and its progenitor was performed. RESULTS: Through the targeted metabolic profiling, 283 metabolites were identified in Isatidis Radix, and 70 polyploidization-altered metabolites were obtained. Moreover, the production of lignans was significantly increased post polyploidization, which implied that polyploidization-modulated changes in lignan biosynthesis. Regarding the transcriptomic shift, 2065 differentially expressed genes (DEGs) were identified as being polyploidy-responsive genes, and the polyploidization-altered DEGs were enriched in phenylpropanoid biosynthesis and plant hormone signal transduction. The further integrative analysis of polyploidy-responsive metabolome and transcriptome showed that 1584 DEGs were highly correlated with the 70 polyploidization-altered metabolites, and the transcriptional factors TFs-lignans network highlighted 10 polyploidy-altered TFs and 17 fluctuated phenylpropanoid pathway compounds. CONCLUSIONS: These results collectively indicated that polyploidization contributed to the high content of active compounds in autotetraploid roots, and the gene-lignan pathway network analysis highlighted polyploidy-responsive key functional genes and regulators.
Assuntos
Isatis , Transcriptoma , Regulação da Expressão Gênica de Plantas , Isatis/genética , Metaboloma , Poliploidia , Metabolismo Secundário/genéticaRESUMO
Background: Polycystic ovary syndrome (PCOS), one of the most common endocrine diseases in women of childbearing age, has been found to be accompanied by changes in the gut microbiota. The Bu Shen Yang Xue formula (BSYXF) is a traditional Chinese medicine widely used for the treatment of PCOS. This study aimed to investigate whether the protective effects of ß-sitosterol, the main active ingredient of BSYXF, on PCOS was mediated by regulating gut microbiota. Methods: The presence of ß-sitosterol in BSYXF was detected by liquid chromatography-mass spectrometry. The PCOS-like mouse model was induced by dehydroepiandrosterone. The fecal supernatant of ß-sitosterol-treated mice was prepared for fecal microbiota transplantation (FMT). Body weight and wet weight of the uterus and ovary of the mice were recorded for organ index calculation. Hematoxylin and eosin stain was used to assess the endometrial morphology and microenvironment changes. Expression of endometrial receptivity markers cyclooxygenase-2 (COX-2), Integrin ανß3, leukemia inhibitory factor (LIF), and homeobox A10 (HOXA10) in the endometrium were determined by immunohistochemistry and western blot analysis. Enzyme-linked immunosorbent assay was employed to detect the expression of follicle stimulating hormone (FSH), luteinizing hormone (LH), progesterone (P), and testosterone (T) in the serum. The diversity of gut microbiota was examined by 16S rDNA gene sequencing. Results: With the treatment of ß-sitosterol and ß-sitosterol-FMT, the uterine index of PCOS-like mice increased, the ovarian index decreased, levels of COX-2, LH and T decreased, and levels of Integrin ανß3, LIF, HOXA10, FSH, and P increased. Under ß-sitosterol treatment, the structure of the gut microbiota in PCOS-like mice was also changed. Conclusion: ß-sitosterol regulates the endometrial receptivity of PCOS and harmonizes the sex hormone balance, which may be related to the changes in the structure and composition of gut microbiota, thus affecting the pathological process of PCOS.
RESUMO
Nonalcoholic fatty liver disease (NAFLD), which affects approximately onethird of the general population, has become a global health problem. Thus, more effective treatments for NAFLD are urgently required. In the present study, high levels of CC motif ligand 19 (CCL19), signaling pathways such as Tolllike receptor 4 (TLR4)/nuclear factorκB (NFκB), and proinflammatory factors including interleukin6 (IL6) and tumor necrosis factorα (TNFα) were detected in NAFLD patients, thereby indicating that there may be an association between CCL19 and these factors in NAFLD progression. Using a highfat diet (HFD), the present study generated a SpragueDawley rat model of NAFLD, which displayed dyslipidemia with increased levels of plasma aspartate aminotransferase, alanine aminotransferase, total cholesterol and triglyceride. Dyslipidemia, liver histopathology and gene expression analyses indicated that the NAFLD model was successfully induced by HFD, and metformin and berberine (BBR) were effective treatments for NAFLD. HFDinduced CCL19 levels and associated factors were markedly reduced by the two drug treatments. In addition, metformin or BBR alone significantly promoted adenosine monophosphateactivated protein kinase (AMPK) phosphorylation, which was inhibited by HFD. These results demonstrated that metformin and BBR could improve NAFLD, which may be via the activation of AMPK signaling, and the high expression of CCL19 in NAFLD was significantly reduced by metformin and BBR. It could be inferred that inhibition of CCL19 may be an effective treatment for NAFLD.