Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Anal Chim Acta ; 1302: 342502, 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38580409

RESUMO

BACKGROUNDS: Cancer is a highly fatal disease which is close relative of miRNA aberrant expression and apoptosis disorders. Elucidation of the therapeutic efficacy through investigating the changes in miRNA and apoptosis holds immense importance in advancing the development of miRNA-based precision therapy. However, it remains a challenge as how to visually evaluate the efficacy during protocol optimization of miRNA-based anticancer drugs at the cellular level. Therefore, exploring effective and noninvasive methods for real-time monitoring of therapeutic efficacy in living cells is of great significance. RESULTS: Herein, we reported a novel fluorescent nanoprobe COF-H1/H2-Peptide for visually evaluating drug efficacy in living cells through amplified imaging of low-abundant miRNA-221 with catalytic hairpin assembly (CHA) circle amplification, as well as simultaneous caspase-3 imaging. With strong stability and good biocompatibility, this newly fabricated amplified nanoprobe showed high sensitivity and specificity for the detection of miRNA-221 and caspase-3, and the limit of detection (LOD) of miRNA-221 was as low as 2.79 pM. The fluorescent imaging results showed that this amplified nanoprobe could not only detect caspase-3 in living cells, but also effectively detect low levels of miRNA-221 with increasing anticancer drug concentration and treatment time. The smart nanoprobe had effective performance for optimizing miRNA-based drug treatment schedules by dual-color fluorescence imaging. SIGNIFICANCE: This nanoprobe combined CHA amplified detection of intracellular miRNA-221 and synchronous apoptosis imaging, with excellent sensitivity for the detection of cellular low-level miRNA, enabling the realization of real-time assessment of the efficacy of miRNA-based therapy in living cells. This work presents a promising approach for revealing the regulatory mechanisms between miRNAs and apoptosis in cancer occurrence, development, and treatment.


Assuntos
Técnicas Biossensoriais , MicroRNAs , Humanos , MicroRNAs/genética , Caspase 3 , Apoptose , Células HeLa , Corantes Fluorescentes , Técnicas Biossensoriais/métodos
2.
Brain Behav Immun ; 119: 129-145, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552923

RESUMO

GSDMD-mediated pyroptosis occurs in the nigrostriatal pathway in Parkinson's disease animals, yet the role of GSDMD in neuroinflammation and death of dopaminergic neurons in Parkinson's disease remains elusive. Here, our in vivo and in vitro studies demonstrated that GSDMD, as a pyroptosis executor, contributed to glial reaction and death of dopaminergic neurons across different Parkinson's disease models. The ablation of the Gsdmd attenuated Parkinson's disease damage by reducing dopaminergic neuronal death, microglial activation, and detrimental transformation. Disulfiram, an inhibitor blocking GSDMD pore formation, efficiently curtailed pyroptosis, thereby lessening the pathology of Parkinson's disease. Additionally, a modification in GSDMD was identified in the blood of Parkinson's disease patients in contrast to healthy subjects. Therefore, the detected alteration in GSDMD within the blood of Parkinson's disease patients and the protective impact of disulfiram could be promising for the diagnostic and therapeutic approaches against Parkinson's disease.


Assuntos
Dissulfiram , Neurônios Dopaminérgicos , Microglia , Doença de Parkinson , Proteínas de Ligação a Fosfato , Piroptose , Piroptose/efeitos dos fármacos , Piroptose/fisiologia , Doença de Parkinson/metabolismo , Animais , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/efeitos dos fármacos , Microglia/metabolismo , Microglia/efeitos dos fármacos , Camundongos , Masculino , Humanos , Proteínas de Ligação a Fosfato/metabolismo , Dissulfiram/farmacologia , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças , Morte Celular/efeitos dos fármacos , Camundongos Knockout , Gasderminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA