Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 208
Filtrar
1.
J Nanobiotechnology ; 22(1): 221, 2024 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-38724958

RESUMO

Intra-articular drugs used to treat osteoarthritis (OA) often suffer from poor pharmacokinetics and stability. Nano-platforms as drug delivery systems for drug delivery are promising for OA therapy. In this study, we reported an M1 macrophage-targeted delivery system Bai@FA-UIO-66-NH2 based on folic acid (FA) -modified metal-organic framework (MOF) loaded with baicalin (Bai) as antioxidant agent for OA therapy. With outstanding biocompatibility and high drug loading efficiency, Bai@FA-UIO-66-NH2 could be specifically uptaken by LPS-induced macrophages to serve as a potent ROS scavenger, gradually releasing Bai at the subcellular level to reduce ROS production, modulate macrophage polarization to M2, leading to alleviation of synovial inflammation in OA joints. The synergistic effect of Bai@FA-UIO-66-NH2 on macrophage polarization and ROS scavenging significantly improved the therapeutic efficacy of OA, which may provide a new insight into the design of OA precision therapy.


Assuntos
Flavonoides , Macrófagos , Estruturas Metalorgânicas , Osteoartrite , Espécies Reativas de Oxigênio , Estruturas Metalorgânicas/química , Osteoartrite/tratamento farmacológico , Animais , Flavonoides/farmacologia , Flavonoides/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Células RAW 264.7 , Antioxidantes/farmacologia , Antioxidantes/química , Sistemas de Liberação de Medicamentos/métodos , Ácido Fólico/química , Masculino , Ratos , Lipopolissacarídeos/farmacologia , Ratos Sprague-Dawley
2.
Heliyon ; 10(7): e28493, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38586328

RESUMO

The risk prognosis model is a statistical model that uses a set of features to predict whether an individual will develop a specific disease or clinical outcome. It can be used in clinical practice to stratify disease severity and assess risk or prognosis. With the advancement of large-scale second-generation sequencing technology, along Prognosis models for osteosarcoma are increasingly being developed as large-scale second-generation sequencing technology advances and clinical and biological data becomes more abundant. This expansion greatly increases the number of prognostic models and candidate genes suitable for clinical use. This article will present the predictive effects and reliability of various prognosis models, serving as a reference for their evaluation and application.

3.
J Orthop Surg Res ; 19(1): 181, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38481321

RESUMO

PURPOSE: There is no consensus in the current literature on the analgesic role of duloxetine after total hip arthroplasty (THA) or total knee arthroplasty (TKA). Thus, we designed this meta-analysis to reveal the analgesic effectiveness and safety of duloxetine in TKA or THA. METHODS: As of October 2022, two authors (L.C. and W.Q.J.) independently searched five main databases (EMBASE, Web of Science, PubMed, Cochrane Library, and Google Scholar) to find relevant studies. Duloxetine vs. placebo in randomized controlled trials (RCTs) for THA or TKA were included. We set perioperative total opioid consumption as the primary outcome. Secondary outcomes included resting or dynamic pain scores over time, gastrointestinal adverse events, neurological adverse events, and other adverse reactions. RESULTS: Eight RCTs with 695 patients were incorporated in our study. This meta-analysis showed high evidence that duloxetine was effective in reducing perioperative opioid consumption (Standard mean difference [SMD] = - 0.50, 95% confidence intervals [CI]: -0.70 to - 0.31, P < 0.00001) and low to moderate evidence that duloxetine could reduce pain within three weeks after surgery. Low to high evidence showed no differences between the two groups for most adverse events. Substantial evidence suggests that duloxetine can reduce nausea and vomiting after surgery (Risk ratio [RR] = 0.69, 95% CI: 0.50 to 0.95, P = 0.02, I2 = 4%). However, moderate evidence suggested that duloxetine might be associated with increased postoperative drowsiness (RR = 1.83, 95% CI: 1.08 to 3.09, P = 0.02, I2 = 0%). CONCLUSION: Duloxetine reduced overall opioid consumption in the perioperative period and relieved pain within three weeks after surgery without increasing the risk of adverse drug events. Duloxetine can be part of a multimodal management regimen in patients with THA and TKA.


Assuntos
Analgésicos Opioides , Artroplastia do Joelho , Humanos , Analgésicos Opioides/efeitos adversos , Artroplastia do Joelho/efeitos adversos , Cloridrato de Duloxetina/efeitos adversos , Dor Pós-Operatória/tratamento farmacológico , Dor Pós-Operatória/etiologia , Dor Pós-Operatória/prevenção & controle , Ensaios Clínicos Controlados Aleatórios como Assunto , Analgésicos/uso terapêutico
4.
Med Oncol ; 41(5): 93, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38526643

RESUMO

Osteosarcoma (OS) stands as the most prevalent primary bone cancer in children and adolescents, and its limited treatment options often result in unsatisfactory outcomes, particularly for metastatic cases. The tumor microenvironment (TME) has been recognized as a crucial determinant in OS progression. However, the intercellular dynamics between high TP53-expressing OS cells and neighboring cell types within the TME are yet to be thoroughly understood. In our study, we harnessed the single-cell RNA sequencing (scRNA-seq) technology in combination with the computational tool-Cellchat, aiming to elucidate the intercellular communication networks present within OS. Through meticulous quantitative inference and subsequent analysis of these networks, we succeeded in identifying significant signaling pathways connecting high TP53-expressing OS cells with proximate cell types, namely Macrophages, Monocytes, Endothelial Cells, and PVLs. This research brings forth a nuanced understanding of the intricate patterns and coordination involved in the TME's intercellular communication signals. These findings not only provide profound insights into the molecular mechanisms underpinning OS but also indicate potential therapeutic targets that could revolutionize treatment strategies.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Adolescente , Criança , Humanos , Células Endoteliais , Microambiente Tumoral , Comunicação Celular , Osteossarcoma/genética , Neoplasias Ósseas/genética , Transdução de Sinais , Análise de Sequência de RNA , Proteína Supressora de Tumor p53/genética
5.
Phytother Res ; 38(4): 1971-1989, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38358727

RESUMO

BACKGROUND AND AIM: Osteoporosis, a systemic metabolic bone disease, is characterized by the decline of bone mass and quality due to excessive osteoclast activity. Currently, drug-targeting osteoclasts show promising therapy for osteoporosis. In this study, we investigated the effect of cichoric acid (CA) on receptor activator of nuclear kappa-B ligand (RANKL)-induced osteoclastogenesis and the bone loss induced by ovariectomy in mice. EXPERIMENTAL PROCEDURE: Molecular docking technologies were employed to examine the interaction between CA and RANKL. CCK8 assay was used to evaluate the cell viability under CA treatment. TRAcP staining, podosome belt staining, and bone resorption assays were used to test the effect of CA on osteoclastogenesis and osteoclast function. Further, an OVX-induced osteoporosis mice model was employed to identify the effect of CA on bone loss using micro-CT scanning and histological examination. To investigate underlying mechanisms, network pharmacology was applied to predict the downstream signaling pathways, which were verified by Western blot and immunofluorescence staining. KEY RESULTS: The molecular docking analysis revealed that CA exhibited a specific binding affinity to RANKL, engaging multiple binding sites. CA inhibited RANKL-induced osteoclastogenesis and bone resorption without cytotoxic effects. Mechanistically, CA suppressed RANKL-induced intracellular reactive oxygen species, nuclear factor-kappa B, and mitogen-activated protein kinase pathways, followed by abrogated nuclear factor activated T-cells 1 activity. Consistent with this finding, CA attenuated post-ovariectomy-induced osteoporosis by ameliorating osteoclastogenesis. CONCLUSIONS AND IMPLICATIONS: CA inhibited osteoclast activity and bone loss by targeting RANKL. CA might represent a promising candidate for treating osteoclast-related diseases, such as osteoporosis.


Assuntos
Reabsorção Óssea , Ácidos Cafeicos , Osteoporose , Succinatos , Animais , Feminino , Humanos , Camundongos , Reabsorção Óssea/prevenção & controle , Diferenciação Celular , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Osteoclastos , Osteogênese , Osteoporose/patologia , Ovariectomia/efeitos adversos , Ligante RANK/metabolismo
6.
Orthop Surg ; 16(4): 989-997, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38389215

RESUMO

OBJECTIVE: Closed reduction of pelvic injuries is a prerequisite and critical step in minimally invasive treatment. Achieving non-invasive closed reduction of pelvic injuries is a challenging clinical problem. This study demonstrated a non-invasive traction technique for closed reduction called countertraction closed reduction technique (CCRT) and evaluated its effectiveness for type C pelvic ring injuries. METHOD: The data of patients with unstable pelvic fractures treated with CCRT and minimally invasive fixation were retrospectively reviewed from January 2017 to February 2022. Sacroiliac screws were placed to fix the posterior pelvic ring, and internal or external fixation was used to fix the anterior pelvic ring. Operation time, intraoperative blood loss, duration of hospital stay, fracture union and postoperative complications were recorded. Fracture reduction quality was evaluated using the Matta scoring criteria. Functional recovery and general quality of life were evaluated using the Majeed functional scoring criteria. RESULTS: Thirteen patients (nine males and four females), with an average age of 49.6 years were treated with CCRT and followed up for a mean of 18.5 months. The average operation time was 137.2 minutes (range 92-195 minutes), the average intraoperative blood loss was 31.2 mL (range 10-120 mL) and the average duration of hospital stay was 14.3 days (range 4-32 days). All patients achieved bony union with an average union time of 11.9 weeks (range 10-16 weeks). According to the Matta radiographic criteria, the quality of fracture reduction was excellent in eight patients, good in four, and fair in one. The average Majeed functional score was 89.7 (range 78-100). The functional evaluation revealed that the outcomes were excellent in nine patients, and good in four patients. Complications included incision fat liquefaction in one patient, and heterotopic ossification in another patient. There were no surgical complications as a result of CCRT. CONCLUSION: CCRT is a non-invasive closed reduction method for minimally invasive fixation of fresh Tile C1 and C2 pelvic fractures. The advantages of CCRT combined with minimally invasive treatment include a small surgical incision, reduced intraoperative bleeding, satisfactory fracture reduction, bone healing and functional recovery.


Assuntos
Fraturas Ósseas , Ossos Pélvicos , Masculino , Feminino , Humanos , Pessoa de Meia-Idade , Fixação Interna de Fraturas/métodos , Estudos Retrospectivos , Perda Sanguínea Cirúrgica , Qualidade de Vida , Fraturas Ósseas/cirurgia , Ossos Pélvicos/cirurgia , Ossos Pélvicos/lesões , Resultado do Tratamento
7.
Cell Death Discov ; 10(1): 86, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38368392

RESUMO

The key target for treating inflammatory osteolysis is osteoclasts. In an inflammatory environment, osteoclast differentiation increases, and bone resorption is enhanced. Periplogenin (Ppg) is a traditional Chinese medicine. It has anti-inflammatory and antitumor effects, but its impact on inflammatory osteolysis is unknown. This study found that Ppg prevented LPS-induced skull osteolysis by inhibiting the expression of inflammatory cytokines and osteoclast production. In vitro, Ppg blocked the RANKL-induced generation of osteoclasts, the development of pseudopodia bands, and bone resorption. Ppg also attenuated the expression of NFATc1, c-Fos, CTSK, and Atp6v0d2 proteins by inhibiting the NFATc1 signaling pathway. In addition, Ppg inhibited the expression of osteoclast-specific genes, including NFATc1, c-Fos, CTSK, Atp6v0d2, and Mmp9. Moreover, Ppg also inhibited NF-κB and MAPK pathways. In vivo, Ppg reduced the number of osteoclasts on the surface of the bone and suppressed LPS-induced osteolysis of the skull. These outcomes suggest that Ppg can serve as a new alternative therapy for treating inflammatory osteolysis by inhibiting inflammation and osteoclasts.

8.
Cell Prolif ; 57(1): e13535, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37551727

RESUMO

Periodontal disease and arthroplasty prosthesis loosening and destabilization are both associated with osteolysis, which is predominantly caused by abnormal bone resorption triggered by pro-inflammatory cytokines. Osteoclasts (OCs) are critical players in the process. Concerns regarding the long-term efficacy and side effects of current frontline therapies, however, remain. Alternative therapies are still required. The aim of this work was to investigate the involvement of Tenacissoside H (TDH) in RANKL-mediated OC differentiation, as well as inflammatory osteolysis and associated processes. In vitro, bone marrow-derived macrophages (BMMs) cultured with RANKL and M-CSF were used to detect TDH in the differentiation and function of OCs. Real-time quantitative PCR was used to measure the expression of specific genes and inflammatory factors in OCs. Western blot was used to identify NFATc1, IKK, NF-κB, MAPK pathway, and oxidative stress-related components. Finally, an LPS-mediated calvarial osteolysis mouse model was employed to explore TDH's role in inflammatory osteolysis. The results showed that in vivo TDH inhibited the differentiation and resorption functions of OCs and down-regulated the transcription of osteoclast-specific genes, as well as Il-1ß, Il-6 and Tnf-α. In addition, TDH inhibited the IKK and NF-κB signalling pathways and down-regulated the level of ROS. In vivo studies revealed that TDH improves the bone loss caused by LPS. TDH may be a new candidate or treatment for osteoclast-associated inflammatory osteolytic disease.


Assuntos
Osteólise , Animais , Camundongos , Osteólise/induzido quimicamente , NF-kappa B/metabolismo , Lipopolissacarídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Osteoclastos/metabolismo , Ligante RANK/metabolismo , Diferenciação Celular , Fatores de Transcrição NFATC/metabolismo
9.
Biochem Pharmacol ; 218: 115895, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-38084677

RESUMO

Reactive Oxygen Species (ROS) play an essential role in the pathogenesis of osteoporosis mainly characterized by excessive osteoclasts (OCs) activity. OCs are rich in mitochondria for energy support, which is a major source of total ROS. Tussilagone (TSG), a natural Sesquiterpenes from the flower of Tussilago farfara, has plentiful beneficial pharmacological characteristics with anti-inflammatory and anti-oxidative activity, but its effects and mechanism in osteopathology are still unclear. In our study, we investigated the regulation of ROS generated from the mitochondria in OCs. We found that TSG inhibited OCs differentiation and bone resorption without any cytotoxicity. Mechanistically, TSG reduced RANKL-mediated total ROS level by down-regulating intracellular ROS production and mitochondrial function, leading to the suppression of NFATc1 transcription. We also found that nuclear factor erythroid 2-related factor 2 (Nrf2) could enhance ROS scavenging enzymes in response to RANKL-induced oxidative stress. Furthermore, TSG up-regulated the expression of Nrf2 by inhibiting its proteosomal degradation. Interestingly, Nrf2 deficiency reversed the suppressive effect of TSG on mitochondrial activity and ROS signaling in OCs. Consistent with this finding, TSG attenuated post-ovariectomy (OVX)- and lipopolysaccharide (LPS) induced bone loss by ameliorating osteoclastogenesis. Taken together, TSG has an anti-bone resorptive effect by modulating mitochondrial function and ROS production involved Nrf2 activation.


Assuntos
Reabsorção Óssea , Sesquiterpenos , Feminino , Humanos , Osteogênese , Espécies Reativas de Oxigênio/metabolismo , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Osteoclastos , Sesquiterpenos/farmacologia , Sesquiterpenos/metabolismo , Reabsorção Óssea/metabolismo , Ligante RANK/farmacologia , Diferenciação Celular , NF-kappa B/metabolismo
10.
J Adv Res ; 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056775

RESUMO

BACKGROUND: Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW: This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW: This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.

11.
J Transl Med ; 21(1): 839, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993937

RESUMO

BACKGROUND: Activated osteoclasts cause excessive bone resorption, and disrupt bone homeostasis, leading to osteoporosis. The extracellular signal-regulated kinase (ERK) signaling is the classical pathway related to osteoclast differentiation, and mitochondrial reactive oxygen species are closely associated with the differentiation of osteoclasts. Myrislignan (MRL), a natural product derived from nutmeg, has multiple pharmacological activities; however, its therapeutic effect on osteoporosis is unclear. Here, we investigated whether MRL could inhibit osteoclastogenesis and bone mass loss in an ovariectomy mouse model by suppressing mitochondrial function and ERK signaling. METHODS: Tartrate-resistant and phosphatase (TRAP) and bone resorption assays were performed to observe the effect of MRL on osteoclastogenesis of bone marrow macrophages. MitoSOX RED and tetramethyl rhodamine methyl ester (TMRM) staining was performed to evaluate the inhibitory effect of MRL on mitochondria. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR) assay was performed to detect whether MRL suppressed the expression of osteoclast-specific genes. The impact of MRL on the protein involved in the mitogen-activated protein kinase (MAPK) and nuclear factor-κB pathways was evaluated using western blotting. In addition, a specific ERK agonist LM22B-10, was used to revalidate the inhibitory effect of MRL on ERK. Finally, we established an ovariectomy mouse model to assess the therapeutic effect of MRL on osteoporosis in vivo. RESULTS: MRL inhibited osteoclast differentiation and the associated bone resorption, by significantly decreasing osteoclastic gene expression. Mechanistically, MRL inhibited the phosphorylation of ERK by suppressing the mitochondrial function, thereby downregulating the nuclear factor of activated T cells 1 (NFATc1) signaling. LM22B-10 treatment further verified the targeted inhibition effect of MRL on ERK. Microscopic computed tomographic and histologic analyses of the tibial tissue sections indicated that ovariectomized mice had lower bone mass and higher expression of ERK compared with normal controls. However, MRL treatment significantly reversed these effects, indicating the anti-osteoporosis effect of MRL. CONCLUSION: We report for the first time that MRL inhibits ERK signaling by suppressing mitochondrial function, thereby ameliorating ovariectomy-induced osteoporosis. Our findings can provide a basis for the development of a novel therapeutic strategy for osteoporosis.


Assuntos
Reabsorção Óssea , Osteoporose , Humanos , Feminino , Camundongos , Animais , Osteogênese , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Osteoclastos , Reabsorção Óssea/patologia , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoporose/metabolismo , NF-kappa B/metabolismo , Diferenciação Celular , Ovariectomia , Ligante RANK/metabolismo
12.
Biomed Pharmacother ; 167: 115605, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37801901

RESUMO

The second most common cancer among men is prostate cancer, which is also the fifth leading reason for male cancer deaths worldwide. Bone metastases are the main factor affecting the prognosis of prostate cancer. Consequently, antitumor and anti-prostate cancer-induced bone destruction medicines are urgently needed. We previously discovered that aminooxyacetic acid hemihydrochloride (AOAA) suppressed bone resorption and osteoclast growth by decreasing adenosine triphosphate (ATP) production and limiting oxidative phosphorylation (OXPHOS). Here, we evaluated the impacts of AOAA on prostate cancer RM-1 cells in vitro. It's found that AOAA significantly inhibited cell proliferation, migration, and invasiveness, decreased ATP levels, increased ROS, halted the cell cycle phase, and triggered apoptosis. AOAA also decreased mitochondrial membrane potential and the ability to uptake glucose, suggesting that the antitumor effects of AOAA were expressed through the inhibition of OXPHOS and glycolysis. Furthermore, we assessed the effects of AOAA in vivo using a prostate cancer-induced bone osteolysis mice model. AOAA also delayed tumor growth and bone destruction in vivo. On the whole, our findings imply that AOAA may potentially have therapeutic effects on prostate cancer and prostate cancer-induced osteolysis.


Assuntos
Osteólise , Neoplasias da Próstata , Camundongos , Animais , Masculino , Humanos , Ácido Amino-Oxiacético/farmacologia , Trifosfato de Adenosina/metabolismo , Metabolismo Energético , Neoplasias da Próstata/tratamento farmacológico , Ciclo Celular , Linhagem Celular Tumoral
13.
iScience ; 26(10): 107760, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37720109

RESUMO

Osteoporosis is a prevalent systemic metabolic disease in modern society, in which patients often suffer from bone loss due to over-activation of osteoclasts. Currently, amelioration of bone loss through modulation of osteoclast activity is a major therapeutic strategy. Ataxia telangiectasia mutated (ATM) inhibitor CGK733 (CG) was reported to have a sensitizing impact in treating malignancies. However, its effect on osteoporosis remains unclear. In this study, we investigated the effects of CG on osteoclast differentiation and function, as well as the therapeutic effects of CG on osteoporosis. Our study found that CG inhibits osteoclast differentiation and function. We further found that CG inhibits the activation of NFATc1 and ultimately osteoclast formation by inhibiting RANKL-mediated Ca2+ oscillation and the NF-κB/MAPK signaling pathway. Next, we constructed an ovariectomized mouse model and demonstrated that CG improved bone loss in ovariectomized mice. Therefore, CG may be a potential drug for the prevention and treatment of osteoporosis.

14.
Biochem Pharmacol ; 214: 115667, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37356630

RESUMO

Circular RNAs (circRNAs), a subclass of noncoding RNAs, have been demonstrated to play an essential role in osteosarcoma (OS) development. However, there is still a significant gap in investigating its biological functions and underlying molecular mechanisms, and novel targets of circRNAs have yet to be fully explored. Herein, we found that hsa_circ_0007031 is noticeably raised in OS clinical tissues and cell lines. Hsa_circ_0007031 accelerates OS cell proliferation and migration in vitro and tumor growth and metastasis in vivo and is strongly linked with the stemness of cancer stem cells in OS. Mechanistically, hsa_circ_0007031 shares miRNA response elements with Homeobox B6 (HOXB6), which is identified as a novel pro-tumorigenic gene of OS. Hsa_circ_0007031 competitively binds to miR-196a-5p to prevent miR-196a-5p from lowering the level of HOXB6, which modulates chemokines of cytokine-cytokine receptor interaction signaling pathway and finally promotes OS malignant behavior. In summary, our data unveiled that hsa_circ_0007031/miR-196a-5p/HOXB6 axis-mediated cytokine-cytokine receptor interaction facilitates the progression of OS and maintains the properties of tumor stem cells, which could be a promising therapeutic target for OS.


Assuntos
Neoplasias Ósseas , MicroRNAs , Osteossarcoma , Humanos , RNA Circular/genética , RNA Circular/metabolismo , Genes Homeobox , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , MicroRNAs/metabolismo , Proliferação de Células , Osteossarcoma/metabolismo , Neoplasias Ósseas/genética , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
15.
Biomed Pharmacother ; 165: 114898, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37352699

RESUMO

Osteoporosis, as a severe public health problem worldwide, causes systemic damage to bone mass, strength, and microstructure with an increased propensity for fragility fractures. Given the inherent adverse effects associated with long-term use of current prescription medications for osteoporosis treatment, identifying natural alternatives to existing treatment methods is imperative. Pteryxin (PTX), a natural coumarin, is isolated from the Peucedanum species belonging to the family Apiaceae. PTX has been reported to have antioxidant, anti-inflammatory and anti-obesity properties. However, its effect on osteoporosis has not been clarified. Our study confirmed that PTX could attenuate the formation of osteoclasts and bone resorption on a dose-dependent basis in vitro. Consistently, in vivo ovariectomy (OVX)-induced osteoporosis models simulating the physiological characteristics of postmenopausal women showed that PTX could partially reverse the bone loss caused by OVX. Further study of its mechanism revealed that PTX might block the MAPK and Ca2+-calcineurin-NFATc1 signaling pathways by decreasing the reactive oxygen species (ROS) level in osteoclasts to dampen the expression of critical transcriptional NFATc1 and downstream osteoclast-specific genes. Overall, PTX may present a new or alternative treatment option for osteoporosis.


Assuntos
Osteogênese , Osteoporose , Feminino , Humanos , Espécies Reativas de Oxigênio/metabolismo , Osteoclastos , Transdução de Sinais , Cumarínicos/farmacologia , Cumarínicos/uso terapêutico , Osteoporose/tratamento farmacológico , Osteoporose/prevenção & controle , Osteoporose/etiologia , Ovariectomia/efeitos adversos , Ligante RANK/metabolismo , Diferenciação Celular , NF-kappa B/metabolismo
16.
Biomed Pharmacother ; 161: 114508, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37002582

RESUMO

Heterotopic ossification (HO) denotes the presence of mature bone tissue in soft tissues or around joints. Inflammation is a key driver of traumatic HO, and macrophages play an important role in this process. Ethyl caffeate (ECF), a critical active compound found in Petunia, exerts significant anti-inflammatory effects. Herein, we established a mouse model of HO by transection of the Achilles tendon and back burn and found abundant macrophage infiltration in the early stage of HO, which decreased with time. In vitro and in vivo experiments indicated that ECF inhibited macrophage polarization, and mechanistic studies showed that it inhibited the SIRT1/NF-κB signalling pathway, thereby suppressing the release of downstream inflammatory cytokines. ECF reduced HO in mice, and its effect was comparable to indomethacin (INDO). In vitro studies revealed that ECF did not directly affect the mineralization of mesenchymal stem cells (MSCs) or osteogenic differentiation but inhibited these processes by reducing the level of inflammatory cytokines in the conditioned medium (CM). Thus, M1 macrophages may play a crucial role in the pathogenesis of HO, and ECF is a prospective candidate for the prevention of trauma-induced HO. DATA AVAILABILITY: Data will be made available on request.


Assuntos
NF-kappa B , Ossificação Heterotópica , Camundongos , Animais , NF-kappa B/metabolismo , Osteogênese , Sirtuína 1 , Macrófagos/metabolismo , Citocinas/farmacologia
17.
Cancer Inform ; 22: 11769351231161478, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37101729

RESUMO

Osteosarcoma (OS) is the most common primary cancer in the skeletal system, characterized by a high incidence of lung metastasis, local recurrence and death. Systemic treatment of this aggressive cancer has not improved significantly since the introduction of chemotherapy regimens, underscoring a critical need for new treatment strategies. TRAIL receptors have long been proposed to be therapeutic targets for cancer treatment, but their role in osteosarcoma remains unclear. In this study, we investigated the expression profile of four TRAIL receptors in human OS cells using total RNA-seq and single-cell RNA-seq (scRNA-seq). The results revealed that TNFRSF10B and TNFRSF10D but not TNFRSF10A and TNFRSF10C are differentially expressed in human OS cells as compared to normal cells. At the single cell level by scRNA-seq analyses, TNFRSF10B, TNFRSF10D, TNFRSF10A and TNFRSF10C are most abundantly expressed in endothelial cells of OS tissues among nine distinct cell clusters. Notably, in osteoblastic OS cells, TNFRSF10B is most abundantly expressed, followed by TNFRSF10D, TNFRSF10A and TNFRSF10C. Similarly, in an OS cell line U2-OS using RNA-seq, TNFRSF10B is most abundantly expressed, followed by TNFRSF10D, TNFRSF10A and TNFRSF10C. According to the TARGET online database, poor patient outcomes were associated with low expression of TNFRSF10C. These results could provide a new perspective to design novel therapeutic targets of TRAIL receptors for the diagnosis, prognosis and treatment of OS and other cancers.

18.
J Orthop Surg Res ; 18(1): 289, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37038162

RESUMO

BACKGROUND: Mesenchymal stem cells (MSCs)-based therapy offers an effective strategy for bone regeneration to solve the clinical orthopedic problems. However, the transcriptional regulation of multiple transitional stages of continuous osteogenesis from MSCs has not been fully characterized. METHODS: Bone marrow mesenchymal stem cells (BMSCs) stimulated with osteogenic induction media were utilized to construct the in vitro osteogenic differentiation model. BMSCs were harvested after induction for 0, 7, 14 and 21 days, respectively, to perform the mRNA-sequencing (mRNA-Seq). The transcription factor networks and common molecules during the osteogenesis were revealed by using the temporal transcriptome. Further verification was performed by the quantitative real-time polymerase chain reaction (qRT-PCR), immunofluorescence and Western blotting. RESULTS: It showed that BMSCs could differentiate into osteogenic, and crucial regulator in the MAPK signaling pathway, the PPAR signaling pathway, the Toll-like receptor signaling and the Cytokine/JAK/STAT signaling pathway. PPI protein interaction analysis also suggested that three cytokines are involved in osteogenic differentiation as core genes, including leukemia inhibitory factor (LIF), interleukin-6 (IL6) and colony-stimulating factor 3 (CSF3). The osteogenic process was negatively affected by the inhibition of JAK/STAT3 signaling pathway. CONCLUSIONS: This work might provide new insights in the crucial features of the transcriptional regulation during the osteogenesis, as well as offer important clues about the activity and regulation of the relatively long-activated Cytokine/JAK/STAT3 signaling pathway in osteoinduction of BMSCs.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Transcriptoma , Citocinas/metabolismo , Transdução de Sinais/fisiologia , Diferenciação Celular , Células-Tronco Mesenquimais/metabolismo , RNA Mensageiro/metabolismo , Células da Medula Óssea/metabolismo , Células Cultivadas
19.
Int J Mol Med ; 51(5)2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37052260

RESUMO

Postmenopausal osteoporosis is a systemic metabolic disease that chronically endangers public health and is typically characterized by low bone mineral density and marked bone fragility. The excessive bone resorption activity of osteoclasts is a major factor in the pathogenesis of osteoporosis; therefore, strategies aimed at inhibiting osteoclast activity may prevent bone decline and attenuate the process of osteoporosis. Casticin (Cas), a natural compound, has anti­inflammatory and antitumor properties. However, the role of Cas in bone metabolism remains largely unclear. The present study found that the receptor activator of nuclear factor­κΒ (NF­κB) ligand­induced osteoclast activation and differentiation were inhibited by Cas. Tartrate­resistant acid phosphatase staining revealed that Cas inhibited osteoclast differentiation, and bone resorption pit assays demonstrated that Cas affected the function of osteoclasts. Cas significantly reduced the expression of osteoclast­specific genes and related proteins, such as nuclear factor of activated T cells, cytoplasmic 1 and c­Fos at the mRNA and protein level in a concentration­dependent manner. Cas inhibited osteoclast formation by blocking the AKT/ERK and NF­κB signaling pathways, according to the intracellular signaling analysis. The microcomputed tomography and tissue staining of tibiae from ovariectomized mice revealed that Cas prevented the bone loss induced by estrogen deficiency and reduced osteoclast activity in vivo. Collectively, these findings indicated that Cas may be used to prevent osteoporosis.


Assuntos
Doenças Ósseas Metabólicas , Reabsorção Óssea , Osteoporose , Feminino , Animais , Camundongos , Humanos , Osteogênese , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Microtomografia por Raio-X/efeitos adversos , Transdução de Sinais , Osteoclastos/metabolismo , Reabsorção Óssea/tratamento farmacológico , Reabsorção Óssea/etiologia , Reabsorção Óssea/prevenção & controle , Diferenciação Celular , Osteoporose/tratamento farmacológico , Osteoporose/etiologia , Osteoporose/prevenção & controle , Doenças Ósseas Metabólicas/complicações , Doenças Ósseas Metabólicas/metabolismo , Doenças Ósseas Metabólicas/patologia , Ovariectomia/efeitos adversos , Ligante RANK/metabolismo
20.
Biomed Pharmacother ; 161: 114366, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36857913

RESUMO

The activation of M1-type macrophages are dominant cells secreting proinflammatory present within the inflamed synovium in the progression of osteoarthritis (OA). Increased oxidative stress, such as redundant ROS and hydrogen peroxide (H2O2), are important factors in driving macrophages to polarize into M1 type. In this study, metal-polyphenol nanoformulations (Cu-Epigallocatechin-3-gallate (Cu-EGCG) nanosheets) were synthesized through the coordination interaction between EGCG and copper ions, which possessed the antioxidant effect of EGCG and anti-inflammatory of Cu2+. Results showed that Cu-EGCG nanosheets were biocompatible and the Cu2+ could be sustained released from the nanoparticles. Cu-EGCG nanosheets with multienzyme-like antioxidative activity could effectively scavenge the excessive intracellular ROS, leading to significantly decreased expression of the pro-inflammatory cytokines, which could reduce the expression of M1-type macrophages and exhibit excellent promotion on shifting macrophages to M2 phenotypes. Moreover, the secreted factor from the cell supernatant of Cu-EGCG treated macrophages exhibited anti-inflammatory potential in chondrocytes of inflamed synovial joints. This study suggests a novel strategy for OA therapy by using metal-polyphenol nanoformulations targeting macrophages.


Assuntos
Anti-Inflamatórios , Osteoartrite , Humanos , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Catequina/uso terapêutico , Condrócitos/metabolismo , Peróxido de Hidrogênio/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Macrófagos , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Polifenóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA