RESUMO
BACKGROUND: Lonicera rupicola Hook.f.et Thoms (LRH) is used as a customary medicinal herb in Tibetans. And LRH flavonoids have excellent anti-inflammatory and antioxidant pharmacological activities. However, the specific effects of LRH and its mechanism remain unknown, and there is a deficiency of systematic research, leading to the waste of LRH as a medicinal resource. PURPOSE: In this study, in an attempt to rationalize the development and utilization of Tibetan herbal resources, the therapeutic efficacy and the underlying molecular mechanisms of LRH flavonoids on dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) were investigated, establishing the favorable basis for the pharmacodynamic material basis of LRH and providing a scientific basis for the discovery of new drugs for the treatment of UC. METHODS: Firstly, ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) was used for identification and detection of the flavonoid components of LRH. Meanwhile, their potential targets, biological functions and signaling pathways were predicted with the assistance of network pharmacology analysis. Subsequently, pharmacological efficacy of LRH were evaluated by body weight loss, colon length, disease activity index (DAI), histology observation and the expression levels of inflammatory mediators, messenger RNA (mRNA) and tight junction proteins. Moreover, in the present investigation, we also profiled the gut microbiome via high-throughput sequencing of the V3-V4 region of 16S ribosomal DNA (rDNA) for bacterial community composition and diversity by Illumina MiSeq platforms. Finally, the key regulatory proteins in the PI3K/AKT pathways were measured to investigate their underlying molecular mechanisms. RESULTS: A total of 37 LRH flavonoid components were identified and detected by UPLC-MS/MS, and 12 potential active components were obtained after screening. 137 of their common targets with UC were further predicted. GO and KEGG pathway enrichment analysis and molecular docking experiments demonstrated that LRH flavonoids could interfere with UC through "multi-component-multi-target-multi-pathway". In the animal experiments, LRH flavonoids could significantly attenuate UC as demonstrated by reducing the body weight loss and DAI, restoring colon length, decreasing oxidative stress, and improving the intestinal epithelial cell barrier. The mRNA and proteins expression levels of inflammatory mediators were returned to dynamic balance following LRH flavonoids treatment. 16S rDNA sequence analysis indicated that LRH flavonoids promoted the recovery of gut microbiome. And the PI3K/AKT pathway was significantly suppressed by LRH flavonoids. CONCLUSIONS: LRH flavonoids exhibited multifaceted protective effects against DSS-induced UC in mice through mitigating colon inflammation and oxidative stress, restoring epithelial barrier function, and improving the gut microenvironment potentially through modulation of the PI3K/AKT pathway. This finding demonstrated that LRH flavonoids possessed great potential for becoming an excellent drug for the treatment of UC.
Assuntos
Colite Ulcerativa , Colite , Microbioma Gastrointestinal , Lonicera , Animais , Cromatografia Líquida , Colite/tratamento farmacológico , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/tratamento farmacológico , Colite Ulcerativa/patologia , Colo/patologia , DNA Ribossômico/metabolismo , DNA Ribossômico/farmacologia , Sulfato de Dextrana/efeitos adversos , Modelos Animais de Doenças , Flavonoides/farmacologia , Flavonoides/uso terapêutico , Mediadores da Inflamação/metabolismo , Lonicera/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Simulação de Acoplamento Molecular , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/metabolismo , Espectrometria de Massas em Tandem , Redução de PesoRESUMO
Wound healing process is usually accompanied by infection and the wound dressing loaded with antibiotics is usually used to treat skin wound. However, the intensive use of antibiotics may lead to development of resistance and the antibiotic resistance has become a major global problem. Finding new wound dressing with sustained antibacterial property to overcome the problem of resistance is one of clinical challenge. In this work, phenolic acids in Spenceria ramalana Trimen and sliver nanoparticle incorporated thermoplastic polyurethane nanofibrous membrane (TPU/AgNPs/TPA) are fabricated via electrospinning. The TPU/AgNPs/TPA membrane exhibits excellent physicochemical properties with uniform morphology, good mechanical capacity, and appropriate hydrophilia providing suitable environment for wound healing. Moreover, the TPU/AgNPs/TPA membrane shows mild antioxidant property and exhibits continuous antibacterial activity against Staphylococcus aureus and Escherichia coli especially against drug-resistant E. coli. The antibacterial efficiency is as high as 99% lasting for 36 h. Furthermore, the TPU/AgNPs/TPA membrane used as wound dressing can accelerate wound healing through downregulating TNF-α and IL-1ß and upregulating vascular endothelial growth factor and epidermal growth factor. Therefore, the TPU/AgNPs/TPA membrane presented in this work with good antibacterial activity is an excellent wound dressing and has great potential in wound healing applications to overcome the problem of resistance.
Assuntos
Escherichia coli , Poliuretanos , Antibacterianos/química , Antibacterianos/farmacologia , Bandagens , Poliuretanos/química , Poliuretanos/farmacologia , Fator A de Crescimento do Endotélio Vascular , CicatrizaçãoRESUMO
It is urgently needed to develop novel adjuvants for improving the safety and efficacy of vaccines. Metal-organic frameworks (MOFs), with high surface area, play an important role in drug delivery. With perfect biocompatibility and green preparation process, the γ-cyclodextrin metal-organic framework (γ-CD-MOF) fabricated with cyclodextrin and potassium suitable for antigen delivery. In this study, we modified γ-CD-MOF with span-85 to fabricate the SP-γ-CD-MOF as animal vaccine adjuvants. The ovalbumin (OVA) as the model antigen was encapsulated into particles to investigate the immune response. SP-γ-CD-MOF displayed excellent biocompatibility in vitro and in vivo. After immunization, SP-γ-CD-MOF loaded with OVA could induce high antigen-specific IgG titers and cytokine secretion. Meanwhile, SP-γ-CD-MOF also significantly improved the proliferation of spleen cells and activated and matured the bone marrow dendritic cells (BMDCs). The study showed the potential of SP-γ-CD-MOF in vaccine adjuvants and provided a novel idea for the development of vaccine adjuvants.