Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Anal Chem ; 96(21): 8300-8307, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38747393

RESUMO

An antibody transistor is a promising biosensing platform for the diagnosis and monitoring of various diseases. Nevertheless, the low concentration and short half-life of biomarkers require biodetection at the trace-molecule level, which remains a challenge for existing antibody transistors. Herein, we demonstrate a graphene field-effect transistor (gFET) with electrically oriented antibody probes (EOA-gFET) for monitoring several copies of methylated DNA. The electric field confines the orientation of antibody probes on graphene and diminishes the distance between graphene and methylated DNAs captured by antibodies, generating more induced charges on graphene and amplifying the electric signal. EOA-gFET realizes a limit of detection (LoD) of ∼0.12 copy µL-1, reaching the lowest LoD reported before. EOA-gFET shows a distinguishable signal for liver cancer clinical serum samples within ∼6 min, which proves its potential as a powerful tool for disease screening and diagnosis.


Assuntos
Anticorpos , Técnicas Biossensoriais , Metilação de DNA , Grafite , Transistores Eletrônicos , Humanos , Grafite/química , Anticorpos/imunologia , Anticorpos/química , DNA/química , Limite de Detecção , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/sangue
2.
Mediators Inflamm ; 2024: 7524314, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38725539

RESUMO

Objective: Microfold cells (M cells) are specific intestinal epithelial cells for monitoring and transcytosis of antigens, microorganisms, and pathogens in the intestine. However, the mechanism for M-cell development remained elusive. Materials and Methods: Real-time polymerase chain reaction, immunofluorescence, and western blotting were performed to analyze the effect of sorbitol-regulated M-cell differentiation in vivo and in vitro, and luciferase and chromatin Immunoprecipitation were used to reveal the mechanism through which sorbitol-modulated M-cell differentiation. Results: Herein, in comparison to the mannitol group (control group), we found that intestinal M-cell development was inhibited in response to sorbitol treatment as evidenced by impaired enteroids accompanying with decreased early differentiation marker Annexin 5, Marcksl1, Spib, sox8, and mature M-cell marker glycoprotein 2 expression, which was attributed to downregulation of receptor activator of nuclear factor kappa-В ligand (RANKL) expression in vivo and in vitro. Mechanically, in the M-cell model, sorbitol stimulation caused a significant upregulation of phosphodiesterase 4 (PDE4) phosphorylation, leading to decreased protein kinase A (PKA)/cAMP-response element binding protein (CREB) activation, which further resulted in CREB retention in cytosolic and attenuated CREB binds to RANKL promoter to inhibit RANKL expression. Interestingly, endogenous PKA interacted with CREB, and this interaction was destroyed by sorbitol stimulation. Most importantly, inhibition of PDE4 by dipyridamole could rescue the inhibitory effect of sorbitol on intestinal enteroids and M-cell differentiation and mature in vivo and in vitro. Conclusion: These findings suggested that sorbitol suppressed intestinal enteroids and M-cell differentiation and matured through PDE4-mediated RANKL expression; targeting to inhibit PDE4 was sufficient to induce M-cell development.


Assuntos
Diferenciação Celular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Ligante RANK , Sorbitol , Sorbitol/farmacologia , Ligante RANK/metabolismo , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Diferenciação Celular/efeitos dos fármacos , Camundongos , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Mucosa Intestinal/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Células M
3.
Sci Rep ; 13(1): 17153, 2023 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-37821528

RESUMO

To study the differences in VASH2 expression in pediatric medulloblastoma (MB) tumor tissues of different molecular subtypes, to analyze the correlation between VASH2 and the molecular subtypes of medulloblastoma, clinicopathological data, and prognosis, and to explore the specific mechanism of VASH2's role in SHH medulloblastoma cell lines DAOY. We analyzed 47 pediatric medulloblastoma cases admitted to the Department of Pediatric Neurosurgery of the First Affiliated Hospital of Xinjiang Medical University from January 2011 to December 2019, and the expression levels of YAP1 and GAB1 in these tumor tissues were detected by immunohistochemistry (IHC) and molecularly typed (WNT-type, SHH-type, and non-WNT/SHH-type). The correlation between VASH2 and molecular typing of medulloblastoma was analyzed. We also analyzed the medulloblastoma dataset in the GEO database (GSE30074 and GSE202043) to explore the correlation between VASH2 and the prognosis of medulloblastoma patients, as well as performed a comprehensive GO enrichment analysis specifically for the VASH2 gene to reveal the underlying biological pathways of its complex molecular profile. We used vasopressin 2 (VASH2) as a research target and overexpressed and knocked down VASH2 in SHH medulloblastoma cell lines DAOY by lentiviral vectors in vitro, respectively, to investigate its role in SHH medulloblastoma cell lines DAOY cell proliferation, apoptosis, migration, invasion and biological roles in the cell cycle. (1) Among 47 pediatric medulloblastoma cases, 8 were WNT type, 29 were SHH type, and 10 were non-WNT/SHH type. the positive rate of VASH2 was highest in the SHH type with a 68.97% positive rate, followed by non-WNT/SHH and lowest in the WNT type. The results of the multifactorial analysis showed that positive expression of VASH2 was associated with medulloblastoma molecular subtype (SHH type), site of tumor development (four ventricles), and gender (male), P < 0.05. (2) The results of cellular experiments showed that overexpression of VASH2 increased the invasion and migration ability of medulloblast Daoy, while knockdown of VASH2 inhibited the invasion and Overexpression of VASH2 upregulated the expression of Smad2 + 3, Smad4, Mmp2 and the apoptotic indicators Bcl-2 and Caspase3, while knockdown of VASH2 suppressed the expression of Smad2 + 3 and Mmp2, and silenced the expression of Smad4 and the apoptotic indicators Bcl2, Caspase3 expression. Flow cytometric cycle analysis showed that VASH2 overexpression increased the S phase in the Daoy cell cycle, while VASH2 knockdown decreased the S phase in the SHH medulloblastoma cell lines DAOY cell cycle. Bioinformatics analysis showed that there was no statistically significant difference between the expression of VASH2 genes in the GSE30074 and GSE202043 datasets and the prognosis of the patients, but the results of this dataset analysis suggested that we need to continue to expand the sample size of the study in the future. The results of the GO enrichment analysis showed that the angiogenic pathway was the most significantly enriched, and the PPI interactions network of VASH2 was obtained from the STRING database. Using the STRING database, we obtained the PPI interaction network of VASH2, and the KEGG enrichment analysis of VASH2-related genes showed that VASH2-related genes were related to the apoptosis pathway, and therefore it was inferred that VASH2 also affects the development of tumors through apoptosis. We found for the first time that the positive expression rate of VASH2 was closely associated with SHH-type pediatric medulloblastoma and that VASH2 was involved in the invasion, migration, cell cycle, and apoptotic capacity of SHH medulloblastoma cell lines DAOY by affecting downstream indicators of the TGF-ß pathway. This suggests that it is involved in the progression of pediatric medulloblastoma, and VASH2 is expected to be a diagnostic and therapeutic target for SHH-type pediatric medulloblastoma.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Humanos , Masculino , Criança , Meduloblastoma/patologia , Metaloproteinase 2 da Matriz , Neoplasias Cerebelares/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Vasopressinas/uso terapêutico , Proteínas Angiogênicas/genética
4.
Mediators Inflamm ; 2023: 6623329, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37501933

RESUMO

Objective: Vitronectin (VTN) has been reported to trigger cell pyroptosis to aggravate inflammation in our previous study. However, the function of VTN in inflammatory bowel disease (IBD) remains to be addressed. Methods: Real-time PCR and western blotting were performed to analyze VTN-regulated intestinal epithelial cell (IEC) differentiation through ferroptosis, and immunofluorescence (IF), luciferase, and chromatin immunoprecipitation were used to identify whether VTN-modulated ferroptosis is dependent on phosphodiesterase 4 (PDE4)/protein kinase A (PKA)/cyclic adenosine monophosphate-response element-binding protein (CREB) cascade pathway. In vivo experiment in mice and a pilot study in patients with IBD were used to confirm inhibition of PDE4-alleviated IECs ferroptosis, leading to cell differentiation during mucosal healing. Results: Herein, we found that caudal-related homeobox transcription factor 2-mediated IECs differentiation was impaired in response to VTN, which was attributed to enhanced ferroptosis characterized by decreased glutathione peroxidase 4 (GPX4) and solute carrier family 7 member 11 expression. Inhibition of ferroptosis in IECs rescued the inhibitory effect of VTN on cell differentiation. Further analysis showed that VTN triggered phosphorylation of PDE4, leading to inhibit PKA/CREB activation and CREB nuclear translocation, which further reduced GPX4 transactivation. Endogenous PKA interacted with CREB, and this interaction was destroyed in response to VTN stimulation. What is more, overexpression of CREB in CaCO2 cells overcame the promotion of VTN on ferroptosis. Most importantly, inhibition of PDE4 by roflumilast or dipyridamole could alleviate dextran sulfate sodium-induced colitis in mice and in a pilot clinical study confirmed by IF. Conclusions: These findings demonstrated that highly expressed VTN disrupted IECs differentiation through PDE4-mediated ferroptosis in IBD, suggesting targeting PDE4 could be a promising therapeutic strategy for patients with IBD.


Assuntos
Ferroptose , Doenças Inflamatórias Intestinais , Camundongos , Animais , Vitronectina , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Projetos Piloto , Doenças Inflamatórias Intestinais/metabolismo , Diferenciação Celular
5.
J Phys Chem Lett ; 14(17): 4084-4095, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37125726

RESUMO

Recent advances in nanotechnologies have promoted the iterative updating of nucleic acid sensors. Among various sensing technologies, the electrical nanobiosensor is regarded as one of the most promising prospects to achieve rapid, precise, and point-of-care nucleic acid based diagnostics. In this Perspective, we introduce recent progresses in electrical nanobiosensors for nucleic acid detection. First, the strategies for improving detection performance are summarized, including chemical amplification and electrical amplification. Then, the detection mechanism of electrical nanobiosensors, such as electrochemical biosensors, field-effect transistors, and photoelectric enhanced biosensors, is illustrated. At the same time, their applications in cancer screening, pathogen detection, gene sequencing, and genetic disease diagnosis are introduced. Finally, challenges and future prospects in clinical application are discussed.


Assuntos
Técnicas Biossensoriais , Ácidos Nucleicos , Nanotecnologia
6.
Eur J Histochem ; 67(1)2023 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-36546419

RESUMO

Bromhidrosis has a great negative impact on personal occupation and social psychology. It is not yet clear whether bromhidrosis is caused by apocrine sweat glands or the co-action of apocrine sweat glands and eccrine sweat glands. To distinguish between apocrine sweat glands and eccrine sweat glands, specific antigen markers for apocrine sweat glands and eccrine sweat glands must be found first. In the study, we detected the expression of K7, K18, K19, Na+-K+-2Cl- cotransporter 1 (NKCC1), carbonic anhydrase II (CAII), Forkhead transcription factor a1 (Foxa1), homeobox transcription factor engrailed homeobox1 (En1), gross cystic disease fluid protein-15 (GCDFP-15), mucin-1 (MUC-1), cluster of differentiation 15 (CD15) and apolipoprotein (APOD) in eccrine sweat glands and apocrine sweat glands by immunofluorescence staining. The results showed that K7, K18, K19, Foxa1, GCDFP-15 and MUC-1 were expressed in both apocrine and eccrine sweat glands, CD15 and APOD were only expressed in apocrine sweat glands, and CAII, NKCC1 and En1 were only expressed in eccrine sweat glands. We conclude that CD15 and APOD can serve as specific markers for apocrine sweat glands, while CAII, NKCC1 and En1 can serve as specific markers for eccrine sweat glands to differentiate the two sweat glands.


Assuntos
Odor Corporal , Glândulas Écrinas , Humanos , Glândulas Écrinas/metabolismo , Glândulas Apócrinas , Regulação da Expressão Gênica
7.
Braz J Med Biol Res ; 55: e12149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35976271

RESUMO

Eccrine sweat glands (ESGs) perform critical functions in temperature regulation in humans. Foxa1 plays an important role in ESG maturation and sweat secretion. Its molecular mechanism, however, remains unknown. This study investigated the expression of Foxa1 and Na-K-ATPase (NKA) in rat footpads at different development stages using immunofluorescence staining, qRT-PCR, and immunoblotting. Also, bioinformatics analysis and Foxa1 overexpression and silencing were employed to evaluate Foxa1 regulation of NKA. The results demonstrated that Foxa1 was consistently expressed during the late stages of ESGs and had a significant role in secretory coil maturation during sweat secretion. Furthermore, the mRNA abundance and protein expression of NKA had similar accumulation trends to those of Foxa1, confirming their underlying connections. Bioinformatics analysis revealed that Foxa1 may interact with these two proteins via binding to conserved motifs in their promoter regions. Foxa1 gain-of-function and loss-of-function experiments in Foxa1-modified cells demonstrated that the activities of NKA were dependent on the presence of Foxa1. Collectively, these data provided evidence that Foxa1 may influence ESG development through transcriptional regulation of NKA expression.


Assuntos
Glândulas Écrinas , Regulação da Expressão Gênica , Adenosina Trifosfatases/metabolismo , Animais , Glândulas Écrinas/metabolismo , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , RNA Mensageiro/metabolismo , Ratos , Pele , Suor/metabolismo
8.
Chin Med J (Engl) ; 135(3): 324-332, 2022 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35108227

RESUMO

BACKGROUND: Sweat secreted by eccrine sweat glands is transported to the skin surface through the lumen. The eccrine sweat gland develops from the initial solid bud to the final gland structure with a lumen, but how the lumen is formed and the mechanism of lumen formation have not yet been fully elucidated. This study aimed to investigate the mechanism of lumen formation of eccrine gland organoids (EGOs). METHODS: Human eccrine sweat glands were isolated from the skin for tissue culture, and the primary cultured cells were collected and cultured in Matrigel for 14 days in vitro. EGOs at different development days were collected for hematoxylin and eosin (H&E) staining to observe morphological changes and for immunofluorescence staining of proliferation marker Ki67, cellular motility marker filamentous actin (F-actin), and autophagy marker LC3B. Western blotting was used to detect the expression of Ki67, F-actin, and LC3B. Moreover, apoptosis was detected using a terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) apoptosis assay kit, and the expression of poly (ADP-ribose) polymerase and Caspase-3 was detected by Western blot. In addition, 3-methyladenine (3MA) was used as an autophagy inhibitor to detect whether the formation of sweat glands can be effectively inhibited. RESULTS: The results showed that a single gland cell proliferated rapidly and formed EGOs on day 4. The earliest lumen formation was observed on day 6. From day 8 to day 14, the rate of lumen formation in EGOs increased significantly. The immunofluorescence and Western blot analyses showed that the expression of Ki67 gradually decreased with the increase in days, while the F-actin expression level did not change. Notably, the expression of autophagy marker LC3B was detected in the interior cells of EGOs as the apoptosis signal of EGOs was negative. Compared with the control group, the autophagy inhibitor 3MA can effectively limit the formation rate of the lumen and reduce the inner diameter of EGOs. CONCLUSION: Using our model of eccrine gland 3D-reconstruction in Matrigel, we determined that autophagy rather than apoptosis plays a role in the lumen formation of EGOs.


Assuntos
Glândulas Écrinas , Organoides , Apoptose , Autofagia , Células Epiteliais , Humanos
9.
Braz. j. med. biol. res ; 55: e12149, 2022. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1394128

RESUMO

Eccrine sweat glands (ESGs) perform critical functions in temperature regulation in humans. Foxa1 plays an important role in ESG maturation and sweat secretion. Its molecular mechanism, however, remains unknown. This study investigated the expression of Foxa1 and Na-K-ATPase (NKA) in rat footpads at different development stages using immunofluorescence staining, qRT-PCR, and immunoblotting. Also, bioinformatics analysis and Foxa1 overexpression and silencing were employed to evaluate Foxa1 regulation of NKA. The results demonstrated that Foxa1 was consistently expressed during the late stages of ESGs and had a significant role in secretory coil maturation during sweat secretion. Furthermore, the mRNA abundance and protein expression of NKA had similar accumulation trends to those of Foxa1, confirming their underlying connections. Bioinformatics analysis revealed that Foxa1 may interact with these two proteins via binding to conserved motifs in their promoter regions. Foxa1 gain-of-function and loss-of-function experiments in Foxa1-modified cells demonstrated that the activities of NKA were dependent on the presence of Foxa1. Collectively, these data provided evidence that Foxa1 may influence ESG development through transcriptional regulation of NKA expression.

10.
BMC Pharmacol Toxicol ; 22(1): 44, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-34266494

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) is a common pathogen in development of peptic ulcers with pyroptosis. Rabeprazole, a critical component of standard triple therapy, has been widely used as the first-line regimen for H. pylori infectious treatment. The aim of this study to explore the function of Rabeprazole on cell pyroptosis in vitro. METHODS: The clinical sample from patients diagnosed with or without H. pylori-infection were collected to analyze by Immunohistochemistry (IHC). Real-time quantitative PCR (qPCR), western blot (WB) and enzyme linked immunosorbent assay (Elisa) were performed to analyze the effect of Rabeprazole on cell pyroptosis, including LDH, IL-1ß and IL-18. RESULTS: In this study, we showed that Rabeprazole regulated a phenomenon of cell pyroptosis as confirmed by lactate dehydrogenase (LDH) assay. Further results showed that Rabeprazole inhibited cell pyroptosis in gastric epithelial cells by alleviating GSDMD-executed pyroptosis, leading to decrease IL-1ß and IL-18 mature and secretion, which is attributed to NLRP3 inflammasome activation inhibition. Further analysis showed that ASC, NLRP3 and Caspase-1, was significantly repressed in response to Rabeprazole stimulation, resulting in decreasing cleaved-caspase-1 expression. Most important, NLRP3 and GSDMD is significantly increased in gastric tissue of patients with H. pylori infection. CONCLUSION: These findings revealed a critical role of Rabeprazole in cell pyroptosis in patients with H. pylori infection, suggesting that targeting cell pyroptosis is an alternative strategy in improving H. pylori treatment.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antiulcerosos/uso terapêutico , Células Epiteliais/efeitos dos fármacos , Infecções por Helicobacter/tratamento farmacológico , Inibidores da Bomba de Prótons/uso terapêutico , Rabeprazol/uso terapêutico , Adolescente , Anti-Inflamatórios/farmacologia , Antiulcerosos/farmacologia , Linhagem Celular , Criança , Pré-Escolar , Células Epiteliais/metabolismo , Feminino , Mucosa Gástrica/citologia , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/metabolismo , Humanos , Interleucina-18/genética , Interleucina-18/metabolismo , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , L-Lactato Desidrogenase/metabolismo , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas de Ligação a Fosfato/genética , Proteínas de Ligação a Fosfato/metabolismo , Inibidores da Bomba de Prótons/farmacologia , Piroptose/efeitos dos fármacos , Rabeprazol/farmacologia
11.
Front Immunol ; 12: 644862, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093533

RESUMO

NLRP3 inflammasome has emerged as a crucial regulator of inflammatory bowel disease (IBD) characterized by a chronic inflammatory disease of the gastrointestinal tract. The expression of MCT4 is significantly increased in intestinal mucosal tissue of IBD, which has been identified to regulate intestinal barrier function. However, the function of MCT4 in cell pyroptosis remained unknown. In this study, we have established a stable cell line with MCT4 overexpression in HT-29 and CaCO2 cells, respectively. Functional analysis revealed that ectopic expression of MCT4 in CaCO2 cells contributed to cell pyroptosis as evidenced by LDH assay, which is largely attributed to Caspase-1-mediated canonical pyroptosis, but not Caspase-4 and Caspase-5, leading to cleave pro-IL-1ß and IL-18 into mature form and release mediated by cleaved GSDMD. Mechanically, MCT4 overexpression in HT-29 and CaCO2 cell triggered the phosphorylation of ERK1/2 and NF-κB p65, while inhibition of MCT4 by MCT inhibitor α-Cyano-4-hydroxycinnamic acid (α-CHCA) in HT-29 and CaCO2 cells led to a significant downregulation of ERK1/2 and NF-κB activity. What's more, blockade of ERK1/2-NF-κB pathway could reverse the promotion effect of MCT4 on IL-1ß expression. Importantly, both MCT4 and Caspase-1, GSDMD were significantly increased in patients with IBD, and a positive clinical correlation between MCT4 and Caspase-1 expression was observed (p < 0.001). Taken together, these findings suggested that MCT4 promoted Caspase-1-mediated canonical cell pyroptosis to aggravate intestinal inflammation in intestinal epithelial cells (IECs) through the ERK1/2-NF-κB pathway.


Assuntos
Doenças Inflamatórias Intestinais/imunologia , Sistema de Sinalização das MAP Quinases/imunologia , Transportadores de Ácidos Monocarboxílicos/imunologia , Proteínas Musculares/imunologia , Piroptose/imunologia , Células CACO-2 , Caspases/imunologia , Células HT29 , Humanos , Inflamação/imunologia , Inflamação/patologia , Doenças Inflamatórias Intestinais/patologia , Interleucina-18/imunologia , Interleucina-1beta/imunologia , Proteína Quinase 1 Ativada por Mitógeno/imunologia , Proteína Quinase 3 Ativada por Mitógeno/imunologia , Fator de Transcrição RelA/imunologia
12.
Biochem Pharmacol ; 188: 114525, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744226

RESUMO

The dysregulation of glycolysis leads to serials of disease. Rabeprazole is a representative of proton pump inhibitors and widely used in anti-ulcer treatment. However, the function of Rabeprazole on glycolysis in gastric epithelial cells remained to be identified. In this study, 30(Helicobacter pylori)H. pylori-negative cases and 26H. pylori-positive cases treated with Rabeprazole were recruited. The qPCR and Western blotting results showed that Rabeprazole suppressed cell proliferation by inhibition of HK2-mediated glycolysis in BGC823 cells, leading to decrease glucose uptake and lactate production in a dose-dependent way. Furthermore, the phosphorylation of signal transducer and activator of transcription 3 (STAT3) was drastically reduced in response to Rabeprazole stimulation, leading to attenuate STAT3 nuclear translocation. Luciferase and Chromatin immunoprecipitation (ChIP) analysis showed that Rabeprazole treatment led to a significant inhibition of the binding of STAT3 to the promoter of the HK2 gene, repressing transcriptional activation of HK2. Moreover, the ectopic expression of STAT3 in BGC823 cells resulted in recovery of HK2 transactivation and cell proliferation in Rabeprazole-treated cells. Most importantly, HK2 expression was significantly increased in H. pylori-infected gastric mucosa. These findings suggested that Rabeprazole inhibited cell proliferation by targeting STAT3/HK2 signaling-mediated glucose metabolism in gastric epithelial cells. Therefore, targeting HK2 is an alternative strategy in improving the treatment of patients with H. pylori infection.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Glicólise/efeitos dos fármacos , Rabeprazol/administração & dosagem , Fator de Transcrição STAT3/antagonistas & inibidores , Antiulcerosos/administração & dosagem , Linhagem Celular , Proliferação de Células/fisiologia , Criança , Sistemas de Liberação de Medicamentos/métodos , Células Epiteliais/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Glicólise/fisiologia , Humanos , Masculino , Fator de Transcrição STAT3/metabolismo
13.
Mol Ther ; 29(5): 1758-1771, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33571681

RESUMO

DNA methylation abnormality is closely related to tumor occurrence and development. Chemical inhibitors targeting DNA methyltransferase (DNMTis) have been used in treating cancer. However, the impact of DNMTis on antitumor immunity has not been well elucidated. In this study, we show that zebularine (a demethylating agent) treatment of cancer cells led to increased levels of interferon response in a cyclic guanosine monophosphate-AMP (cGAMP) synthase (cGAS)- and stimulator of interferon genes (STING)-dependent manner. This treatment also specifically sensitized the cGAS-STING pathway in response to DNA stimulation. Incorporation of zebularine into genomic DNA caused demethylation and elevated expression of a group of genes, including STING. Without causing DNA damage, zebularine led to accumulation of DNA species in the cytoplasm of treated cells. In syngeneic tumor models, administration of zebularine alone reduced tumor burden and extended mice survival. This effect synergized with cGAMP and immune checkpoint blockade therapy. The efficacy of zebularine was abolished in nude mice and in cGAS-/- or STING-/- mice, indicating its dependency on host immunity. Analysis of tumor cells indicates upregulation of interferon-stimulated genes (ISGs) following zebularine administration. Zebularine promoted infiltration of CD8 T cells and natural killer (NK) cells into tumor and therefore suppressed tumor growth. This study unveils the role of zebularine in sensitizing the cGAS-STING pathway to promote anti-tumor immunity and provides the foundation for further therapeutic development.


Assuntos
Citidina/análogos & derivados , Melanoma Experimental/tratamento farmacológico , Proteínas de Membrana/genética , Nucleotídeos Cíclicos/administração & dosagem , Nucleotidiltransferases/genética , Administração Oral , Animais , Linfócitos T CD8-Positivos/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Citidina/administração & dosagem , Citidina/farmacologia , Sinergismo Farmacológico , Humanos , Células Matadoras Naturais/metabolismo , Melanoma Experimental/genética , Melanoma Experimental/imunologia , Camundongos , Camundongos Nus , Nucleotídeos Cíclicos/farmacologia , Regiões Promotoras Genéticas , Células THP-1 , Microambiente Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto
14.
Hum Cell ; 34(2): 570-578, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33196969

RESUMO

Downregulation of microRNA-520a-3p (miR-520a-3p) has been demonstrated in several cancers, and miR-520a-3p has been shown to inhibit tumor progression, indicating its potential role as a tumor suppressor. In this study, we found that miR-520a-3p was also downregulated in epithelial ovarian cancer (EOC) tissues and cell lines. Functional assays showed that ectopic expression of miR-520a-3p suppressed EOC cell proliferation, invasion, and epithelial-mesenchymal transition (EMT) and induced cell cycle arrest in vitro. Similarly, overexpression of miR-520a-3p inhibited tumor growth and metastasis in vivo. Mechanistically, suppressor of variegation 39H1 (SUV39H1) was identified as a novel target of miR-520a-3p through biomedical databases and dual-luciferase reporter assay. Subsequently, SUV39H1 was observed to be negatively regulated by miR-520a-3p at the mRNA and protein levels, and inversely correlated with miR-520a-3p expression in EOC tissues. Furthermore, overexpression of SUV39H1 reversed the suppressive effects of miR-520a-3p in EOC cells. Collectively, these results suggest that the miR-520a-3p/SUV39H1 axis may contribute to EOC cell proliferation and metastasis, revealing miR-520a-3p as a potential therapeutic target for the treatment of EOC.


Assuntos
Carcinogênese/genética , Carcinogênese/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica/genética , Expressão Gênica/genética , Genes Supressores de Tumor , Metiltransferases/genética , Metiltransferases/metabolismo , MicroRNAs/fisiologia , Metástase Neoplásica/genética , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Linhagem Celular Tumoral , Progressão da Doença , Feminino , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Terapia de Alvo Molecular
15.
Biomed Res Int ; 2020: 7647181, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33015178

RESUMO

BACKGROUND: CD147/basigin (Bsg), a transmembrane glycoprotein, activates matrix metalloproteinases and promotes inflammation. OBJECTIVE: The aim of this study is to explore the clinical significance of CD147 in the pathogenesis of inflammatory bowel disease (IBD). RESULTS: In addition to monocytes, the clinical analysis showed that there is no significance obtained in leucocyte, neutrophil, eosinophil, basophil, and erythrocyte between IBD and controls. Immunohistochemistry analysis showed that CD147 was increased in intestinal tissue of patients with active IBD compared to that in the control group. What is more, CD147 is involved in intestinal barrier function and intestinal inflammation, which was attributed to the fact that it has an influence on MCT4 expression, a regulator of intestinal barrier function and intestinal inflammation, in HT-29 and CaCO2 cells. Most importantly, serum level of CD147 content is higher in active IBD than that in inactive IBD or healthy control, which could be a biomarker of IBD. CONCLUSION: The data suggested that increased CD147 level could be a biomarker of IBD in children.


Assuntos
Basigina/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Basigina/sangue , Criança , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Humanos , Doenças Inflamatórias Intestinais/sangue , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino
16.
Biomed Pharmacother ; 130: 110472, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32738635

RESUMO

BACKGROUND: De novo lipogenesis (DNL) has been reported to involve in a serial types of disease. A standard triple therapy, including a PPI, omeprazole, and antibiotics (clarithromycin and amoxicillin), is widely used as the first-line regimen for helicobacter pylori (H. pylori)-infectious treatment. The objective of this study is to explore the function of a standard triple therapy on DNL. METHODS AND RESULTS: We collected the clinical sample from the patients diagnosed with or without H. pylori infection. Oil red staining, real-time PCR, western blotting (WB) and adipored experiment were performed to detect the effect of a standard triple therapy on DNL. The expression of relative key enzymes was assessed in gastric mucosa of clinical sample by IHC. Both 54 cases with H. pylori-negative and 37 cases with H. pylori-positive were enrolled in this study, and IHC assay showed that both fatty acid synthase (FASN) and ATP-citrate lyase (ACLY) expression, the critical enzymes involved in DNL, were increased in gastric mucosa of patients with H. pylori-positive compared with that with H. pylori-negative. Real-time PCR and WB analysis showed that neither clarithromycin nor amoxicillin inhibited FASN and ACLY expression, while treatment of BGC823 cells with omeprazole with 200 µM or 300 µM significantly abolished FASN and ACLY expression, leading to reduce lipid content. CONCLUSION: These findings suggested that omeprazole suppressed DNL in gastric cells, implying that targeting DNL is an alternative strategy in improving the treatment of patients with H. pylori infection.


Assuntos
Células Epiteliais/efeitos dos fármacos , Mucosa Gástrica/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Omeprazol/administração & dosagem , Inibidores da Bomba de Prótons/administração & dosagem , Células Cultivadas , Criança , Células Epiteliais/metabolismo , Feminino , Mucosa Gástrica/metabolismo , Infecções por Helicobacter/metabolismo , Helicobacter pylori , Humanos , Masculino
17.
Biol Res ; 53(1): 12, 2020 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-32209121

RESUMO

BACKGROUND: Mast cells (MCs) have been found to play a critical role during development of inflammatory bowel disease (IBD) that characterized by dysregulation of inflammation and impaired intestinal barrier function. However, the function of MCs in IBD remains to be fully elucidated. RESULTS: In our study, we used exosomes isolated from human mast cells-1 (HMCs-1) to culture with NCM460, HT-29 or CaCO2 of intestinal epithelial cells (IECs) to investigate the communication between MCs and IECs. We found that MCs-derived exosomes significantly increased intestinal epithelial permeability and destroyed intestinal barrier function, which is attributed to exosome-mediated functional miRNAs were transferred from HMCs-1 into IECs, leading to inhibit tight junction-related proteins expression, including tight junction proteins 1 (TJP1, ZO-1), Occludin (OCLN), Claudin 8 (CLDN8). Microarray and bioinformatic analysis have further revealed that a panel of miRNAs target different tight junction-related proteins. Interestingly, miR-223 is enriched in mast cell-derived exosome, which inhibit CLDN8 expression in IECs, while treatment with miR-223 inhibitor in HT-29 cells significantly reversed the inhibitory effect of HMCs-1-derived exosomes on CLDN 8 expression. Most importantly, enrichment of MCs accumulation in intestinal mucosa of patients with IBD compared with those healthy control. CONCLUSIONS: These results indicated that enrichment of exosomal miR-223 from HMCs-1 inhibited CLDN8 expression, leading to destroy intestinal barrier function. These finding provided a novel insight of MCs as a new target for therapeutic treatment of IBD.


Assuntos
Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Mastócitos/metabolismo , MicroRNAs/metabolismo , Animais , Células CACO-2/citologia , Bovinos , Células Cultivadas , Claudinas/metabolismo , Biologia Computacional , Exossomos/metabolismo , Humanos , Doenças Inflamatórias Intestinais/metabolismo , Ocludina/metabolismo , Permeabilidade , Análise Serial de Tecidos , Proteína da Zônula de Oclusão-1/metabolismo
18.
Biol. Res ; 53: 12, 2020. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1100918

RESUMO

BACKGROUND: Mast cells (MCs) have been found to play a critical role during development of inflammatory bowel disease (IBD) that characterized by dysregulation of inflammation and impaired intestinal barrier function. However, the function of MCs in IBD remains to be fully elucidated. RESULTS: In our study, we used exosomes isolated from human mast cells-1 (HMCs-1) to culture with NCM460, HT-29 or CaCO2 of intestinal epithelial cells (lECs) to investigate the communication between MCs and lECs. We found that MCs-derived exosomes significantly increased intestinal epithelial permeability and destroyed intestinal barrier function, which is attributed to exosome-mediated functional miRNAs were transferred from HMCs-1 into lECs, leading to inhibit tight junction-related proteins expression, including tight junction proteins 1 (TJP1, ZO-1), Occludin (OCLN), Claudin 8 (CLDN8). Microarray and bioinformatic analysis have further revealed that a panel of miRNAs target different tight junction-related proteins. Interestingly, miR-223 is enriched in mast cell-derived exosome, which inhibit CLDN8 expression in IECs, while treatment with miR-223 inhibitor in HT-29 cells significantly reversed the inhibitory effect of HMCs-1-derived exosomes on CLDN 8 expression. Most importantly, enrichment of MCs accumulation in intestinal mucosa of patients with IBD compared with those healthy control. CONCLUSIONS: These results indicated that enrichment of exosomal miR-223 from HMCs-1 inhibited CLDN8 expression, leading to destroy intestinal barrier function. These finding provided a novel insight of MCs as a new target for therapeutic treatment of IBD.


Assuntos
Humanos , Animais , Bovinos , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Mucosa Intestinal/metabolismo , Mastócitos/metabolismo , Permeabilidade , Doenças Inflamatórias Intestinais/metabolismo , Células Cultivadas , Células CACO-2/citologia , Biologia Computacional , Análise Serial de Tecidos , Exossomos/metabolismo , Claudinas/metabolismo , Ocludina/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo
19.
Cell ; 179(5): 1160-1176.e24, 2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31730855

RESUMO

Pediatric-onset colitis and inflammatory bowel disease (IBD) have significant effects on the growth of infants and children, but the etiopathogenesis underlying disease subtypes remains incompletely understood. Here, we report single-cell clustering, immune phenotyping, and risk gene analysis for children with undifferentiated colitis, Crohn's disease, and ulcerative colitis. We demonstrate disease-specific characteristics, as well as common pathogenesis marked by impaired cyclic AMP (cAMP)-response signaling. Specifically, infiltration of PDE4B- and TNF-expressing macrophages, decreased abundance of CD39-expressing intraepithelial T cells, and platelet aggregation and release of 5-hydroxytryptamine at the colonic mucosae were common in colitis and IBD patients. Targeting these pathways by using the phosphodiesterase inhibitor dipyridamole restored immune homeostasis and improved colitis symptoms in a pilot study. In summary, comprehensive analysis of the colonic mucosae has uncovered common pathogenesis and therapeutic targets for children with colitis and IBD.


Assuntos
Doenças Inflamatórias Intestinais/patologia , Doenças Inflamatórias Intestinais/terapia , Mucosa Intestinal/patologia , Antígenos CD/metabolismo , Apirase/metabolismo , Linfócitos B/efeitos dos fármacos , Linfócitos B/imunologia , Morte Celular/efeitos dos fármacos , Microambiente Celular/efeitos dos fármacos , Criança , Estudos de Coortes , Colo/patologia , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Dipiridamol/farmacologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Predisposição Genética para Doença , Homeostase/efeitos dos fármacos , Humanos , Imunoglobulina G/sangue , Memória Imunológica , Inflamação/patologia , Doenças Inflamatórias Intestinais/sangue , Doenças Inflamatórias Intestinais/genética , Interferon Tipo I/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Metilprednisolona/farmacologia , Células Mieloides/efeitos dos fármacos , Células Mieloides/metabolismo
20.
Cell Prolif ; 52(6): e12673, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31418947

RESUMO

OBJECTIVE: Inflammatory bowel disease (IBD) is a disorder intestinal inflammation and impaired barrier function, associated with increased epithelial expression of monocarboxylate transporter 4 (MCT4). However, the specific non-metabolic function and clinical relevance of MCT4 in IBD remain to be fully elucidated. METHODS: Lentivirus-mediated overexpression of MCT4 was used to assess the role of MCT4 in transcriptionally regulating ZO-1 and IL-6 expression by luciferase assays, WB and ChIP. IP was used to analyse the effect of MCT4 on the interaction NF-κB-CBP or CREB-CBP, and these MCT4-mediated effects were confirmed in vivo assay. RESULTS: We showed that ectopic expression of MCT4 inhibited ZO-1 expression, while increased pro-inflammatory factors expression, leading to destroy intestinal epithelial barrier function in vitro and in vivo. Mechanistically, MCT4 contributed NF-κB p65 nuclear translocation and increased the binding of NF-κB p65 to the promoter of IL-6, which is attributed to MCT4 enhanced NF-κB-CBP interaction and dissolved CREB-CBP complex, resulting in reduction of CREB activity and CREB-mediated ZO-1 expression. In addition, treatment of experimental colitis with MCT4 inhibitor α-cyano-4-hydroxycinnamate (CHC) ameliorated mucosal intestinal barrier function, which was due to attenuation of pro-inflammation factors expression and enhancement of ZO-1 expression. CONCLUSION: These findings suggested a novel role of MCT4 in controlling development of IBD and provided evidence for potential targets of IBD.


Assuntos
Epitélio/efeitos dos fármacos , Interleucina-6/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Proteína da Zônula de Oclusão-1/metabolismo , Células CACO-2 , Colo/metabolismo , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo , Fator de Transcrição RelA/farmacologia , Fator de Necrose Tumoral alfa/farmacologia , Proteína da Zônula de Oclusão-1/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA