Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomacromolecules ; 25(10): 6727-6736, 2024 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-39270004

RESUMO

Polyethylene glycol (PEG) modification of materials has been identified to mitigate the challenge of biofouling. However, the practical application of PEGylation has been hampered by a low PEGylation density on the material surface. Therefore, developing efficient strategies to promote the PEGylation density is crucial. In this study, PEG brushes (PBs) with various structures were synthesized and their physicochemical properties and biomedical applications were investigated. Compared to benzaldehyde (BA), o-phthalaldehyde (OPA) exhibited higher reactivity with amine groups, resulting in increased grafting density (as high as 96.3%) and improved antifouling properties of PEG brushes. Bottlebrushes fabricated by PEG-OPA and polylysine demonstrated a prolonged circulation time in blood and enhanced potential for magnetic resonance imaging of tumors. Furthermore, the rigidity of the backbone was found to be crucial for the antifouling properties of PEG brushes both in vitro and in vivo. These findings are significant and provide valuable insights into designing biomaterials with superior antifouling performance.


Assuntos
Incrustação Biológica , Polietilenoglicóis , Polietilenoglicóis/química , Animais , Camundongos , Incrustação Biológica/prevenção & controle , Distribuição Tecidual , Materiais Biocompatíveis/química , Materiais Biocompatíveis/síntese química , Humanos , Imageamento por Ressonância Magnética , Polilisina/química
3.
ACS Nano ; 18(13): 9511-9524, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38499440

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive and lethal form of human brain tumors. Dismantling the suppressed immune microenvironment is an effective therapeutic strategy against GBM; however, GBM does not respond to exogenous immunotherapeutic agents due to low immunogenicity. Manipulating the mitochondrial electron transport chain (ETC) elevates the immunogenicity of GBM, rendering previously immune-evasive tumors highly susceptible to immune surveillance, thereby enhancing tumor immune responsiveness and subsequently activating both innate and adaptive immunity. Here, we report a nanomedicine-based immunotherapeutic approach that targets the mitochondria in GBM cells by utilizing a Trojan-inspired nanovector (ABBPN) that can cross the blood-brain barrier. We propose that the synthetic photosensitizer IrPS can alter mitochondrial electron flow and concurrently interfere with mitochondrial antioxidative mechanisms by delivering si-OGG1 to GBM cells. Our synthesized ABBPN coloaded with IrPS and si-OGG1 (ISA) disrupts mitochondrial electron flow, which inhibits ATP production and induces mitochondrial DNA oxidation, thereby recruiting immune cells and endogenously activating intracranial antitumor immune responses. The results of our study indicate that strategies targeting the mitochondrial ETC have the potential to treat tumors with limited immunogenicity.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Barreira Hematoencefálica/patologia , Elétrons , Transporte Biológico , Neoplasias Encefálicas/genética , Mitocôndrias , Linhagem Celular Tumoral , Microambiente Tumoral
4.
Adv Healthc Mater ; 12(22): e2300249, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37016572

RESUMO

Nanovaccine-based immunotherapy can initiate strong immune responses and establish a long-term immune memory to prevent tumor invasion and recurrence. Herein, the assembly of redox-responsive antigen nanoparticles (NPs) conjugated with imidazoquinoline-based TLR7/8 agonists for lymph node-targeted immune activation is reported, which can potentiate tumor therapy and prevention. Antigen NPs are assembled via the templating of zeolitic imidazolate framework-8 NPs to cross-link ovalbumin with disulfide bonds, which enables the NPs with redox-responsiveness for improved antigen cross-presentation and dendritic cell activation. The formulated nanovaccines promote the lymphatic co-delivery of antigens and agonists, which can trigger immune responses of cytotoxic T lymphocytes and strong immunological memory. Notably, nanovaccines demonstrate their superiority for tumor prevention owing to the elicited robust antitumor immunity. The reported strategy provides a rational design of nanovaccines for enhanced cancer immunotherapy.


Assuntos
Vacinas Anticâncer , Nanopartículas , Neoplasias , Humanos , Animais , Camundongos , Receptor 7 Toll-Like , Antígenos/química , Neoplasias/terapia , Adjuvantes Imunológicos , Imunoterapia , Nanopartículas/química , Vacinação , Células Dendríticas , Camundongos Endogâmicos C57BL
5.
Chem Commun (Camb) ; 58(56): 7777-7780, 2022 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-35731091

RESUMO

Confined sono-polymerization is developed to prepare poly(ethylene glycol) nanoparticles within water-in-oil microemulsion, followed by post-functionalization with a bispecific antibody (anti HER2 and anti PEG) for targeted delivery of photosensitizers (i.e., indocyanine green). The nanoparticles could specifically target to breast cancer cells (i.e., SKBR3) that overexpress HER2 receptors for the inhibition of cancer cell growth under 808 nm laser irradiation. This study highlights a facile and controllable method to fabricate therapeutic nanoparticles capable of targeted delivery.


Assuntos
Nanopartículas , Polietilenoglicóis , Linhagem Celular Tumoral , Verde de Indocianina , Nanopartículas/uso terapêutico , Fármacos Fotossensibilizantes , Polimerização
6.
Angew Chem Int Ed Engl ; 60(39): 21529-21535, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34342111

RESUMO

We report a sono-Fenton strategy to mediate the supramolecular assembly of metal-phenolic networks (MPNs) as substrate-independent coatings using phenol and phenyl derivatives as building blocks. The assembly process is initiated from the generation of hydroxyl radicals (. OH) using high-frequency ultrasound (412 kHz), while the metal ions synergistically participate in the production of additional . OH for hydroxylation/phenolation of phenol and phenyl derivatives via the Fenton reaction and also coordinate with the phenolic compounds for film formation. The coating strategy is applicable to various phenol and phenyl derivatives and different metal ions including FeII , FeIII , CuII , and CoII . In addition, the sono-Fenton strategy allows real-time control over the assembly process by turning the high-frequency ultrasound on or off. The properties of the building blocks are maintained in the formed films. This work provides an environmentally friendly and controllable method to expand the application of phenolic coatings for surface engineering.

7.
IEEE/ACM Trans Comput Biol Bioinform ; 16(6): 1890-1900, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29994051

RESUMO

Drug repositioning is an efficient and promising strategy to identify new indications for existing drugs, which can improve the productivity of traditional drug discovery and development. Rapid advances in high-throughput technologies have generated various types of biomedical data over the past decades, which lay the foundations for furthering the development of computational drug repositioning approaches. Although many researches have tried to improve the repositioning accuracy by integrating information from multiple sources and different levels, it is still appealing to further investigate how to efficiently exploit valuable data for drug repositioning. In this study, we propose an efficient approach, Random Walk on a Heterogeneous Network for Drug Repositioning (RWHNDR), to prioritize candidate drugs for diseases. First, an integrated heterogeneous network is constructed by combining multiple sources including drugs, drug targets, diseases and disease genes data. Then, a random walk model is developed to capture the global information of the heterogeneous network. RWHNDR takes advantage of drug targets and disease genes data more comprehensively for drug repositioning. The experiment results show that our approach can achieve better performance, compared with other state-of-the-art approaches which prioritized candidate drugs based on multi-source data.


Assuntos
Biologia Computacional/métodos , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Algoritmos , Neoplasias da Mama/tratamento farmacológico , Bases de Dados Factuais , Progressão da Doença , Indústria Farmacêutica/tendências , Humanos , Doença de Huntington/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Doença de Parkinson/tratamento farmacológico , Fenótipo , Curva ROC , Software
8.
ACS Macro Lett ; 6(5): 556-560, 2017 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-35610878

RESUMO

Radiosensitizer plays an important role in the cancer radiotherapy for efficient killing of hypoxic cancer cells at a low radiation dose. However, the commercially available small molecular radiosensitizers show low efficiency due to poor bioavailability in tumor tissues. In this report, we develop a novel amphiphilic block copolymer radiosensitizer, metronidazole-conjugated poly(ethylene glycol)-b-poly(γ-propargyl-l-glutamate) (PEG-b-P(PLG-g-MN)), which can be self-assembled into core-shell micelles (MN-Micelle) with an optimal size of ∼60 nm in aqueous solution. In vitro cytotoxicity evaluation indicated that MN-Micelle sensitized the hypoxic cancer cells more efficiently under radiation with the sensitization enhancement ratio (SER) of 1.62 as compared with that of commercially available sodium glycididazole (GS; SER = 1.17) at the metronidazole-equivalent concentration of 180 µg/mL. Upon intravenous injection of MN-Micelle into the tumor-bearing mice, high tumor deposition was achieved, which finally suppressed tumor growth completely after electron beam radiation at a low radiation dose of 4 Gy. MN-Micelle with outstanding performance as an in vivo radiosensitizer holds great potentials for translation into radiotherapy application.

9.
Biomacromolecules ; 17(10): 3268-3276, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27564064

RESUMO

Construction of efficient doxorubicin (DOX) delivery systems addressing a cascade of physiological barriers remains a great challenge for better therapeutic efficacy of tumors. Herein, we design well-defined enzyme-responsive peptide-linked block copolymer, PEG-GPLGVRGDG-P(BLA-co-Asp) [PEG and P(BLA-co-Asp) are poly(ethylene glycol) and partially hydrolyzed poly(ß-benzyl l-aspartate) (PBLA), respectively] (P3), with modular functionality for efficient delivery of DOX. The block copolymers were successfully obtained via click reaction to introduce peptide (alkynyl-GPLGVRGDG) into the end of PEG for initiating ring-opening polymerization of ß-benzyl l-aspartate N-carboxyanhydride (BLA-NCA) by terminal amino groups followed by partial hydrolysis of PBLA segments. P3 micelle was demonstrated to encapsulate DOX efficiently through synergistic effect of benzyl group-based hydrophobic and carboxyl moiety-based electrostatic interactions. Effective matrix metalloproteinase-2 (MMP-2)-triggered cleavage of peptide for dePEGylation of P3 micelles was confirmed and residual RGD ligands were retained on the surfaces. Against HT1080 cells overexpressing MMP-2, DOX-loaded P3 micelles showed approximately 4-fold increase of the cellular internalization amount as compared with free DOX and half maximal inhibitory concentration (IC50) value of DOX-loaded P3 micelles was determined to be 0.38 µg/mL compared with 0.66 µg/mL of free DOX due to MMP-triggered dePEGylation, RGD-mediated cellular uptake, and rapid drug release inside cells. Binding and penetration evaluation toward HT1080 multicellular tumor spheroids (MCTs) confirmed high affinity and deep penetration of P3 micelles in tumor tissues. This modular design of enzyme-responsive block copolymers represents an effective strategy to construct intelligent drug delivery vehicles for addressing a cascade of delivery barriers.


Assuntos
Doxorrubicina/administração & dosagem , Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Peptídeos/administração & dosagem , Linhagem Celular Tumoral , Doxorrubicina/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Interações Hidrofóbicas e Hidrofílicas , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 2 da Matriz/genética , Neoplasias/genética , Tamanho da Partícula , Peptídeos/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/química
10.
ACS Appl Mater Interfaces ; 8(18): 11226-36, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27100328

RESUMO

Direct encapsulation of hydrophobic drugs into amphiphilic block copolymer micelles is frequently subjected to low drug loading efficiency (DLE) and loading content (DLC), as well as lower micellar stability and uncontrollable drug release. In this report, we prepare the copolymer prodrugs (PPEMA-co-PCPTM) via reversible addition-fragmentation chain transfer (RAFT) polymerization of 2-(piperidin-1-yl)ethyl methacrylate (PEMA) and reduction-responsive CPT monomer (CPTM), which were quantitatively encapsulated into poly(ethylene glycol)-block-poly(ε-caprolactone) (PEG-b-PCL) micelles. The polymer prodrug-loaded nanoparticles showed high stability for a long time in aqueous solution or blood serum and even maintain similar size after a lyophilization-dissolution cycle. The tumoral pH (∼6.8)-responsive properties of PPEMA segments endow the micellar cores with triggered transition from neutral to positively charged and swellable properties. The PEG-b-PCL nanoparticles loading polymer prodrugs (PPEMA-b-PCPTM) eliminated burst drug release. Simultaneously, CPT drug release can be triggered by reductive agents and solution pH. At pH 6.8, efficient cellular internalization was achieved due to positively charged cores of the nanoparticles. As compared with nanoparticles loading PCPTM, higher cytotoxicity was observed by the nanoparticles loading PPEMA-b-PCPTM at pH 6.8. Further multicellular tumor spheroid (MCTs) penetration and growth suppression studies demonstrated that high-efficiency penetration capability and significant size shrinkage of MCTs were achieved after treatment by PPEMA-b-PCPTM-loaded nanoparticles at pH 6.8. Therefore, the responsive polymer prodrug encapsulation strategy represents an effective method to overcome the disadvantages of common hydrophobic drug encapsulation approaches by amphiphilic block copolymer micelles and simultaneously endows the nanoparticles with responsive drug release behaviors as well as enhanced cellular internalization and tumor penetration capability.


Assuntos
Nanopartículas , Portadores de Fármacos , Liberação Controlada de Fármacos , Lactonas , Micelas , Polietilenoglicóis , Polímeros , Pró-Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA