Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Am J Pathol ; 194(6): 894-911, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38403164

RESUMO

Polycystic ovary syndrome (PCOS) is a highly heterogeneous and genetically complex endocrine disorder. Although the etiology remains mostly elusive, growing evidence suggests that abnormal changes of DNA methylation correlate well with systemic and tissue-specific dysfunctions in PCOS. Herein, a dehydroepiandrosterone-induced PCOS-like mouse model which has a similar metabolic and reproductive phenotype as human patients with PCOS was generated. It was used to experimentally validate the potential role of aberrant DNA methylation in PCOS in this study. Integrated DNA methylation and transcriptome analysis revealed the potential role of genomic DNA hypomethylation in transcription regulation of PCOS and identified several key candidate genes, including BMP4, Adcy7, Tnfaip3, and Fas, which were regulated by aberrant DNA hypomethylation. Moreover, i.p. injection of S-adenosylmethionine increased the overall DNA methylation level of PCOS-like mice and restored expression of the candidate genes to similar levels as the control, alleviating reproductive and metabolic abnormalities in PCOS-like mice. These findings provide direct evidence showing the importance of normal DNA methylation in epigenetic regulation of PCOS and potential targets for diagnosis and treatment of the disease.


Assuntos
Metilação de DNA , Síndrome do Ovário Policístico , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Síndrome do Ovário Policístico/patologia , Metilação de DNA/genética , Animais , Feminino , Camundongos , Modelos Animais de Doenças , Transcrição Gênica , Epigênese Genética , Regulação da Expressão Gênica , Humanos , Camundongos Endogâmicos C57BL
2.
Eur J Med Res ; 29(1): 68, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38245795

RESUMO

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a devastating chronic lung disease characterized by irreversible scarring of the lung parenchyma. Despite various interventions aimed at mitigating several different molecular aspects of the disease, only two drugs with limited clinical efficacy have so far been approved for IPF therapy. OBJECTIVE: We investigated the therapeutic efficacy of amifostine, a detoxifying drug clinically used for radiation-caused cytotoxicity, in bleomycin-induced murine pulmonary fibrosis. METHODS: C57BL6/J mice were intratracheally instilled with 3 U/kg of bleomycin. Three doses of amifostine (WR-2721, 200 mg/kg) were administered intraperitoneally on days 1, 3, and 5 after the bleomycin challenge. Bronchoalveolar lavage fluid (BALF) was collected on day 7 and day 21 for the assessment of lung inflammation, metabolites, and fibrotic injury. Human fibroblasts were treated in vitro with transforming growth factor beta 1 (TGF-ß1), followed by amifostine (WR-1065, 1-4 µg/mL) treatment. The effects of TGF-ß1 and amifostine on the mitochondrial production of reactive oxygen species (ROS) were assessed by live cell imaging of MitoSOX. Cellular metabolism was assessed by the extracellular acidification rate (ECAR), the oxygen consumption rate (OCR), and the concentrations of various energy-related metabolites as measured by mass spectrum (MS). Western blot analysis was performed to investigate the effect of amifostine on sirtuin 1 (SIRT1) and adenosine monophosphate activated kinase (AMPK). RESULTS: Three doses of amifostine significantly attenuated lung inflammation and pulmonary fibrosis. Pretreatment and post-treatment of human fibroblast cells with amifostine blocked TGF-ß1-induced mitochondrial ROS production and mitochondrial dysfunction in human fibroblast cells. Further, treatment of fibroblasts with TGF-ß1 shifted energy metabolism away from mitochondrial oxidative phosphorylation (OXPHOS) and towards glycolysis, as observed by an altered metabolite profile including a decreased ratio of NAD + /NADH and increased lactate concentration. Treatment with amifostine significantly restored energy metabolism and activated SIRT1, which in turn activated AMPK. The activation of AMPK was required to mediate the effects of amifostine on mitochondrial homeostasis and pulmonary fibrosis. This study provides evidence that repurposing of the clinically used drug amifostine may have therapeutic applications for IPF treatment. CONCLUSION: Amifostine inhibits bleomycin-induced pulmonary fibrosis by restoring mitochondrial function and cellular metabolism.


Assuntos
Amifostina , Fibrose Pulmonar Idiopática , Pneumonia , Humanos , Animais , Camundongos , Bleomicina/efeitos adversos , Fator de Crescimento Transformador beta1 , Amifostina/efeitos adversos , Sirtuína 1/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , NAD/metabolismo , NAD/farmacologia , NAD/uso terapêutico , Espécies Reativas de Oxigênio/efeitos adversos , Espécies Reativas de Oxigênio/metabolismo , Pulmão , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/tratamento farmacológico , Fibroblastos/metabolismo , Mitocôndrias/metabolismo , Camundongos Endogâmicos C57BL
3.
Front Oncol ; 12: 1006340, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36300093

RESUMO

Prostate cancer (PCa) is the most common cancer in men in the United States. About 10 - 20% of PCa progress to castration-resistant PCa (CRPC), which is accompanied by metastasis and therapeutic resistance. Aldehyde dehydrogenase (ALDH) is famous as a marker of cancer stem-like cells in different cancer types, including PCa. Generally, ALDHs catalyze aldehyde oxidation into less toxic carboxylic acids and give cancers a survival advantage by reducing oxidative stress caused by aldehyde accumulation. In PCa, the expression of ALDHs is associated with a higher tumor stage and more lymph node metastasis. Functionally, increased ALDH activity makes PCa cells gain more capabilities in self-renewal and metastasis and reduces the sensitivity to castration and radiotherapy. Therefore, it is promising to target ALDH or ALDHhigh cells to eradicate PCa. However, challenges remain in moving the ALDH inhibitors to PCa therapy, potentially due to the toxicity of pan-ALDH inhibitors, the redundancy of ALDH isoforms, and the lack of explicit understanding of the metabolic signaling transduction details. For targeting PCa stem-like cells (PCSCs), different regulators have been revealed in ALDHhigh cells to control cell proliferation and tumorigenicity. ALDH rewires essential signaling transduction in PCa cells. It has been shown that ALDHs produce retinoic acid (RA), bind with androgen, and modulate diverse signaling. This review summarizes and discusses the pathways directly modulated by ALDHs, the crucial regulators that control the activities of ALDHhigh PCSCs, and the recent progress of ALDH targeted therapies in PCa. These efforts will provide insight into improving ALDH-targeted treatment.

4.
Comput Biol Med ; 149: 105939, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36037629

RESUMO

BACKGROUND: Use of artificial intelligence to identify dermoscopic images has brought major breakthroughs in recent years to the early diagnosis and early treatment of skin cancer, the incidence of which is increasing year by year worldwide and poses a great threat to human health. Achievements have been made in the research of skin cancer image classification by using the deep backbone of the convolutional neural network (CNN). This approach, however, only extracts the features of small objects in the image, and cannot locate the important parts. OBJECTIVES: As a result, researchers of the paper turn to vision transformers (VIT) which has demonstrated powerful performance in traditional classification tasks. The self-attention is to improve the value of important features and suppress the features that cause noise. Specifically, an improved transformer network named SkinTrans is proposed. INNOVATIONS: To verify its efficiency, a three step procedure is followed. Firstly, a VIT network is established to verify the effectiveness of SkinTrans in skin cancer classification. Then multi-scale and overlapping sliding windows are used to serialize the image and multi-scale patch embedding is carried out which pay more attention to multi-scale features. Finally, contrastive learning is used which makes the similar data of skin cancer encode similarly so that the encoding results of different data are as different as possible. MAIN RESULTS: The experiment is carried out based on two datasets, namely (1) HAM10000: a large dataset of multi-source dermatoscopic images of common skin cancers; (2)A clinical dataset of skin cancer collected by dermoscopy. The model proposed has achieved 94.3% accuracy on HAM10000 and 94.1% accuracy on our datasets, which verifies the efficiency of SkinTrans. CONCLUSIONS: The transformer network has not only achieved good results in natural language but also achieved ideal results in the field of vision, which also lays a good foundation for skin cancer classification based on multimodal data. This paper is convinced that it will be of interest to dermatologists, clinical researchers, computer scientists and researchers in other related fields, and provide greater convenience for patients.


Assuntos
Melanoma , Neoplasias Cutâneas , Inteligência Artificial , Dermatologistas , Dermoscopia/métodos , Humanos , Neoplasias Cutâneas/diagnóstico por imagem
5.
Biomed Res Int ; 2019: 5196028, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31223619

RESUMO

The mechanistic target of rapamycin complex 2 (mTORC2) primarily functions as an effector of insulin/PI3K signaling to regulate cell proliferation and is associated with cell metabolism. However, the function of mTORC2 in lipid metabolism is not well understood. In the present study, mTORC2 was inactivated by the ATP-competitive mTOR inhibitor AZD8055 or shRNA targeting RICTOR in primary bovine mammary epithelial cells (pBMECs). MTT assay was performed to examine the effect of AZD8055 on cell proliferation. ELISA assay and GC-MS analysis were used to determine the content of lipid. The mRNA and protein expression levels were investigated by RT/real-time PCR and western blot analysis, respectively. We found that cell proliferation, mTORC2 activation, and lipid secretion were inhibited by AZD8055. RICTOR was knocked down and mTORC2 activation was specifically attenuated by the shRNA. Compared to control cells, the expression of the transcription factor gene PPARG and the lipogenic genes LPIN1, DGAT1, ACACA, and FASN was downregulated in RICTOR silencing cells. As a result, the content of intracellular triacylglycerol (TAG), palmitic acid (PA), docosahexaenoic acid (DHA), and other 16 types of fatty acid was decreased in the treated cells; the accumulation of TAG, PA, and DHA in cell culture medium was also reduced. Overall, mTORC2 plays a critical role in regulating lipogenic gene expression, lipid synthesis, and secretion in pBMECs, and this process probably is through PPARγ. This finding provides a model by which lipogenesis is regulated in pBMECs.


Assuntos
Células Epiteliais/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Lipogênese/fisiologia , Glândulas Mamárias Animais/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , PPAR gama/metabolismo , Acetil-CoA Carboxilase/biossíntese , Animais , Bovinos , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Diacilglicerol O-Aciltransferase/biossíntese , Ácido Graxo Sintase Tipo I/biossíntese , Feminino , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Morfolinas/farmacologia , PPAR gama/antagonistas & inibidores , Fosfatidato Fosfatase/biossíntese , Proteína Companheira de mTOR Insensível à Rapamicina/antagonistas & inibidores , Proteína Companheira de mTOR Insensível à Rapamicina/metabolismo
6.
J Agric Food Chem ; 67(21): 6007-6018, 2019 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-31060359

RESUMO

4EBP1 is a chief downstream factor of mTORC1, and PPARγ is a key lipogenesis-related transcription factor. mTORC1 and PPARγ are associated with lipid metabolism. However, it is unknown which effector protein connects mTORC1 and PPARγ. This study investigated the interaction between 4EBP1 with PPARγ as part of the underlying mechanism by which insulin-induced lipid synthesis and secretion are regulated by mTORC1 in primary bovine mammary epithelial cells (pBMECs). Rapamycin, a specific inhibitor of mTORC1, downregulated 4EBP1 phosphorylation and the expression of PPARγ and the following lipogenic genes: lipin 1, DGAT1, ACC, and FAS. Rapamycin also decreased the levels of intracellular triacylglycerol (TAG); 10 types of fatty acid; and the accumulation of TAG, palmitic acid (PA), and stearic acid (SA) in the cell culture medium. Inactivation of mTORC1 by shRaptor or shRheb attenuated the synthesis and secretion of TAG and PA. In contrast, activation of mTORC1 by Rheb overexpression promoted 4EBP1 phosphorylation and PPARγ expression and upregulated the mRNA and protein levels of lipin 1, DGAT1, ACC, and FAS, whereas the levels of intracellular and extracellular TAG, PA, and SA also rose. Further, 4EBP1 interacted directly with PPARγ. Inactivation of mTORC1 by shRaptor prevented the nuclear location of PPARγ. These results demonstrate that mTORC1 regulates lipid synthesis and secretion by inducing the expression of lipin 1, DGAT1, ACC, and FAS, which is likely mediated by the 4EBP1/PPARγ axis. This finding constitutes a novel mechanism by which lipid synthesis and secretion are regulated in pBMECs.


Assuntos
Células Epiteliais/metabolismo , Fatores de Iniciação em Eucariotos/metabolismo , Regulação da Expressão Gênica , Insulina/metabolismo , Lipogênese , Glândulas Mamárias Animais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , PPAR gama/metabolismo , Animais , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Bovinos , Diacilglicerol O-Aciltransferase/genética , Diacilglicerol O-Aciltransferase/metabolismo , Fatores de Iniciação em Eucariotos/genética , Feminino , Glândulas Mamárias Animais/citologia , Glândulas Mamárias Animais/enzimologia , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , PPAR gama/genética , Triglicerídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA