Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Environ Int ; 190: 108928, 2024 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-39106633

RESUMO

PM2.5 pollution has been associated with the incidence of lung cancer, but the underlying mechanism is still unclear. PIWI-interacting RNAs (piRNAs), initially identified in germline cells, have emerged as a novel class of small non-coding RNAs (26 - 32 nucleotides) with diverse functions in various diseases, including cancer. However, the role and mechanism of piRNAs in the development of PM2.5-induced lung cancer remain to be clarified. In the presented study, we used a PM2.5-induced malignant transformation cell model to analyze the change of piRNA profiles. Among the disturbed piRNAs, piR-27222 was identified as an oncogene that inhibited cell death in a m6A-dependent manner. Mechanistically, we found that piR-27222 could deubiquitinate and stabilize eIF4B by directly binding to eIF4B and reducing its interaction with PARK2. The enhanced expression of eIF4B, in turn, promoted the expression of WTAP, leading to increased m6A modification in the Casp8 transcript. Consequently, the stability of Casp8 transcripts was reduced, rendering lung cancer cells resistant to PANoptosis. Collectively, our findings reveal that PM2.5 exposure up-regulated piR-27222 expression, which could affect EIF4B/WTAP/m6A axis, thereby inhibiting PANoptosis of cells and promoting lung cancer. Our study provides new insights into understanding the epigenetic mechanisms underlining PM2.5-induced lung cancer.

2.
Cell Death Dis ; 15(1): 5, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38177154

RESUMO

Neuroblastoma (NB) is a challenging pediatric extracranial solid tumor characterized by a poor prognosis and resistance to chemotherapy. Identifying targets to enhance chemotherapy sensitivity in NB is of utmost importance. Increasing evidence implicates long noncoding RNAs (lncRNAs) play important roles in cancer, but their functional roles remain largely unexplored. Here, we analyzed our RNA sequencing data and identified the upregulated lncRNA ZNF674-AS1 in chemotherapy non-responsive NB patients. Elevated ZNF674-AS1 expression is associated with poor prognosis and high-risk NB. Importantly, targeting ZNF674-AS1 expression in NB cells suppressed tumor growth in vivo. Further functional studies have revealed that ZNF674-AS1 constrains cisplatin sensitivity by suppressing pyroptosis and promoting cell proliferation. Moreover, ZNF674-AS1 primarily relies on CA9 to fulfill its functions on cisplatin resistance. High CA9 levels were associated with high-risk NB and predicted poor patient outcomes. Mechanistically, ZNF674-AS1 directly interacted with the RNA binding protein IGF2BP3 to enhance the stability of CA9 mRNA by binding with CA9 transcript, leading to elevated CA9 expression. As a novel regulator of CA9, IGF2BP3 positively upregulated CA9 expression. Together, these results expand our understanding of the cancer-associated function of lncRNAs, highlighting the ZNF674-AS1/IGF2BP3/CA9 axis as a constituting regulatory mode in NB tumor growth and cisplatin resistance. These insights reveal the pivotal role of ZNF674-AS1 inhibition in recovering cisplatin sensitivity, thus providing potential therapeutic targets for NB treatment.


Assuntos
Anidrase Carbônica IX , MicroRNAs , Neuroblastoma , RNA Longo não Codificante , Criança , Humanos , Antígenos de Neoplasias , Anidrase Carbônica IX/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética , Neuroblastoma/metabolismo , Piroptose , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo
3.
Environ Sci Technol ; 57(17): 6854-6864, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37071573

RESUMO

Fine particulate matter (PM2.5) exposure causes DNA mutations and abnormal gene expression leading to lung cancer, but the detailed mechanisms remain unknown. Here, analysis of genomic and transcriptomic changes upon a PM2.5 exposure-induced human bronchial epithelial cell-based malignant transformed cell model in vitro showed that PM2.5 exposure led to APOBEC mutational signatures and transcriptional activation of APOBEC3B along with other potential oncogenes. Moreover, by analyzing mutational profiles of 1117 non-small cell lung cancers (NSCLCs) from patients across four different geographic regions, we observed a significantly higher prevalence of APOBEC mutational signatures in non-smoking NSCLCs than smoking in the Chinese cohorts, but this difference was not observed in TCGA or Singapore cohorts. We further validated this association by showing that the PM2.5 exposure-induced transcriptional pattern was significantly enriched in Chinese NSCLC patients compared with other geographic regions. Finally, our results showed that PM2.5 exposure activated the DNA damage repair pathway. Overall, here we report a previously uncharacterized association between PM2.5 and APOBEC activation, revealing a potential molecular mechanism of PM2.5 exposure and lung cancer.


Assuntos
Neoplasias Pulmonares , Humanos , Neoplasias Pulmonares/patologia , Mutação , Células Epiteliais , Material Particulado/efeitos adversos , Genômica , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Antígenos de Histocompatibilidade Menor/efeitos adversos , Antígenos de Histocompatibilidade Menor/metabolismo
4.
Environ Pollut ; 319: 120981, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36587786

RESUMO

Numerous studies have revealed that ambient long-term exposure to fine particulate matter (PM2.5) is significantly related to the development of lung cancer, but the molecular mechanisms of PM2.5 exposure-induced lung cancer remains unknown. As an important epigenetic regulator, microRNAs (miRNAs) play vital roles in responding to environment exposure and various diseases including lung cancer development. Here we constructed a PM2.5-induced malignant transformed cell model and found that miR-200 family, especially miR-200a-3p, was involved in the process of PM2.5 induced lung cancer. Further investigation of the function of miR-200 family (miR-200a-3p as a representative revealed that miR-200a-3p promoted cell migration by directly suppressing TNS3 expression. These results suggested that ambient PM2.5 exposure may increase the expression of miR-200 family and then promote the proliferation and migration of lung cancer cells. Our study provided novel model and insights into the molecular mechanism of ambient PM2.5 exposure-induced lung cancer.


Assuntos
Neoplasias Pulmonares , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias Pulmonares/metabolismo , Material Particulado/toxicidade , Material Particulado/metabolismo , Células Epiteliais/patologia , Transformação Celular Neoplásica/metabolismo
5.
Ecotoxicol Environ Saf ; 249: 114361, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36508832

RESUMO

Perfluorooctane sulfonate (PFOS) and its alternative 6:2 chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA) are ubiquitous in various environmental and human samples. They have been reported to have hepatotoxicity effects, but the potential mechanisms remain unclear. Herein, we integrated metabolomics and proteomics analysis to investigate the altered profiles in metabolite and protein levels in primary human hepatocytes (PHH) exposed to 6:2 Cl-PFESA and PFOS at human exposure relevant concentrations. Our results showed that 6:2 Cl-PFESA exhibited higher perturbation effects on cell viability, metabolome and proteome than PFOS. Integration of metabolomics and proteomics revealed that the alteration of glycerophospholipid metabolism was the critical pathway of 6:2 Cl-PFESA and PFOS-induced lipid metabolism disorder in primary human hepatocytes. Interestingly, 6:2 Cl-PFESA-induced cellular metabolic process disorder was associated with the cellular membrane-bounded signaling pathway, while PFOS was associated with the intracellular transport process. Moreover, the disruption effects of 6:2 Cl-PFESA were also involved in inositol phosphate metabolism and phosphatidylinositol signaling system. Overall, this study provided comprehensive insights into the hepatic lipid toxicity mechanisms of 6:2 Cl-PFESA and PFOS in human primary hepatocytes.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Humanos , Ácidos Sulfônicos , Éter , Proteômica , Ácidos Alcanossulfônicos/toxicidade , Éteres , Fluorocarbonos/toxicidade , Fluorocarbonos/análise , Hepatócitos , Metabolômica
6.
Research (Wash D C) ; 2022: 9854904, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909936

RESUMO

Lactic acid acidifies the tumor microenvironment and promotes multiple critical oncogenic processes, including immune evasion. Pyruvate kinase M2 (PKM2) is a dominant form of pyruvate kinase (PK) expressed in cancers that plays essential roles in metabolic reprograming and lactate production, rendering it as an attractive therapeutic target of cancer. However, the mechanism underlying PKM2 regulation remains unclear. Here, we show that long noncoding RNA (lncRNA) HIF-1α inhibitor at transcription level (HITT) inhibits lactate production in a PKM2-dependent manner. Mechanistically, it physically interacts with PKM2 mapped to a region that has been involved in both dimer (less-active) and tetramer (more-active) formation, inhibiting PKM2 oligomerization and leading to dramatic reduction of PK activity. Under glucose starvation, HITT was reduced as a result of miR-106 induction, which subsequently facilitates PKM2 oligomerization and increases vulnerability to apoptosis under glucose starvation stress. In addition, the interaction also reduces lactate secretion from cancer cells, which subsequently polarizes macrophages toward an M2-like anti-inflammatory phenotype and thus possibly contributes to immune escape in vivo. This study highlights an important role of an lncRNA in regulating PKM2 activity and also reveals a metabolic regulatory effect of PKM2 on macrophage polarization.

7.
Sci Total Environ ; 839: 156218, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35623527

RESUMO

N, N-dimethylformamide (DMF) is a widely existing harmful environmental pollutant from industrial emission which can threat human health for both occupational and general populations. Epidemiological and experimental studies have indicated liver as the primary target organ of DMF. However, the molecular mechanism under DMF-induced hepatoxicity remains unclear. In the present study, we identified that DMF could induce abnormal autophagy flux in cells. We also showed that DMF-induced mitochondrial dysfunction and lethal mitophagy which further leads to autophagic cell death. Next, miRNA microarray analysis identified miR-92a-1-5p as the most down-regulated miRNA upon DMF exposure. Mechanistically, miR-92a-1-5p regulated mitochondrial function and mitophagy by targeting mitochondrial protein BNIP3L. Exogenous miR-92a-1-5p significantly attenuated DMF-induced mitochondrial dysfunction and mitophagy in vitro and in vivo. Our study highlights the mechanistic link between miRNAs and mitophagy under environmental stress, which provided a new clue for the mitochondrial epigenetics mechanism on environmental toxicant-induced hepatoxicity.


Assuntos
Dimetilformamida , MicroRNAs , Dimetilformamida/toxicidade , Humanos , Fígado/fisiologia , Proteínas de Membrana/genética , MicroRNAs/genética , Mitofagia , Proteínas Proto-Oncogênicas , Proteínas Supressoras de Tumor
8.
Oncogene ; 41(13): 1944-1958, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35169254

RESUMO

Hypoxia-inducible factor-1α (HIF-1α) plays central roles in the hypoxia response. It is highly expressed in multiple cancers, but not always correlated with hypoxia. Mutation of the von Hippel-Lindau (VHL) gene, which encodes an E3 ligase, contributes to the constructive activation of HIF-1α in specific tumor types, as exemplified by renal cell carcinoma; but how VHL wild-type tumors acquire this ability is not completely understood. Here, we found that the oncogene iASPP (inhibitor of apoptosis-simulating protein of p53) plays essential roles in such a context. Genetic inhibition of iASPP reduced tumor growth, accompanied by impaired angiogenesis, increased areas of tumor necrosis, and reduced glycolysis that was HIF-1α-dependent. These abilities of iASPP were validated by in vitro assays. Mechanistically, iASPP directly binds VHL at its ß domain, a region also involved in HIF-1α binding, therefore blocking VHL's binding and the subsequent degradation of HIF-1α protein under normoxia. iASPP levels correlate with HIF-1α protein and vascular endothelial growth factor (VEGF) and the glucose transporter protein type 1(GLUT1), representative HIF-1α target genes, in human colon cancer tissues. Furthermore, inhibition of iASPP expression synergizes with low toxic dose of the HIF-1α inhibitor YC-1 to inhibit HIF-1α expression and tumor growth. Our findings suggest that iASPP contributes to HIF-1α activation in cancers, and that iASPP-mediated HIF-1α stabilization has potential as a therapeutic approach against cancer.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Peptídeos e Proteínas de Sinalização Intracelular , Neoplasias Renais , Proteínas Repressoras , Fator A de Crescimento do Endotélio Vascular , Glicólise , Humanos , Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neovascularização Patológica/genética , Proteólise , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína Supressora de Tumor Von Hippel-Lindau/genética , Proteína Supressora de Tumor Von Hippel-Lindau/metabolismo
9.
Biochem Pharmacol ; 197: 114897, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34968487

RESUMO

Acetaminophen (APAP) overdose is one of the leading causes of acute liver failure in the US and other developed countries, the molecular mechanisms of APAP-induced hepatotoxicity remain speculative. PIWI-interacting RNAs (piRNAs), a novel class of small non-coding RNAs, have been identified as epigenetic regulators of transposon silencing, mRNA deadenylation, and elimination. However, the functional role of piRNAs in APAP-induced liver injury remains unclear. In the current study, the piRNA profiles were constructed in HepaRG cells after APAP exposure, and the roles of piR-23210 in regulating nuclear receptors (NRs) expression, metabolizing enzymes expression, and consequently APAP-induced liver injury were systematically investigated. As a result, 57 upregulated piRNAs were identified after APAP exposure, indicating the stress-response characteristic of piRNA molecules. Subsequent in vitro and in vivo experiments proved that piR-23210 is a novel self-protective molecule that targets HNF1A and HNF4A transcripts by interacting with RNA binding protein Nucleolin (NCL), suppresses downstream CYPs (CYP2E1, CYP3A4, and CYP1A2) expression, and protects against APAP-induced liver injury. In conclusion, our findings provided new mechanistic clues revealing potential protective role of a piRNA against the hepatoxicity of APAP.


Assuntos
Acetaminofen/toxicidade , Analgésicos não Narcóticos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Fator 4 Nuclear de Hepatócito/metabolismo , RNA Interferente Pequeno/metabolismo , Animais , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Células HEK293 , Células Hep G2 , Fator 1-alfa Nuclear de Hepatócito/antagonistas & inibidores , Fator 4 Nuclear de Hepatócito/antagonistas & inibidores , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Interferente Pequeno/administração & dosagem
10.
Ecotoxicol Environ Saf ; 228: 113011, 2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34837870

RESUMO

6:2 Chlorinated polyfluorinated ether sulfonate (6:2 Cl-PFESA), an alternative product of perfluorooctane sulfonate (PFOS), has been frequently detected in various environmental, wildlife, and human samples. A few studies revealed the hepatotoxicity of 6:2 Cl-PFESA in animals, but the underlying toxicity mechanisms remain largely unknown. In this study, we investigated the lipid metabolism disorders of 6:2 Cl-PFESA through miRNA-gene interaction mode in Huh-7 cells. Our results showed that 6:2 Cl-PFESA significantly promoted cellular lipid accumulation and increased the expression of Acyl-CoA oxidase 1 (ACOX1), with the lowest effective concentrations (LOECs) of 3 µM. In silico analysis showed that hsa-miR-532-3p is a potential miRNA molecule targeting ACOX1. Fluorescent-based RNA electrophoretic mobility shift assay (FREMSA) and ACOX1-mediated luciferase reporter gene assays showed that hsa-miR-532-3p could directly bind to ACOX1 and inhibit its transcription activity. Besides, 6:2 Cl-PFESA decreased the expression of hsa-miR-532-3p in the PPARα-independent manner. Overexpression of hsa-miR-532-3p promoted 6:2 Cl-PFESA-induced cellular lipid accumulation and decreased the ACOX1 production in Huh-7 cells. Taken together, at human exposure relevant concentrations, 6:2 Cl-PFESA might upregulate the expression levels of ACOX1 through downregulating hsa-miR-532-3p, and disturbed lipid homeostasis in Huh-7 cells, which revealed a novel epigenetic mechanism of 6:2 Cl-PFESA-induced hepatic lipid toxic effects.

11.
Methods Mol Biol ; 2348: 231-242, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34160811

RESUMO

The emerging data indicates that long noncoding RNAs (lncRNAs) are involved in fundamental biological processes, and their deregulation may lead to oncogenesis and other diseases. LncRNA fulfil its biological functions at least in part by interacting with distinctive proteins. Here, we described two methods to identify the direct or indirect interactions between lncRNA and proteins: cross-linking and immunoprecipitation (CLIP) and RNA pull-down assay. CLIP methods enable yield a list of lncRNAs that directly interact target protein in living cells, whereas immunoprecipitation of biotin-labeled RNA (RNA pull-down) assay represents a method for identification of proteins that directly and indirectly bind with a particular target lncRNA of interest.


Assuntos
Imunoprecipitação/métodos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Biotina/metabolismo , Western Blotting , Humanos , Ligação Proteica
12.
Environ Pollut ; 284: 117213, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933780

RESUMO

PM2.5 (particles matter smaller aerodynamic diameter of 2.5 µm) exposure, a major environmental risk factor for the global burden of diseases, is associated with high risks of respiratory diseases. Heme-oxygenase 1 (HMOX1) is one of the major molecular antioxidant defenses to mediate cytoprotective effects against diverse stressors, including PM2.5-induced toxicity; however, the regulatory mechanism of HMOX1 expression still needs to be elucidated. In this study, using PM2.5 as a typical stressor, we explored whether microRNAs (miRNAs) might modulate HMOX1 expression in lung cells. Systematic bioinformatics analysis showed that seven miRNAs have the potentials to target HMOX1 gene. Among these, hsa-miR-760 was identified as the most responsive miRNA to PM2.5 exposure. More importantly, we revealed a "non-conventional" miRNA function in hsa-miR-760 upregulating HMOX1 expression, by targeting the coding region and interacting with YBX1 protein. In addition, we observed that exogenous hsa-miR-760 effectively elevated HMOX1 expression, reduced the reactive oxygen agents (ROS) levels, and rescued the lung cells from PM2.5-induced apoptosis. Our results revealed that hsa-miR-760 might play an important role in protecting lung cells against PM2.5-induced toxicity, by elevating HMOX1 expression, and offered new clues to elucidate the diverse functions of miRNAs.


Assuntos
Heme Oxigenase-1 , MicroRNAs , Apoptose , Células Epiteliais , Heme , Heme Oxigenase-1/genética , Humanos , MicroRNAs/genética , Material Particulado/toxicidade
13.
Biochem Pharmacol ; 188: 114582, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33895159

RESUMO

Cytochrome P450 (CYP) enzymes play critical roles in drug transformation, and the total CYPs are markedly decreased in alcoholic hepatitis (AH), a fatal alcoholic liver disease. miRNAs are endogenous small noncoding RNAs that regulate many essential biological processes. Knowledge concerning miRNA regulation of CYPs in AH disease is limited. Here we presented the changes of key CYPs in liver samples of AH patients retrieved from GEO database, performed in silico prediction of miRNAs potentially targeting the dysregulated CYP transcripts, and deciphered a novel mechanism underlying miRNA mediated CYPs expression in liver cells. Nine miRNAs were predicted to regulate CYP1A2, CYP2A6, CYP2B6, CYP2C8, CYP2C19, CYP2J2, and CYP3A4, among which hsa-miR-148a-3p was selected as a case study. Biochemical and molecular evidences demonstrated that miR-148a promoted CYP2B6 expression by increasing mRNA stability via directly binding to the 3'UTR sequence, and that this positive posttranscriptional regulation was AGO1/2-dependent. Further, luciferase reporter gene assay and RNA secondary structure analysis illustrated that the seedless target site, not the seed target site, controlled miR-148a-mediated CYP2B6 upregulation. Moreover, we identified HNF4A as a liver-specific transcription factor of MIR-148A through EMSA and chromatin immunoprecipitation experiments. In conclusion, ethanol downregulated miR-148a in hepatocytes through HNF4A regulation, which eventually decreased CYP2B6 expression. Our finding will benefit the understanding of dysregulated drug metabolism in AH patients and highlight an unconventional mechanism for epigenetic regulation of CYP gene expression.


Assuntos
Citocromo P-450 CYP2B6/metabolismo , Regulação para Baixo/fisiologia , Epigênese Genética/fisiologia , Hepatite Alcoólica/metabolismo , MicroRNAs/metabolismo , Citocromo P-450 CYP2B6/genética , Regulação para Baixo/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Etanol/toxicidade , Células HEK293 , Células Hep G2 , Hepatite Alcoólica/genética , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , MicroRNAs/genética
15.
PLoS Biol ; 18(3): e3000666, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32203529

RESUMO

Ataxia-telangiectasia mutated (ATM) is an apical kinase of the DNA damage response following DNA double-strand breaks (DSBs); however, the mechanisms of ATM activation are not completely understood. Long noncoding RNAs (lncRNAs) are a class of regulatory molecules whose significant roles in DNA damage response have started to emerge. However, how lncRNA regulates ATM activity remains unknown. Here, we identify an inhibitor of ATM activation, lncRNA HITT (HIF-1α inhibitor at translation level). Mechanistically, HITT directly interacts with ATM at the HEAT repeat domain, blocking MRE11-RAD50-NBS1 complex-dependent ATM recruitment, leading to restrained homologous recombination repair and enhanced chemosensitization. Following DSBs, HITT is elevated mainly by the activation of Early Growth Response 1 (EGR1), resulting in retarded and restricted ATM activation. A reverse association between HITT and ATM activity was also detected in human colon cancer tissues. Furthermore, HITTs sensitize DNA damaging agent-induced cell death both in vitro and in vivo. These findings connect lncRNA directly to ATM activity regulation and reveal potential roles for HITT in sensitizing cancers to genotoxic treatment.


Assuntos
Antineoplásicos/farmacologia , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Dano ao DNA , RNA Longo não Codificante/metabolismo , Reparo de DNA por Recombinação/genética , Hidrolases Anidrido Ácido/metabolismo , Animais , Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos dos fármacos , Proteínas de Ligação a DNA/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Células HCT116 , Células HeLa , Humanos , Proteína Homóloga a MRE11/metabolismo , Camundongos , Camundongos Nus , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação , Ligação Proteica , RNA Longo não Codificante/genética , Transcrição Gênica/efeitos dos fármacos
16.
J Biol Chem ; 295(12): 4049-4063, 2020 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-32005663

RESUMO

Cellular senescence is terminal cell cycle arrest that represents a prominent response to numerous anticancer therapies. The oncogene inhibitor of the apoptosis-stimulating protein of p53 (iASPP) plays essential roles in regulating cellular drug response by inhibiting apoptosis. However, whether or not it regulates chemotherapy-induced senescence (TIS) in cancer cells remains unclear. Here, using two commonly used cancer cell lines, HCT 116 and MCF-7, along with the xenograft mouse model, we found that iASPP inhibits senescence and also influences the senescence-associated secretory phenotype (SASP), which confers anticancer drug resistance independently of apoptosis. Mechanistically, iASPP is transcriptionally elevated by the p65 subunit of NF-κB in senescent cells and then translocates to the nucleus, where it binds p53 and NF-κBp65. This binding inhibits their transcriptional activities toward p21 and the key SASP factors interleukin (IL)-6/IL-8, respectively, and subsequently prevents senescence. Of note, we observed that iASPP knockdown sensitizes apoptosis-resistant cancers to doxorubicin treatment by promoting senescence both in vitro and in vivo We conclude that iASPP integrates the NF-κBp65- and p53-signaling pathways and thereby regulates cell fate in response to TIS, leading to chemotherapy resistance. These findings suggest that iASPP inhibition might be a strategy that could help restore senescence in cancer cells and improve outcomes of chemotherapy-based therapies.


Assuntos
Antibióticos Antineoplásicos/farmacologia , Senescência Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Repressoras/metabolismo , Animais , Linhagem Celular Tumoral , Dano ao DNA/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/genética , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Ligação Proteica , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Fator de Transcrição RelA/genética , Fator de Transcrição RelA/metabolismo , Ativação Transcricional , Transplante Heterólogo , Proteína Supressora de Tumor p53/metabolismo
17.
ACS Appl Mater Interfaces ; 12(1): 1913-1923, 2020 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-31802656

RESUMO

Mechanical phenotyping of complex cellular structures gives insight into the process and function of mechanotransduction in biological systems. Several methods have been developed to characterize intracellular elastic moduli, while direct viscoelastic characterization of intracellular structures is still challenging. Here, we develop a needle tip viscoelastic spectroscopy method to probe multidimensional mechanical phenotyping of intracellular structures during a mini-invasive penetrating process. Viscoelastic spectroscopy is determined by magnetically driven resonant vibration (about 15 kHz) with a tiny amplitude. It not only detects the unique dynamic stiffness, damping, and loss tangent of the cell membrane-cytoskeleton and nucleus-nuclear lamina but also bridges viscoelastic parameters between the mitotic phase and interphase. Self-defined dynamic mechanical ratios of these two phases can identify two malignant cervical cancer cell lines (HeLa-HPV18+, SiHa-HPV16+) whose membrane or nucleus elastic moduli are indistinguishable. This technique provides a quantitative method for studying mechanosensation, mechanotransduction, and mechanoresponse of intracellular structures from a dynamic mechanical perspective. This technique has the potential to become a reliable quantitative measurement method for dynamic mechanical studies of intracellular structures.


Assuntos
Permeabilidade da Membrana Celular/efeitos da radiação , Mecanotransdução Celular/genética , Biologia de Sistemas , Substâncias Viscoelásticas/química , Células HeLa/ultraestrutura , Papillomavirus Humano 16/patogenicidade , Papillomavirus Humano 18/patogenicidade , Humanos , Mecanotransdução Celular/efeitos da radiação , Análise Espectral , Vibração/efeitos adversos , Substâncias Viscoelásticas/efeitos adversos
18.
Cell Death Differ ; 27(4): 1431-1446, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31700144

RESUMO

Increasing evidence has indicated that long noncoding RNAs (lncRNAs) play important roles in human diseases, including cancer; however, only a few of them have been experimentally validated and functionally annotated. Here, we identify a novel lncRNA that we term HITT (HIF-1α inhibitor at translation level). HITT is commonly decreased in multiple human cancers. Decreased HITT is associated with advanced stages of colon cancer. Restoration of the expression of HITT in cancer cells inhibits angiogenesis and tumor growth in vivo in an HIF-1α-dependent manner. Further study reveals that HITT inhibits HIF-1α expression, mainly by interfering with its translation. Mechanically, HITT titrates away YB-1 from the 5'-UTR of HIF-1α mRNA via a high-stringency YB-1-binding motif. The reverse correlation between HITT and HIF-1α expression is further validated in human colon cancer tissues. Moreover, HITT is one of the most altered lncRNAs upon the hypoxic switch and HITT downregulation is required for hypoxia-induced HIF-1α expression. We further demonstrate that HITT and HIF-1α form an autoregulatory feedback loop where HIF-1α destabilizes HITT by inducing MiR-205, which directly targets HITT for degradation. Together, these results expand our understanding of the cancer-associated functions of lncRNAs, highlighting the HITT-HIF-1α axis as constituting an additional layer of regulation of angiogenesis and tumor growth, with potential implications for therapeutic targeting.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Neovascularização Patológica/genética , RNA Longo não Codificante/metabolismo , Animais , Sequência de Bases , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação para Baixo/genética , Retroalimentação Fisiológica , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Camundongos Nus , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/patologia , Biossíntese de Proteínas , Estabilidade de RNA/genética , RNA Longo não Codificante/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo
19.
Cancer Lett ; 432: 121-131, 2018 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-29890207

RESUMO

Renal cell carcinoma (RCC) is highly resistant to chemotherapies. The lack of efficacious treatment for metastatic RCC has led to a poor 5-year survival rate. Here, we found that Apoptosis-stimulating protein of p53-2(ASPP2) was frequently decreased in primary RCC tissues in comparison with non-tumoural kidney controls. Decreased ASPP2 was correlated with high grades and poor outcomes of RCC. Further studies revealed that ASPP2 downregulation promoted EMT and increased resistance to 5-Fluorouracil (5-FU)-induced apoptosis. To this end, the regulatory mechanisms of ASPP2 were further explored. Our data revealed that ASPP2 was inhibited by histone deacetylatlase 1 (HDAC1), which acted by preventing the binding between transcription factor (E2F1) and the ASPP2 promoter. Of particular importance, HDAC1 inhibitor vorinostat restored ASPP2 transcription and produced a synergistic effect with 5-FU in elevating ASPP2, promoting apoptosis and inhibiting EMT in both in vitro and in vivo RCC models. In summary, our data not only highlight an important role of ASPP2 in RCC progression and drug resistance, but also reveal new regulatory mechanisms of ASPP2, which provides important insights into novel treatment strategies by targeting ASPP2 dysregulation in RCC.


Assuntos
Proteínas Reguladoras de Apoptose/genética , Carcinoma de Células Renais/patologia , Movimento Celular , Resistencia a Medicamentos Antineoplásicos , Epigênese Genética , Fluoruracila/farmacologia , Histona Desacetilase 1/metabolismo , Animais , Antimetabólitos Antineoplásicos , Apoptose , Proteínas Reguladoras de Apoptose/metabolismo , Carcinoma Papilar/tratamento farmacológico , Carcinoma Papilar/genética , Carcinoma Papilar/metabolismo , Carcinoma Papilar/patologia , Carcinoma de Células Renais/tratamento farmacológico , Carcinoma de Células Renais/genética , Carcinoma de Células Renais/metabolismo , Estudos de Casos e Controles , Proliferação de Células , Feminino , Regulação Neoplásica da Expressão Gênica , Histona Desacetilase 1/genética , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Neoplasias Renais/patologia , Masculino , Camundongos , Camundongos Nus , Pessoa de Meia-Idade , Prognóstico , Células Tumorais Cultivadas , Cicatrização , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Eur J Pharm Biopharm ; 127: 177-182, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29462688

RESUMO

As promising drug delivery vehicles, previous investigations of liposomes as carriers are primarily focused on insertion and modification of lipid membrane interfaces. The utility of the inner core seems to be overlooked. Herein, we developed pH-sensitive liposomes (PSLs) containing an aqueous two phase system (ATPS), and intriguingly discovered their hierarchical release under acidic stimuli. ATPS containing two polymers (poly(ethylene glycol) (PEG) and dextran) is homogeneous above phase transition temperature when producing ATPS-liposomes, and separated into PEG-rich phase and dextran-rich phase after cooling down to room temperature. The overall release time of ATPS-liposomes is divided into two stages and prolonged compared to simple aqueous liposomes. The unique release profile is due to the disproportional distribution of drugs in two phases. Doxorubicin (DOX) is loaded in the ATPS-liposomes, and their half maximum inhibition concentration on HeLa cells is 0.018 µmol L-1, which means 27.5 fold increase in inhibition efficiency over free DOX.


Assuntos
Doxorrubicina/metabolismo , Liberação Controlada de Fármacos/efeitos dos fármacos , Lipossomos/química , Água/química , Linhagem Celular Tumoral , Dextranos/química , Doxorrubicina/química , Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Células HeLa , Humanos , Concentração de Íons de Hidrogênio , Lipídeos de Membrana/química , Polietilenoglicóis/química , Polímeros/química , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA