RESUMO
BACKGROUND: Tibial avulsion fractures of the posterior cruciate ligament (PCL) are challenging to treat and compromise knee stability and function. Traditional open surgery often requires extensive soft tissue dissection, which may increase the risk of morbidity. In response to these concerns, arthroscopic techniques have been evolving. The aim of this study was to introduce a modified arthroscopic technique utilizing an M-shaped suture fixation method for the treatment of tibial avulsion fractures of the PCL and to evaluate its outcomes through a case series. AIM: To evaluate the effects of arthroscopic M-shaped suture fixation on treating tibia avulsion fractures of the PCL. METHODS: We developed a modified arthroscopic M-shaped suture fixation technique for tibia avulsion fractures of the PCL. This case series included 18 patients who underwent the procedure between January 2021 and December 2022. The patients were assessed for range of motion (ROM), Lysholm score and International knee documentation committee (IKDC) score. Postoperative complications were also recorded. RESULTS: The patients were followed for a mean of 13.83 ± 2.33 months. All patients showed radiographic union. At the final follow-up, all patients had full ROM and a negative posterior drawer test. The mean Lysholm score significantly improved from 45.28 ± 8.92 preoperatively to 91.83 ± 4.18 at the final follow-up (P < 0.001), and the mean IKDC score improved from 41.98 ± 6.06 preoperatively to 90.89 ± 5.32 at the final follow-up (P < 0.001). CONCLUSION: The modified arthroscopic M-shaped suture fixation technique is a reliable and effective treatment for tibia avulsion fractures of the PCL, with excellent fracture healing and functional recovery.
RESUMO
As a highly invasive carcinoma, esophageal cancer (EC) was the eighth most prevalent malignancy and the sixth leading cause of cancer-related death worldwide in 2020. Esophageal squamous cell carcinoma (ESCC) is the major histological subtype of EC, and its incidence and mortality rates are decreasing globally. Due to the lack of specific early symptoms, ESCC patients are usually diagnosed with advanced-stage disease with a poor prognosis, and the incidence and mortality rates are still high in many countries, especially in China. Therefore, enormous challenges still exist in the management of ESCC, and novel strategies are urgently needed to further decrease the incidence and mortality rates of ESCC. Although the key molecular mechanisms underlying ESCC pathogenesis have not been fully elucidated, certain promising biomarkers are being investigated to facilitate clinical decision-making. With the advent and advancement of high-throughput technologies, such as genomics, proteomics and metabolomics, valuable biomarkers with high sensitivity, specificity and stability could be identified for ESCC. Herein, we aimed to determine the epidemiological features of ESCC in different regions of the world, especially in China, and focused on novel molecular biomarkers associated with ESCC screening, early diagnosis and prognosis prediction.
Assuntos
Biomarcadores Tumorais , Detecção Precoce de Câncer , Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Humanos , Carcinoma de Células Escamosas do Esôfago/epidemiologia , Carcinoma de Células Escamosas do Esôfago/diagnóstico , Carcinoma de Células Escamosas do Esôfago/mortalidade , Carcinoma de Células Escamosas do Esôfago/patologia , Neoplasias Esofágicas/epidemiologia , Neoplasias Esofágicas/diagnóstico , Neoplasias Esofágicas/mortalidade , Neoplasias Esofágicas/patologia , Prognóstico , Biomarcadores Tumorais/análise , Biomarcadores Tumorais/genética , Detecção Precoce de Câncer/métodos , China/epidemiologia , Incidência , Fatores de RiscoRESUMO
Photodynamic therapy (PDT) has been widely applied in cancer treatment due to minimal invasion, negligible side effects and specific tumor ablation. However, the treatment efficiency has been hindered by hypoxia in solid tumors, hydrophobic photosensitizers and their real time tracking. In this paper, we constructed an intelligent and biocompatible bovine serum albumin (BSA)-Ce6-Si QDs-MnO2 (BCSM NPs) nanocomplex as a pH/H2O2 responsive photosensitizer nanocarrier to modulate tumor hypoxia for fluorescence imaging-guided efficient PDT. This versatile nanosystem not only enhanced the loading capacity of the photosensitizer and the formation of cytotoxic singlet oxygen (1O2) owing to the intelligent production of oxygen catalyzed by MnO2 from the endogenous H2O2, but also performed as a dual functional fluorescence and Magnetic Resonance imaging (MRI) probe. In vivo experiments in nude mice further confirmed that BCSM NPs significantly inhibited the growth of HeLa bearing-tumors compared to free Ce6. The results highlight the great potentail of multifunctional BCSM NPs for in vivo imaging as well as enhancing the photodynamic therapy efficiency.