Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Ther Adv Med Oncol ; 16: 17588359241231252, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38617024

RESUMO

Background: Patients with hepatocellular carcinoma (HCC) with portal vein tumor thrombus (PVTT) present a poor prognosis. Current systemic therapies offer limited benefits. Hepatic artery infusion chemotherapy (HAIC) is a local regional treatment for advanced HCC, particularly in selected patients such as patients with PVTT or high intrahepatic tumor burden. Objectives: The purpose of this study is to retrospectively evaluate the efficacy and safety of HAIC combined with anti-PD-1 immunotherapy for HCC patients with PVTT, and explore factors related to survival prognosis, providing clues for treatment decisions for HCC patients. Design: This is a single-center retrospective study conducted over 2 years on consecutive PVTT patients receiving HAIC combined anti-PD-1 antibodies. Methods: The primary endpoint was overall survival (OS). Univariate and multivariate analyses were performed to identify prognostic factors affecting OS. Treatment-associated adverse events were evaluated as well. Results: A total of 119 patients were analyzed. The median OS and PFS were 14.9 months and 6.9 months. A total of 31.1% of grade 3-4 adverse events were reported, with elevated transaminase and total bilirubin being the most common. The independent variables correlated with survival include treatment-related alpha-fetoprotein (AFP) response, the presence of extrahepatic organ metastasis, absolute value of platelet (PLT), neutrophil-to-lymphocyte ratio, and combined usage of tyrosine kinase inhibitors (TKIs). Conclusion: In HCC patients with PVTT, combination therapy with HAIC and anti-PD-1 antibodies might be a promising therapy. The efficacy and safety of this combination protocol on patients with HCC complicated by PVTT warrants further investigation prospectively, especially in combination with TKIs.

2.
Chemistry ; 29(56): e202301609, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37486704

RESUMO

We herein reported the design and synthesis of a ferrocene-based tetradentate ligand that is featured with modular synthesis and rigid skeleton. Its iron(II) complex facilitates asymmetric direct hydrogenation of ketones without the participation of extra strong-field ligand such as CO and isocyanide. Hydride donor lithium aluminum hydride (LAH) converted non-reactive Fe(II) species to reactive Fe(II) hydride species. With this catalyst, various chiral alcohols including the intermediate for montelukast could be prepared with satisfactory yields and enantioinduction.

3.
Bioconjug Chem ; 34(7): 1327-1335, 2023 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-37348106

RESUMO

Hypoxia of tumor microenvironments is a major factor restricting tumor treatment, which causes progression and metastasis of tumor. The hypoxic tumor microenvironment not only makes the traditional treatment method, such as chemotherapy, ineffective but also hinders the O2-dependent treatments, such as photodynamic therapy (PDT). Recently, stimuli-responsive nitric oxide (NO) donors have attracted extensive research interest in hypoxic tumor treatment because the NO release process is O2-independent. Besides, NO can distribute more uniformly than drug molecules and more widely than the PDT-generated active species due to its strong diffusion ability (200 µm in cells) and long lifetime (2 s in cells). Encouraged by these advantages, a near infrared light-triggered NO release polymeric nanoplatform (P1-CapNO NPs) was constructed by a thermally sensitive NO release unit, a photothermal unit, and a hydrophilic polyethylene glycol unit. P1-CapNO NPs possess strong absorption in the NIR region (the wavelength of maximal absorption peak was 790 nm with a molar absorption coefficient of 2.4 × 105 M-1 cm-1), great photothermal conversion efficiency (23.8%), and NO release ability (the released NO concentration can reach 1.3 µM) under 808 nm laser irradiation. Owing to these advantages, the great synergistic antitumor effect can be achieved in vitro and in vivo even under the hypoxic environment. The synergistic therapeutic strategy in this work could bypass the obstacles caused by hypoxia in tumor treatment and provide a reference for building a NO-involved therapeutic platform.


Assuntos
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Óxido Nítrico , Fototerapia , Neoplasias/tratamento farmacológico , Raios Infravermelhos , Polímeros/uso terapêutico , Linhagem Celular Tumoral , Nanopartículas/uso terapêutico , Microambiente Tumoral
4.
Life Sci ; 308: 120958, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36108767

RESUMO

Neurodegenerative diseases are one of the major complications of type 1 diabetes mellitus (T1DM). The effect of insulin monotherapy on controlling blood glucose and neurodegeneration associated with diabetes is unsatisfactory. It is revealed that oxidative stress is a key element in T1DM. Therefore, N-acetylcysteine (NAC) was used together with insulin to investigate the therapeutic effect on neuronal damage in T1DM in this study. A total of 40 beagles were randomly divided into 5 groups (control group, DM group, insulin monotherapy group, NAC combined with insulin group, and NAC monotherapy group) to explore the effects of NAC on alleviating the oxidative damage in cerebrum. Our results showed that the contents of H2O2, 8-OHdg and MDA were apparently increased in DM group, while DNA and lipid oxidative damage was alleviated by the treatment of NAC and insulin. Histopathology revealed the sparse of neurofibrils and vacuolar degeneration in DM group. Additionally, compared with the control group, the mRNA expression levels of HO-1, nqo1, GCLC and GSTM1 were significantly decreased in DM group, while the opposite trend could be shown under NAC combined with insulin treatment. Meanwhile, the tight junction proteins of ZO-1, occludin and Claudin-1 were up-regulated with the treatment of NAC combined with insulin. Additionally, NAC further alleviated oxidative damage by enhancing the activity of GSH, Trx and TrxR and reducing the activity of catalase, GSSG and Grx to maintain redox homeostasis. These results demonstrated that NAC combined with insulin exerted protective effects against T1DM-induced cerebral injury via maintaining cerebral redox homeostasis.


Assuntos
Cérebro , Diabetes Mellitus Tipo 1 , Acetilcisteína/uso terapêutico , Animais , Antioxidantes/farmacologia , Glicemia , Catalase/metabolismo , Cérebro/metabolismo , Claudina-1/metabolismo , Diabetes Mellitus Tipo 1/complicações , Diabetes Mellitus Tipo 1/tratamento farmacológico , Cães , Dissulfeto de Glutationa/metabolismo , Dissulfeto de Glutationa/farmacologia , Homeostase , Peróxido de Hidrogênio/farmacologia , Insulina/metabolismo , Lipídeos/farmacologia , Ocludina/metabolismo , Oxirredução , Estresse Oxidativo , RNA Mensageiro/metabolismo
5.
Biomater Sci ; 10(6): 1562-1574, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-35175252

RESUMO

With the fast advent of two-dimensional (2D) MXenes, several therapeutic paradigms based on 2D MXenes flourish, but a generic strategy for MXene functionalization to achieve theranostic functionalities and desirable performance is still lacking. In this work, we report a facile and efficient stepwise surface-functionalization strategy to achieve distinct tumor microenvironment (TME)-responsive T1 and T2 magnetic resonance (MR) imaging-guided photothermal breast-cancer hyperthermia in the second near-infrared (NIR-II) biowindow. This approach is based on the stepwise growth of superparamagnetic Fe3O4 and paramagnetic MnOx nanocomponents onto the large surface of ultrathin 2D niobium carbide (Nb2C) MXene nanosheets (Fe3O4/MnOx-Nb2C) by making full use of the redox status/chemistry of the 2D MXene surface. Such a surface-nanoparticle engineering strategy endows Fe3O4/MnOx-Nb2C composite nanosheets with a series of properties that include high photothermal-conversion efficiency in the NIR-II biowindow (1064 nm, η 30.9%) for effective photothermal tumor eradication without further reoccurrence. It also allows TME-responsive T1- and T2-weighted MR imaging and high biocompatibility for guaranteeing further potential clinical transformation. This work not only makes the efficient diagnostic T1- and T2-weighted MR imaging-guided photonic hyperthermia of breast cancer possible, but also broadens the biomedical applications of MXene-based nanoplatforms by developing novel surface-engineering strategies to construct 2D Nb2C MXene-based composite multifunctional nanoplatforms.


Assuntos
Neoplasias da Mama , Hipertermia Induzida , Nanopartículas , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Feminino , Humanos , Hipertermia Induzida/métodos , Imageamento por Ressonância Magnética , Oxirredução , Fototerapia/métodos , Nanomedicina Teranóstica/métodos , Microambiente Tumoral
6.
Bioconjug Chem ; 32(8): 1864-1874, 2021 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-34236842

RESUMO

Hypoxia is a significant characteristic of tumors, which causes aggressive tumor growth and strong therapy resistance. Inspired by the improved therapeutic efficacy of synergistic treatment, herein, an all-in-one polymeric therapeutic agent was developed, which could overcome tumor hypoxia through multiple pathways. Multiple therapeutic agents were incorporated into the polymer, including the singlet oxygen (1O2) carrier unit to store cytotoxic reactive oxygen species, the photosensitized and photothermal unit to trigger the capture and release of 1O2, and the hypoxia-responsive prodrug unit to maintain a long-term tumor inhibition. In addition, the hydrophilic polyethylene glycol unit was also introduced to improve water-solubility and biocompatibility. Importantly, this study achieved the capture and controllable release of 1O2 just by regulating the power of an 808 nm laser for the first time, which is more convenient and flexible than previous works. As expected, the as-prepared copolymer displayed reduced oxygen dependence, accompanied with promising synergistic anti-tumor and anti-recurrence efficacies under hypoxic in vitro and in vivo environments. Consequently, this synergistic anti-hypoxia strategy may open up new avenues in the design of all-in-one therapeutic platforms for promoting the development of accurate, efficient, and long-acting treatment in clinical studies.


Assuntos
Antineoplásicos/uso terapêutico , Neoplasias/terapia , Oxigênio/metabolismo , Fotoquimioterapia , Polímeros/uso terapêutico , Animais , Sobrevivência Celular , Células HeLa , Humanos , Camundongos , Camundongos Nus , Polímeros/química , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Nanomedicine ; 32: 102326, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33166666

RESUMO

Drug release systems co-encapusulated with ammonium bicarbonate (ABC) could facilitate drug release upon acidic or thermal stimulations to improve therapeutic effect. However, it is not easy to control drug release rate, owing to relative stable temperature and acidic condition in living body. Besides, the additional loaded ABC reduces drug loading capacity. Herein, a near-infrared light triggered rapid drug release system with high loading capacity was developed by loading ABC and doxorubicin into yolk-shell structured Au nanorods@mesoporous silica. Gas bubbles were generated from the thermolysis of ABC utilizing photothermal effect of Au nanorods to extrude drug molecules. The mesoporous silica shell was finally destroyed along with growing bubbles, resulting in burst drug release. The photothermal therapeutic effect of Au nanorods also contributed in tumor treatment. The excellent therapeutic effect was demonstrated in cancer cells and tumor-bearing mice, which provides a new reference to achieve controllable rapid drug release in cancer medicine.


Assuntos
Liberação Controlada de Fármacos , Gema de Ovo/química , Gases/química , Ouro/química , Raios Infravermelhos , Nanotubos/química , Animais , Bicarbonatos/química , Morte Celular/efeitos dos fármacos , Doxorrubicina/farmacologia , Feminino , Células HeLa , Humanos , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanotubos/ultraestrutura , Porosidade , Dióxido de Silício , Temperatura
8.
Inorg Chem ; 59(24): 17826-17833, 2020 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-33296600

RESUMO

Pt(II) photosensitizers are emerging as novel Pt anticancer agents for cancer photodynamic therapy (PDT) to avoid uncontrollable toxicity of cisplatin. However, the application of Pt(II) photosensitizers is limited by tumor hypoxia and the poor penetration depth of excitation light. To overcome these drawbacks, exploiting the next generation of Pt anticancer agents is of urgent need. According to theoretical calculations, novel near-infrared (NIR)-absorbing Pt(II)-chelated azadipyrromethene dyes (PtDP-X, where X = N, C, and S) were designed. Importantly, spin-orbit coupling of the Pt atom could promote the intersystem crossing of a singlet-to-triplet transition for converting oxygen to singlet oxygen (1O2), and the azadipyrromethene skeleton could provide a strong photothermal effect. As expected, PtDP-X exhibited intense NIR absorption and synergistic PDT and photothermal effects with low dark cytotoxicity. Furthermore, water-soluble and biocompatible PtDP-N nanoparticles (PtDP-N NPs) were prepared that achieved effective tumor cell elimination with low side effects under 730 nm light irradiation in vitro and in vivo. This pioneering work could push the exploitation of NIR-absorbing metal-chelated azadipyrromethene dyes, so as to promote the positive evolution of phototherapy agents.


Assuntos
Fármacos Fotossensibilizantes/síntese química , Compostos de Platina/síntese química , Compostos de Platina/farmacologia , Porfobilinogênio/análogos & derivados , Furanos , Células HeLa , Humanos , Raios Infravermelhos , Estrutura Molecular , Fármacos Fotossensibilizantes/química , Fototerapia , Compostos de Platina/química , Porfobilinogênio/química , Espectrofotometria Infravermelho
9.
Biomater Sci ; 8(24): 7145-7153, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-33151202

RESUMO

Photothermal therapy (PTT) is a cure that can inhibit tumor growth effectively and even remove tumor via photo-induced local hyperthermia. However, its shortcoming lies in the fact that excessive heat is most likely to lead to thermal injury at the epidermis of the tumor region and even the area of the surrounding tissue. As a consequence, the exposure of the thermally-induced wound would result in the increased risk of bacterial infection. To date, few PTT platforms have attached importance to the prevention of bacterial infection at the photothermally-induced wound. Herein, we reported a thermally-sensitive liposome nanosystem (Lipo-B-TCCA) containing aza-BODIPY and trichloroisocyanuric acid, which is conductive for the PTT of tumor and the prevention of bacteria. It is observed that the designed nanoplatform could exhibit remarkable stability, high photothermal conversion efficiency (31.4%), and efficient HClO-releasing ability in vitro and in vivo. Moreover, Lipo-B-TCCA is able to eliminate tumor efficiently via near infrared fluorescence and photothermal imaging guidance with low side effects. Most importantly, Lipo-B-TCCA could prevent the growth of S. aureus in the thermal wound during the process of PTT. The imaging-guided photothermally-induced HClO-releasing PTT nanoplatform for tumor ablation and bacterial prevention shows excellent performance and great potential for biomedical applications.


Assuntos
Hipertermia Induzida , Nanopartículas , Neoplasias , Humanos , Neoplasias/terapia , Fototerapia , Staphylococcus aureus
10.
J Mater Chem B ; 8(33): 7356-7364, 2020 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-32648568

RESUMO

The preferable photoconversion tunability of conjugated polymers (CPs) is of great interest in cancer phototherapy. However, very few molecular design strategies have been developed for achieving CPs with highly efficient photoconversion performance. Herein, a rational design of near-infrared (NIR) Pt-acetylide conjugated polymer CP3 with highly efficient photoconversion behaviors for synergistic photodynamic therapy (PDT) and photothermal therapy (PTT) was demonstrated. CP3 containing boron dipyrromethene (BDP) units displayed intense absorption peaks in the NIR region, which were red-shifted approximately 60 nm compared to the corresponding small-molecule precursor of BDP. Compared with control polymers CP1 and CP2, after the introduction of Pt into CP3, the triplet state, which benefits the generation of reactive oxygen species for photodynamic therapy, was identified clearly in both CP3 and the prepared CP3 nanoparticles (CP3-NPs) by ultrafast femtosecond transient absorption (fs-TA) spectroscopy. Notably, different from the traditional nonradiative decay channel with lifetime of 1.1 ps in CP3, CP3-NPs possess an additional nonradiative decay channel with lifetime of 10 ps, both of which contribute to the superior photothermal conversion effect upon 808 nm irrradiation. All these photoconversion performances lead to excellent tumor ablation. This study elucidates the excited-state dynamics in Pt-acetylide CPs, which provide an insightful understanding and valuable guidelines for the future design of high-performance theranostic agents based on CPs for synergistic cancer phototherapy.


Assuntos
Desenho de Fármacos , Raios Infravermelhos , Técnicas Fotoacústicas , Fototerapia/métodos , Platina/química , Polímeros/química , Acetileno/química , Células HeLa , Humanos , Nanopartículas/química
11.
Chem Sci ; 10(39): 9091-9098, 2019 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-31827751

RESUMO

The inherent hypoxic environment in tumors severely resists the efficacy of photodynamic therapy. To address this problem, herein, the strategy of using oxygen self-sufficient liposomes (denoted as CaO2/B1/NH4HCO3 lipo), which contained aza-BODIPY dye (B1) and CaO2 nanoparticles in the hydrophobic layer and NH4HCO3 in the hydrophilic cavity, was presented to overcome hypoxia-associated photodynamic resistance. Under near-infrared (NIR) irradiation, NIR-absorbable B1 was activated to induce hyperthermia and further triggered the decomposition of NH4HCO3. Subsequently, with the aid of NH4HCO3 and CaO2 nanoparticles, oxygen was rapidly and self-sufficiently generated, during which clean by-products were produced. Furthermore, the increased amount of oxygen promoted the singlet oxygen production in the presence of B1, which served as a photosensitizer because of the heavy atom effect. The oxygen self-sufficient system improved the anticancer efficiency and alleviated the hypoxic environment in vivo, which demonstrated a valuable attempt to regulate intratumoral hypoxia and overcome the limitation of current photodynamic therapy systems. To our knowledge, this highlights the first example of using NIR light to activate CaO2 nanoparticle-containing liposomes for the modulation of the hypoxic environment in tumors.

12.
Quant Imaging Med Surg ; 9(9): 1566-1578, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31667142

RESUMO

BACKGROUND: To investigate the value of diffusion kurtosis imaging (DKI) and diffusion-weighted imaging (DWI) with a stretched exponential model (SEM) in the evaluation of tumor heterogeneity in an orthotopic hepatocellular carcinoma (HCC) xenograft model. METHODS: Thirty orthotopic HCC xenograft nude mice models were established and randomly divided into two groups, the sorafenib induction group (n=15) and control group (n=15). Every mouse in each group underwent MRI with DKI and SEM on a 1.5T MR scanner at 7, 14, and 21 days after sorafenib intervention. DKI and SEM parameters including mean kurtosis (MK), mean diffusivity (MD), α, and distributed diffusion coefficient (DDC) were measured, calculated, and compared between the two groups and among different time points. Sequential correlations between histopathological results including necrotic fraction (NF), micro-vessel density (MVD), Ki-67 index, standard deviation (SD), and kurtosis from hematoxylin-eosin staining, and DKI and SEM parameters were analyzed. RESULTS: MK, MD, and DDC of HCC in the sorafenib induction group were significantly higher than those in the control group at each time point (P<0.05), while α was significantly lower (P<0.05). Significantly positive correlations were found between MK and NF (r=0.693, P=0.010), SD (r =0.785, P=0.003), kurtosis (r=0.779, P=0.003), between MD and NF (r=0.794, P=0.003), SD (r=0.629, P=0.020), kurtosis (r=0.645, P=0.018), and between DDC and NF (r=0.800, P=0.003), SD (r=0.636, P=0.020), kurtosis (r=0.664, P=0.016), and significantly negative correlations were observed between α and NF (r=-0.704, P=0.009), SD (r=-0.754, P=0.003), and kurtosis (r=-0.792, P=0.003) in the sorafenib induction group. CONCLUSIONS: DKI and SEM parameters may be potentially useful for evaluating intratumoral heterogeneity in HCC.

13.
Research (Wash D C) ; 2019: 9269081, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31549095

RESUMO

Intratumoral hypoxia extremely limits the clinic applications of photodynamic therapy (PDT). Endoperoxides allow thermally releasing singlet oxygen (1O2) in a defined quantity and offer promising opportunities for oxygen-independent PDT treatment of hypoxic tumors. However, previous composite systems by combining endoperoxides with photothermal reagents may result in unpredicted side effects and potential harmful impacts during therapy in vivo. Herein, we de novo design an all-in-one polymer carrier, which can photothermally release 1O2. The strategy has been demonstrated to effectively enhance the production of 1O2 and realize the photodamage in vitro, especially in hypoxic environment. Additionally, the polymer carrier accumulates into tumor after intravenous injection via the enhanced permeation and retention effects and accelerates the oxygen-independent generation of 1O2 in tumors. The oxidative damage results in good inhibitory effect on tumor growth. Realization of the strategy in vivo paves a new way to construct photothermal-triggered oxygen-independent therapeutic platform for clinical applications.

14.
ACS Nano ; 13(10): 12206-12218, 2019 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-31536322

RESUMO

The rational design and fabrication of promising electrodes with prominent energy storage property and conversion performance is crucial for supercapacitors and electrocatalysis. Herein, potato chip-like cobalt nickel-layered double hydroxide@polypyrrole-cotton pad (CoNi-LDH@PCPs) composite was synthesized by in situ polymerization, which was coupled with facile solution reaction and ion-exchange etching process. An interesting potato chip-like structure can effectively expedite the kinetics of the electrode reactions, while the three-dimensional PCPs texture affords efficient pathways for charge transport, and the voids between adjacent fibers are thoroughly accessible for electrolytes and bubble evolution. When evaluated as a positive electrode for wearable supercapattery, the hierarchical CoNi-LDH@PCPs electrode displayed high specific capacity and excellent flexibility. As an oxygen evolution reaction catalyst, this PCP-based electrode also reveals the lowest overpotential of 350 mV at 10 mA cm-2 and a Tafel slope of ∼58 mV dec-1. In addition, density functional theory calculations suggest that the synthesis strategy for controllable tuning of hollow CoNi-LDH arrays reported here represents a critical step toward high-performance electrodes for energy storage and electrochemical catalysis.

15.
Adv Healthc Mater ; 8(15): e1900414, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31168955

RESUMO

Recent studies indicate that the synergistic phototherapy (SPT) process can simultaneously generate heat for photothermal therapy (PTT) and singlet oxygen (1 O2 ) for photodynamic therapy (PDT) to overcome the recurrence of tumors. However, the hypoxic environment in tumors seriously limits the therapeutic effect of the oxygen-dependent PDT, leading to the domination of PTT in the SPT process. Therefore, it is urgent to develop a novel SPT platform for overcoming hypoxia in tumors and improving the therapeutic effect of both PTT and PDT. In this work, a novel phototherapeutic platform based on a nanocomposite of aza-BODIPY/manganese dioxide (MnO2 ) is developed via simple electrostatic self-assembly. In this design, MnO2 nanosheets, which could produce heat and catalyze endogenous hydrogen peroxide (H2 O2 ) to generate oxygen, are prepared as a nanocarrier. After being coated with the as-prepared water-soluble aza-BODIPY-based polymer (PPAIB), the obtained MnO2 @PPAIB performs as a smart phototherapeutic agent for enhancing the efficiency of both PTT and PDT. More importantly, compared to PPAIB, MnO2 @PPAIB generates more heat and reactive oxygen species to realize the enhanced therapy effects of PTT and PDT. Hence, this work provides a new method to enhance the therapeutic efficacy of SPT by using a polymer/MnO2 nanoplatform to improve the oxygen concentration and produce more heat.


Assuntos
Compostos de Manganês/química , Nanocompostos/química , Óxidos/química , Polímeros/química , Animais , Compostos de Boro/química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Feminino , Células HeLa , Humanos , Peróxido de Hidrogênio/metabolismo , Lasers , Camundongos , Camundongos Nus , Nanocompostos/uso terapêutico , Nanocompostos/toxicidade , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Neoplasias/terapia , Fototerapia , Oxigênio Singlete/metabolismo , Transplante Heterólogo
16.
ChemMedChem ; 14(15): 1378-1383, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31210412

RESUMO

The development of efficient phototherapeutic agents (PTA) through rational and specific principles exhibits great potential to the biomedical field. In this study, a facile and rational strategy was used to design PTA through perturbation theory. According to the theory, both the intersystem crossing rate for singlet oxygen generation and nonradiative transition for photothermal conversion efficiency can be simultaneously enhanced by the rational optimization of donor-acceptor groups, heavy atom number, and their functional positions, which can effectively decrease the energy gap between the singlet and triplet states and increase the spin-orbit coupling constant. Finally, efficient PTA were obtained that showed excellent performance in multimode-imaging-guided synergetic photodynamic/photothermal therapy. This study therefore expands the intrinsic mechanism of organic PTA and should help guide the rational design of future organic PTA via perturbation theory.


Assuntos
Antineoplásicos/síntese química , Compostos de Boro/síntese química , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Fármacos Fotossensibilizantes/síntese química , Animais , Antineoplásicos/farmacologia , Compostos de Boro/farmacologia , Corantes Fluorescentes/síntese química , Células HeLa , Humanos , Camundongos Nus , Modelos Moleculares , Estrutura Molecular , Neoplasias Experimentais , Imagem Óptica , Fotoquimioterapia , Fármacos Fotossensibilizantes/farmacologia , Oxigênio Singlete/metabolismo , Relação Estrutura-Atividade
17.
ACS Appl Bio Mater ; 2(3): 1225-1232, 2019 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-35021371

RESUMO

The efficacy of photodynamic therapy (PDT) still shows limited success in clinical application due to hypoxia in the solid tumor, low tumor accumulation and limited light penetration depth of photosensitizers (PS). The previously reported MnO2-based nanotherapeutic agents always required intratumoral injection or complex targeting modification process to improve the therapeutic efficacy. Herein, new MnO2-based nanotherapeutic agents (honeycomb MnO2/IR780/BSA nanoparticles, HMIB NPs) are designed and prepared to achieve excellent phototherapeutic performance characterized by NIR-light-mediation, deep diffusion via TME response and O2 self-supply. The ex vivo and in vivo NIR fluorescence imaging results demonstrate that the honeycomb nanostructure of HMIB NPs facilitates the high tumor accumulation of hydrophobic IR780 via enhanced permeability and retention (EPR) effect after intravenous injection. The immunofluorescence results demonstrate that the TME response of HMIB NPs not only provides O2 for relieving hypoxia but also reduces size for improving deep intratumoral diffusion. As a result, under the synergy of NIR fluorescence imaging, photothermal effect and PDT of IR780 with TME responsive size-change, and O2 self-supply of honeycomb MnO2, the HMIB NPs have achieved all-in-one NIR fluorescence and photothermal dual-model imaging guided synergistic PDT/PTT under a single-wavelength NIR light irradiation.

18.
ACS Appl Mater Interfaces ; 10(51): 44324-44335, 2018 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-30508480

RESUMO

Phototherapy, as an important class of noninvasive tumor treatment methods, has attracted extensive research interest. Although a large amount of the near-infrared (NIR) phototherapeutic agents have been reported, the low efficiency, complicated structures, tedious synthetic procedures, and poor photostability limit their practical applications. To solve these problems, herein, a donor-acceptor-donor (D-A-D) type organic phototherapeutic agent (B-3) based on NIR aza-boron-dipyrromethene (aza-BODIPY) dye has been constructed, which shows the enhanced photothermal conversion efficiency and high singlet oxygen generation ability by simultaneously utilizing intramolecular photoinduced electron transfer (IPET) mechanism and heavy atom effects. After facile encapsulation of B-3 by amphiphilic DSPE-mPEG5000 and F108, the formed nanoparticles (B-3 NPs) exhibit the excellent photothermal stabilities and reactive oxygen and nitrogen species (RONS) resistance compared with indocyanine green (ICG) proved for theranostic application. Noteworthily, the B-3 NPs can remain outstanding photothermal conversion efficiency (η = 43.0%) as well as continuous singlet oxygen generation ability upon irradiation under a single-wavelength light. Importantly, B-3 NPs can effectively eliminate the tumors with no recurrence via synergistic photothermal/photodynamic therapy under mild condition. The exploration elaborates the photothermal conversion mechanism of small organic compounds and provides a guidance to develop excellent multifunctional NIR phototherapeutic agents for the promising clinical applications.


Assuntos
Antineoplásicos/farmacologia , Compostos de Boro/farmacologia , Verde de Indocianina/farmacologia , Nanopartículas/uso terapêutico , Neoplasias Experimentais/tratamento farmacológico , Fotoquimioterapia , Animais , Antineoplásicos/química , Compostos de Boro/química , Células HeLa , Humanos , Verde de Indocianina/química , Camundongos Nus , Nanopartículas/química , Neoplasias Experimentais/metabolismo , Neoplasias Experimentais/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
19.
Mol Ther Nucleic Acids ; 13: 376-386, 2018 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-30347351

RESUMO

Glypican-3 (GPC3), the cellular membrane proteoglycan, has been established as a tumor biomarker for early diagnosis of hepatocellular carcinoma (HCC). GPC3 is highly expressed in more than 70% HCC tissues detected by antibody-based histopathological systems. Recently, aptamers, a short single-strand DNA or RNA generated from systematic evolution of ligands by exponential enrichment (SELEX), were reported as potential alternatives in tumor-targeted imaging and diagnosis. In this study, a total of 19 GPC3-bound aptamers were successfully screened by capillary electrophoresis (CE)-SELEX technology. After truncated, AP613-1 was confirmed to specifically target GPC3 with a dissociation constant (KD) of 59.85 nM. When modified with a phosphorothioate linkage, APS613-1 targeted GPC3 with a KD of 15.48 nM and could be used as a specific probe in living Huh7 and PLC/PRF/5 imaging, GPC3-positive cell lines, but not in L02 or A549, two GPC3-negative cell lines. More importantly, Alexa Fluor 750-conjugated APS613-1 could be used as a fluorescent probe to subcutaneous HCC imaging in xenograft nude mice. Our results indicated that modified AP613-1, especially APS613-1, was a potential agent in GPC3-positive tumor imaging for HCC early diagnosis.

20.
ACS Appl Mater Interfaces ; 10(42): 35838-35846, 2018 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-30260621

RESUMO

Reactive oxygen species (ROS), when beyond the threshold, can exhaust the capacity of cellular antioxidants and ultimately trigger cell apoptosis in tumor biology. However, the roles of hypochlorite (ClO-) in this process are much less clear compared with those of ROS, and its detection is easily obstructed by tissue penetration and endogenous fluorophores. Herein, we first synthesized a near-infrared (NIR) ratiometric ClO- probe (Ir NP) composed of two kinds of phosphorescent iridium(III) complexes (Ir1 and Ir2) encapsulated with amphiphilic DSPE-mPEG5000. Ir NPs are dual-emissive and show obvious changes in phosphorescence intensity ratios and lifetimes of two emission bands upon exposure to ClO-. During the ClO- detection, ratiometric photoluminescence imaging is much more reliable over the intensity-based one for its self-calibration, while time-resolved photoluminescence imaging (TRPI) could distinguish the phosphorescence with long lifetime of Ir NPs from short-lived autofluorescence of tissues, resulting in the high accuracy of ClO- determination. With NIR emission, a long phosphorescence lifetime, fast response, and excellent biocompatibility, Ir NPs were applied to the detection of ClO- in vitro and in vivo by means of ratiometric phosphorescence imaging and TRPI with high signal-to noise-ratios (SNR). Importantly, we demonstrated the elevated ClO- in elesclomol-stimulated tumors in living mice for the first time, which holds great potential for the visualization of the boost of ClO- in anti-carcinogen-treated tumors and the further investigation of ROS-related oncotherapeutics.


Assuntos
Hidrazinas/uso terapêutico , Ácido Hipocloroso/química , Raios Infravermelhos , Luminescência , Nanopartículas/química , Neoplasias/tratamento farmacológico , Animais , Linhagem Celular Tumoral , Sobrevivência Celular , Células HeLa , Humanos , Hidrazinas/farmacologia , Irídio/química , Camundongos , Nanopartículas/ultraestrutura , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA