Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Magn Reson Imaging ; 59(4): 1349-1357, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37515518

RESUMO

BACKGROUND: Cerebrovascular reserve (CVR) reflects the capacity of cerebral blood flow (CBF) to change following a vasodilation challenge. Decreased CVR is associated with a higher stroke risk in patients with cerebrovascular diseases. While revascularization can improve CVR and reduce this risk in adult patients with vasculopathy such as those with Moyamoya disease, its impact on hemodynamics in pediatric patients remains to be elucidated. Arterial spin labeling (ASL) is a quantitative MRI technique that can measure CBF, CVR, and arterial transit time (ATT) non-invasively. PURPOSE: To investigate the short- and long-term changes in hemodynamics after bypass surgeries in patients with Moyamoya disease. STUDY TYPE: Longitudinal. POPULATION: Forty-six patients (11 months-18 years, 28 females) with Moyamoya disease. FIELD STRENGTH/SEQUENCE: 3-T, single- and multi-delay ASL, T1-weighted, T2-FLAIR, 3D MRA. ASSESSMENT: Imaging was performed 2 weeks before and 1 week and 6 months after surgical intervention. Acetazolamide was employed to induce vasodilation during the imaging procedure. CBF and ATT were measured by fitting the ASL data to the general kinetic model. CVR was computed as the percentage change in CBF. The mean CBF, ATT, and CVR values were measured in the regions affected by vasculopathy. STATISTICAL TESTS: Pre- and post-revascularization CVR, CBF, and ATT were compared for different regions of the brain. P-values <0.05 were considered statistically significant. RESULTS: ASL-derived CBF in flow territories affected by vasculopathy significantly increased after bypass by 41 ± 31% within a week. At 6 months, CBF significantly increased by 51 ± 34%, CVR increased by 68 ± 33%, and ATT was significantly reduced by 6.6 ± 2.9%. DATA CONCLUSION: There may be short- and long-term improvement in the hemodynamic parameters of pediatric Moyamoya patients after bypass surgery. EVIDENCE LEVEL: 4 TECHNICAL EFFICACY: Stage 2.


Assuntos
Doença de Moyamoya , Adulto , Feminino , Humanos , Criança , Doença de Moyamoya/diagnóstico por imagem , Doença de Moyamoya/cirurgia , Imageamento por Ressonância Magnética/métodos , Encéfalo , Hemodinâmica , Circulação Cerebrovascular/fisiologia , Marcadores de Spin
2.
J Magn Reson Imaging ; 57(6): 1655-1675, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36866773

RESUMO

Preoperative clinical magnetic resonance imaging (MRI) protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation or lack thereof. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this first part, we discuss dynamic susceptibility contrast and dynamic contrast-enhanced MRI, arterial spin labeling, diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting. The second part of this review addresses magnetic resonance spectroscopy, chemical exchange saturation transfer, susceptibility-weighted imaging, MRI-PET, MR elastography, and MR-based radiomics applications. Evidence Level: 3 Technical Efficacy: Stage 2.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Imageamento por Ressonância Magnética/métodos , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Espectroscopia de Ressonância Magnética/métodos , Imagem de Difusão por Ressonância Magnética
3.
J Magn Reson Imaging ; 57(6): 1676-1695, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36912262

RESUMO

Preoperative clinical MRI protocols for gliomas, brain tumors with dismal outcomes due to their infiltrative properties, still rely on conventional structural MRI, which does not deliver information on tumor genotype and is limited in the delineation of diffuse gliomas. The GliMR COST action wants to raise awareness about the state of the art of advanced MRI techniques in gliomas and their possible clinical translation. This review describes current methods, limits, and applications of advanced MRI for the preoperative assessment of glioma, summarizing the level of clinical validation of different techniques. In this second part, we review magnetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), susceptibility-weighted imaging (SWI), MRI-PET, MR elastography (MRE), and MR-based radiomics applications. The first part of this review addresses dynamic susceptibility contrast (DSC) and dynamic contrast-enhanced (DCE) MRI, arterial spin labeling (ASL), diffusion-weighted MRI, vessel imaging, and magnetic resonance fingerprinting (MRF). EVIDENCE LEVEL: 3. TECHNICAL EFFICACY: Stage 2.


Assuntos
Neoplasias Encefálicas , Glioma , Imageamento por Ressonância Magnética , Humanos , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/patologia , Meios de Contraste , Glioma/diagnóstico por imagem , Glioma/cirurgia , Glioma/patologia , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Período Pré-Operatório
4.
J Cereb Blood Flow Metab ; 42(5): 700-717, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34806918

RESUMO

Cerebrovascular reactivity (CVR), the capacity of the brain to increase cerebral blood flow (CBF) to meet changes in physiological demand, is an important biomarker to evaluate brain health. Typically, this brain "stress test" is performed by using a medical imaging modality to measure the CBF change between two states: at baseline and after vasodilation. However, since there are many imaging modalities and many ways to augment CBF, a wide range of CVR values have been reported. An understanding of CVR reproducibility is critical to determine the most reliable methods to measure CVR as a clinical biomarker. This review focuses on CVR reproducibility studies using neuroimaging techniques in 32 articles comprising 427 total subjects. The literature search was performed in PubMed, Embase, and Scopus. The review was conducted using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). We identified 5 factors of the experimental subjects (such as sex, blood characteristics, and smoking) and 9 factors of the measuring technique (such as the imaging modality, the type of the vasodilator, and the quantification method) that have strong effects on CVR reproducibility. Based on this review, we recommend several best practices to improve the reproducibility of CVR quantification in neuroimaging studies.


Assuntos
Encéfalo , Circulação Cerebrovascular , Encéfalo/irrigação sanguínea , Encéfalo/diagnóstico por imagem , Circulação Cerebrovascular/fisiologia , Humanos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Reprodutibilidade dos Testes , Vasodilatação/fisiologia
5.
Mol Imaging ; 132014.
Artigo em Inglês | MEDLINE | ID: mdl-25022454

RESUMO

Molecular imaging probes can target abnormal gene expression patterns in patients and allow early diagnosis of disease. For selecting a suitable imaging probe, the current Molecular Imaging and Contrast Agent Database (MICAD) provides descriptive and qualitative information on imaging probe characteristics and properties. However, MICAD does not support linkage with the expression profiles of target genes. The proposed Disease-specific Imaging Probe Profiling (DIPP) database quantitatively archives and presents the gene expression profiles of targets across different diseases, anatomic regions, and subcellular locations, providing an objective reference for selecting imaging probes. The DIPP database was validated with a clinical positron emission tomography (PET) study on lung cancer and an in vitro study on neuroendocrine cancer. The retrieved records show that choline kinase beta and glucose transporters were positively and significantly associated with lung cancer among the targets of 11C-choline and [18F]fluoro-2-deoxy-2-d-glucose (FDG), respectively. Their significant overexpressions corresponded to the findings that the uptake rate of FDG increased with tumor size but that of 11C-choline remained constant. Validated with the in vitro study, the expression profiles of disease-associated targets can indicate the eligibility of patients for clinical trials of the treatment probe. A Web search tool of the DIPP database is available at http://www.polyu.edu.hk/bmi/dipp/.


Assuntos
Bases de Dados Genéticas , Doença/genética , Sondas Moleculares , Perfilação da Expressão Gênica , Humanos , Imagem Molecular/métodos , Sondas Moleculares/química , Reprodutibilidade dos Testes , Navegador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA